• Non ci sono risultati.

Tidal River Management (TRM) and Tidal Basin Management (TBM): A case study on Bangladesh

N/A
N/A
Protected

Academic year: 2021

Condividi "Tidal River Management (TRM) and Tidal Basin Management (TBM): A case study on Bangladesh"

Copied!
7
0
0

Testo completo

(1)E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712009. Tidal River Management (TRM) and Tidal Basin Management (TBM): A case study on Bangladesh 1,a. 2. Rocky Talchabhadel , Hajime Nakagawa and Kenji Kawaike 1. 2. Ph. D. Student, Dept. of Civil and Earth Resources Engineering, Kyoto University. (Shimomisu, Yoko-oji, Fushimi-ku, Kyoto 612-8235, Japan) 2. Professor, Dept. of Civil and Earth Resources Engineering, Kyoto University. (Shimomisu, Yoko-oji, Fushimi-ku, Kyoto 612-8235, Japan). Abstract. Bangladesh is the biggest delta of the world. Construction of numbers of polders is one of the flood resilient approach. But the presence of coastal polders de-linked the flood plain. The siltation in river causes riverbeds to become higher than the adjacent crop lands, and vast area under the polders became permanently water logged rendering large tract of land uncultivable. The current practice is temporarily de-poldering by cutting embankment. This is a natural water management process with very little human interventions but it needs strong participation and consensus with a great deal of sacrifice by the stakeholders for a specific period (3 to 5 years or even more)[1]. An attempt has been made to study the phenomena of tidal basin management reviewing some secondary data and processes involved in successfully operated tidal basins of Bangladesh. And preliminary laboratory experiments are carried out to precisely look into the suspended sediment transport. With varying outflow discharge and sediment supply, the transport processes are investigated. 3D sediment transport model developed using openFOAM has good agreement with experimental result and can be used to better understand effectiveness of tidal basin management.. 1 Introduction  

(2) 

(3)   

(4)                 

(5)           

(6)         !" #" $     

(7)  %&   '             

(8)      (  

(9) )  

(10)          *" $          '      

(11)  '                   +" , ' 

(12)      '    - 

(13)  ' " .     

(14) 

(15)  '            '   %/  

(16)    0 '        '    '    

(17)     1" $  %%            ' 0  '     '      

(18)     ' ' ",' '      -'   

(19) '       '   

(20) '         

(21) " 2                      

(22)  

(23)   a.        

(24)

(25) 

(26)  '   -  ,  3 ,3#". Fig. 1 The catchments of the Ganges, Brahmaputra and Meghna Source: www.jrcb.gov.bd/image/Basin_map.jpg. ,                      

(27)      " ,        

(28)       

(29)    &" ,     -   '' ' '     

(30)   

(31) ' " ,  

(32)  

(33) '     '

(34)       '   

(35) '    -  1&"4'  . Corresponding author: rocky@uh31.dpri.kyoto-u.ac.jp. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(36) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712009.

(37)          

(38) '       " 2   '               '     '

(39)          -       

(40)  &" 2  '  

(41)         , 53 ,53#" ,         

(42)     . 

(43)       

(44)  

(45)

(46)     6", '

(47)                

(48) '          /" , 0  ' ' 

(49)  ,37,53      '  '                 %" ,53     

(50)     

(51)

(52)     '         

(53)     ''   " 8'    ' 

(54)  ,3  '    . 

(55)  '     

(56)    9  '         %%6#   

(57)

(58)     

(59)    : 1#      : -  &#" !   '     ;'          '   -  '  ' ". * '         !     '

(60)       '   

(61)     "4 '

(62)   *      " . 2 Data and Methods. 2.2 Experimental Setup  , ;'      

(63)     B0 4' C   B4C#

(64)  .   @  5  $   .@5$# :   B " , 

(65) ;'   '    !" *" 2  '        ;'      9 .  

(66)     @$D )             '

(67)       '    

(68)                - ". .  Fig 2. Successfully operated three tidal basins [11]. .   

(69)      " 2       '     '         -   ''  ''    (  '  

(70)  <=4  

(71)

(72)       ' 0 -      ":    '       '        '         '      " 8   '  ;'     .  ;' 

(73)  " >;'          ' ;'  

(74)     ''      " 2.1 Literature Review  

(75)   ?    >- @ 0 

(76) '       '

(77)         ' A  

(78)      

(79) 

(80)   ' '  " ,          -   &/   

(81)        '          " $  ;

(82)           '        ( 

(83) 9 x?   >-@ 0%&  x=  ''   %6  x.   %/  x.  ' 0%%  x,   '   x,    '     . Fig.3 Schematic view of the experimental setup [12].  * '     '     '  " ,      "% ' '    E%'  *  7   +1&  6/%   !"* '       " 8  ;'          

(84)   

(85)  1 7 F#  ;' 

(86)  

(87)      

(88)     

(89) ;". 

(90)  )     / G    "6& 7  

(91) 

(92)   0   

(93) " . 2.

(94) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.   9  

(95)     

(96)   !    8'     '

(97)  3 N   =  '

(98)  8   ." 2 '                '     

(99)   

(100)       

(101)  

(102) 

(103)   " ,      : -      '' ;  /   "1   ' " $  

(104)    :   '       

(105)    '  

(106)       

(107)       '' ;  "       '' ;  "    #"        ' 

(108)  :  "   : -         

(109)  6        '        ' 

(110)  *  "   :'  '   

(111)     

(112) ' 

(113) 1     '    N  '  " 2 

(114)        '    

(115)

(116)             -

(117)   " 3   :' '            O   %+/  > # @-   $ '" ,     -  3      

(118)      '   '       '   '      :'  "3   ;'  '       

(119)  '#

(120)                " 2      ' '      0 

(121)   "8         '  " . 2.3 Numerical Simulation  4'!483 4' !  4'   3'  #   '   ?HH   ;

(122)         ;  

(123)      

(124)   .  '     '   

(125)    ?!.#" $          

(126) '  ''   

(127)  '   " $   '    B: ? ' 4'?!. C"    '  =@C*+" ,   )      *.     58<2 )   

(128)   '  

(129)       )  

(130)   !

(131)      D4!   

(132)  . ’˜U. 0. (1). wUU  ’ ˜ UUU

(133) ’p  ’ ˜ IJ  Ug  fs wt (2). wF  ’ ˜ UF

(134) 0 wt. DOI: 10.1051/ e3sconf/2016 0712009. (3). ‫׏‬I    ' B IJ

(135) J J KJLJ I

(136)  'I ' KJ MJ I          I       

(137) I 

(138)  )      

(139)    " , '

(140)   !.    D4!     

(141)          '(    '"?   !

(142)    (      . 

(143) " $     '  '   @$24 '  '   ' 

(144)  ' # ''   '",

(145)    !D3#   

(146)   (        

(147)

(148)   

(149)  '  ( 

(150)   '  

(151) '   ( " ,0 

(152)        C        )  

(153)     ' " 2 

(154)    '       . '      

(155)    

(156)         '                 " , '   '       >     '    

(157)

(158)   )  " , C      >          ;        '  " , . 

(159)  

(160)        ; " " '- ' '  #   1".  Fig 4. Temporal variation of profile of Hari River [16]. , O 5        ' 

(161)  '  

(162)  ,53           '           

(163)  ,53 '   '  )      0    

(164)   &"!+   '    

(165)  '

(166)  

(167) O5". 3 Results 3.1 Secondary Data Review  .       ' 0 %  38    38#    &/  3 = '  3=#" , 38                 3=        ' 

(168)   "      

(169)     

(170)     '  " ! '     . 3.

(171) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712009. Fig 5. Impact of operation and closure of TRM at Hari River during different time [17]. $ N  %%6                3. ' 

(172)          ''  +    32C               ''    + " .    ,53        '           

(173)     " . '  

(174) ,53 : 

(175)   #   -  

(176)                '  ! +  1#" 2   '

(177)  ' 

(178)  ,53      : -    

(179)  :      '  

(180)   

(181)   '

(182)  ' 

(183) ,53" 8     !" 1  ' 

(184)  ,53      : -    '

(185)     

(186)    '     " ,  

(187) ,53       

(188)  

(189)   ". Fig 6. Sediment concentration at 9 sampling points with varying outflow discharge from side basin [12]. $        .               "        ! 6    

(190)                      

(191)   "+ E "&6 '         1 7 

(192) 

(193)      " C  J

(194) J J  J J   PJ ''J  ;' 

(195) "             '

(196)              '

(197)        ' ". 3.2 Experimental Setup and Numerical Simulation  3.2.1 Experimental Results    

(198)   

(199)          *#     "      

(200)  

(201)

(202)      6/%#     +1&#" 2            +1&#        6/%#       !&#"   

(203)         

(204) 

(205)           '            

(206) ". Fig 7. Sediment concentration at side basin and outlet Vs sediment concentration at inlet [12]. 3.2.2 Numerical Simulation ! /       

(207) 

(208)           

(209) ! %   

(210) 

(211)  1 7      

(212) " ,      

(213)  

(214)   .   ''   '  ;'      

(215)             @  $ D  @$D#" ! /         

(216)      

(217)    '            ! %    +1Q

(218) 

(219)         '     ". 4.

(220) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712009. a. b. c Fig 8. The case where no outflow from side basin. Fig 10. Water velocity at 3 cm above from bed in different scenario a)30 cm opening, b) 65 cm opening and c)100 cm opening. 4 Discussions ,                      ("$

(221)   

(222) ,53               '            -     '              

(223)   '  " ,               

(224)   

(225)      '              

(226)     -    #" ,     '   

(227)     '     '   " , 

(228)  Bangladesh Water Development Board (.#   '      '

(229)    :'  N          -

(230)      .    

(231)     "?  

(232)                   #" ,

(233)

(234)           '        ' 0  

(235) ' " $    ; ,537,3        

(236)

(237)    ''   - .  ,53 )    

(238)   R $ ,53   R $ ,53 

(239)   R $ ,53 'R $  ,53  R .       '   R. Fig 9. The case where 50 l/min outflowed from side basin. , ;'     

(240)  '  (

(241)          '           "   (

(242)  ' 

(243)  *&1#  ' 

(244)  '     " , ;  ;'

(245)            '  ". 5.

(246) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0712009. ?   2'   2  ,  N'#   '

(247)     ". .     ,53R  2    

(248)  '

(249)     

(250)              

(251)    '      "4 

(252)  

(253)  

(254)   

(255)        ' 

(256)  

(257)  "$

(258)   

(259) 

(260)                '   ' " ,      

(261) '      ' " ,   ''       (

(262)       (

(263)  ' 

(264)    ' '  

(265)  -      '

(266)   " 2        '      

(267)   "3        -

(268) ;  

(269)

(270)   

(271)       

(272)    ' (

(273)     " $      ;'   ; ;'   (

(274)       

(275) 

(276)       

(277)

(278)  (

(279)  - 0 

(280)     " <; '       '  

(281)                 '  

(282)  '      -    

(283)  

(284)

(285)   ". 6 References 1.. 2. 3.. 4.. 5.. 6.. 5 Conclusions. 7.. ,               

(286)   

(287)      '              

(288)     -    ",    '   

(289)     '     '    "  3   

(290)

(291)   '    '   

(292)    ' '     '      ",    '   

(293)

(294)   

(295)                .#  

(296)     

(297)    ' #" ! ' ;'      

(298) '  

(299)  '   '  '   

(300) 

(301)    

(302)            '   ;" !    

(303)  (

(304)       ' '    

(305)            

(306)

(307)      '  

(308)    '  

(309)  '   '         '       ' 

(310)  ,3 '  " ,          ;'  ; ;'           ". 8.. 9.. 10.. 11.. 12.. 13.. Acknowledgment:. 14.. ,     ''   N2,7N$?8 28,5>@2 '      ' 7      

(311)            @$9 ." O0 <-#" ,

(312)        '     -  3  --   3 

(313) >  . 15.. 6. Ullah W. M. and Rahman R. (2002). Tidal River Management: A sustainable solution to drainage congestion in the coastal region in Bangladesh Bangladesh Environment, 2, pp 1022-1032 Banglapedia (2012). The National Encyclopedia of Bangladesh revised Second Edition Islam Md. S. et al (2013). Methodology of crest level design of coastal polders in Bangladesh 4th International Conference on Water & Flood Management (BWDB) Bangladesh Water Development Board (2003). Khulna-Jessore Drainage Rehabilitation Project Final Report Part A: Monitoring and Integration Leender de Die (2013). Tidal River Management: Temporary depoldering to mitigate drainage congestion in the southwest delta of Bangladesh MSc Thesis on Wageningen University, the Netherlands Kibria Z. and Hirsch D. (2011). Tidal River Management: Climate Change Adaptation and Community based River Basin Management in Southwest Coastal Region of Bangladesh. Published by Uttaran. Banglapedia (2004). National Encylopedia of Bangladesh, Asian Society of Bangladesh, 1st edition, Dhaka, Bangladesh Hossain M. A. R. et al (2009). The Chalan beel in Bangladesh: Habitat and biodiversity degradation, and implications for future management Lakes & Reservoirs: Research and Management, 14, 3-19 Tutu A. A. (2005). River Management in 

(314)              Logging, Civil Society and Poverty Reduction, International Institute for Environment and Development (IIED), No. 52, pp 117-123 EGIS (1998). Environmental and Social Impact Assessment of Khulna Jessore Drainage Rehabilitation Project, Dhaka. IWM (2007), Monitoring the Effects of Beel Khuksia TRM Basin and Dredging of Hari River for Drainage Improvement of Bhabodaoh Area, Institute of Water Modelling (IWM), Dhaka, Bangladesh Talchabhadel R., Nakagawa H. and Kawaike K. (2016). Experimental Study on Suspended Sediment Transport to represent Tidal Basin Management Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) Vol 72, No. 4, I_847-I_852 OpenCFD Ltd. OpenFOAM, The Open Source CFD Toolbox, User Guide, 2009. OpenCFD Ltd. OpenFOAM, The Open Source CFD To   !!" Ota K., Sato T., and Nakagawa H. 3D numerical model of sediment transport considering transition from bed-load motion to suspension: application to.

(315) E3S Web of Conferences 7, 12009 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. local scours upstream of cross-river structures, JSCE, Vol.59, I_883- I_888, 2015. (in Japanese) 16. Khadim F. K. et al (2013). Integrated Water Resources Management (IWRM) Impacts in South West Coastal Zone of Bangladesh and Fact-Finding on Tidal River Management (TRM) Journal of Water Resource and Protection, 5, 953-961 17. (IWM) Institute for Water Modelling (2010). Feasibility Study and Detailed Engineering Design for Long Term Solution of Drainage Problems in the Bhabodah Area.. 7. DOI: 10.1051/ e3sconf/2016 0712009.

(316)

Riferimenti

Documenti correlati

Membership in the best cluster is associated with lower scores for general psychopathology, negative and depressive symptoms, and a higher proportion of employed patients, with

The San Francisco Bay Area Integrated Regional Water Management Plan and Flood Risk Management In California, the initial goals for the IRWM program were similar to those of the

domestic sewage. The main sources of pollutants entering Kapuas Kecil River downstream come from domestic waste settlements, trade and service activities, large and small

Most of the literature reviews reveal that a number of comprehensive studies on TRM/TBM are available. These studies cover a wide range of analysis regarding appropriate planning,

Impacts on flow field due to scenario-2 show that minimum flood depth in the study area is increased to 460%, where minimum right bank velocity will increase 114% and 179%

La più recente opera di Charles Taylor, che si vorrebbe discutere in questo contesto, è uno di quei libri nei quali devi immergerti appieno per poterli comprendere, ma dai quali

In un possibile ragionamento sul ruolo dell’architetto nella collettività contemporanea, che prenda le mos- se da questo espediente logico, si intrecciano alme- no tre questioni

Quantile regression and quantile mixed-effect regression model outputs indicating the effects of historic discharge (Q – z scores calculated from values measured in m3 s-1) indices