Analysis of the filtration processes in soil embankment based on numerical modelling and temperature measurements
Testo completo
(2) and Daniel Kessler. 2. 1. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Geoinformatics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland NeoSentio Ltd., ul. Konfederacka 23, 30-306 Krakow, Poland. 2. Abstract. This paper presents analysis of the filtration processes in experimental soil embankment. The analysis is made during flooding experiments. The analysis is based on numerical modelling and temperature measurements. The measurements were performed on experimental embankment, which size is in scale 1:5 comparing to Polish typical river embankments. This experimental embankment was built in a frame of ISMOP project [1]. It was constructed by the NeoSentio company to investigate the influence of sensors installation for the filtration process and structure stability. The embankment was dry in the beginning of the experiment. The flooding and discharging process took about 8 hours. Filtration of water through the embankment caused changes of the inner temperature, which was measured by thermal sensors inside the embankment. Pore pressure sensors registered changes in water level in embankment. Furthermore, 2D numerical modelling in FLAC 7.0 software was performed. The model reflects the geometric and geotechnical attributes of the real embankment. Comparison between measured and modelled temperatures was performed. The model quite well predicts the time when water reach each sensor. But there is a difference in the rate of fall of water level. Modification the parameters of the model allows to fit the modelled data to measured values.. 1 Introduction
(3)
(4)
(5)
(6)
(7)
(8)
(9) .
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21) ! " ! .
(22)
(23) .
(24)
(25) .
(26)
(27)
(28) # ! "!!
(29)
(30)
(31) $%&
(32)
(33)
(34)
(35) '
(36)
(37) (
(38)
(39)
(40)
(41)
(42)
(43) ) !
(44) * +,-
(45)
(46) .
(47)
(48)
(49)
(50)
(51) $.&
(52)
(53) a Corresponding author: [email protected].
(54)
(55) ! "
(56) /
(57) ,
(58) 0
(59)
(60) $1&
(61) ! .
(62)
(63)
(64)
(65)
(66)
(67)
(68) + ! 2
(69) .
(70)
(71)
(72)
(73)
(74) 134
(75)
(76) 0
(77)
(78) .
(79)
(80)
(81)
(82) "
(83) .
(84)
(85) $5&
(86) .
(87).
(88)
(89)
(90)
(91)
(92). 6
(93) 7 . 2 Experiment description (
(94)
(95) ! ",89
(96) # , .
(97)
(98)
(99)
(100) 9
(101)
(102)
(103)
(104)
(105)
(106) . © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..
(107) E3S Web of Conferences 7, 03018 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703018. "
(108)
(109) :
(110) ;
(111)
(112) .
(113)
(114) * 1-. . Figure 1. Small experimental embankment. . " ( / 2
(115). .
(116) 2
(117). .
(118) .
(119) 9 2
(120). . %
(121)
(122)
(123) *
(124)
(125) -9
(126) 2
(127). . . 2.1 Construction of the embankment ,
(128)
(129)
(130)
(131) 5
(132) .
(133) % <
(134) .
(135)
(136)
(137)
(138)
(139)
(140) .
(141)
(142)
(143)
(144) + 1613 161= . . 8 "
(145) .
(146) . 1
(147) . . Figure 3. Top view of experimental embankment. 2.2 Specification of flood experiments .
(148)
(149) .
(150)
(151)
(152) 1543%413 4.4>%413 %34>%413 .
(153) . .
(154)
(155) *
(156)
(157)
(158) -
(159) . . .
(160)
(161) ' .
(162) . .
(163)
(164)
(165) .<. .
(166)
(167)
(168) '
(169)
(170)
(171)
(172) .
(173) . +
(174) ?4<@4
(175) ' %
(176)
(177)
(178) ' 34< >4
(179)
(180) + %4
(181)
(182) .
(183)
(184)
(185)
(186) .
(187) 2.3 Results of measurements
(188)
(189) .
(190) 2
(191). .
(192) 5. Figure 2. Cross section of experimental embankment.
(193)
(194) 1
(195) * .- + .
(196)
(197) . 2.
(198) E3S Web of Conferences 7, 03018 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703018.
(199)
(200) "
(201) .
(202) ' . .
(203)
(204)
(205) ( 2
(206). . .
(207) . .
(208)
(209) B
(210)
(211) "" ,
(212) "" /1
(213) 1?3q/ "
(214) 2
(215). '
(216) . . ' .
(217)
(218) 2
(219). * 5
(220) -
(221) 2
(222). .
(223)
(224) 14q/
(225) *+, -
(226)
(227)
(228) /1
(229) * 1.6.4- " 1>644
(230) * 14q/-
(231)
(232)
(233)
(234)
(235)
(236) 2
(237). *. 5
(238) - + * - 2
(239). .
(240)
(241)
(242) 2
(243). /% . .
(244) 14q/ 1%14 2
(245). '
(246)
(247) .
(248)
(249) 4%q/
(250) 2
(251). /./%(
(252) +
(253) .
(254)
(255) '
(256)
(257) .
(258)
(259) /% /. . "
(260) .
(261)
(262)
(263)
(264) 1Aq/ .
(265)
(266) . .
(267)
(268)
(269)
(270)
(271)
(272) . Figure 4. Measurements in piezometers in sector C.. +, * -
(273)
(274) 9 *
(275) -
(276)
(277)
(278) * . -
(279) * . -<
(280)
(281) .
(282) 8 .
(283)
(284) 1?q/%1q/
(285)
(286)
(287) 1A3q/
(288)
(289)
(290) .q/ *
(291) " """- 13q/ 1q/ *
(292) ""-
(293) . 2
(294). .
(295) .
(296)
(297) *
(298) .
(299)
(300) -
(301) 2
(302).
(303)
(304)
(305).
(306) .
(307)
(308)
(309)
(310) .
(311)
(312) '
(313) 2
(314). /1 /%/.
(315)
(316) 2
(317). (1 /1 (% /% (. /.
(318) ,
(319)
(320)
(321)
(322) . 3.
(323) E3S Web of Conferences 7, 03018 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703018.
(324) $1.&9
(325). 1 . . 3 The numerical simulation .
(326)
(327)
(328) < <
(329)
(330) $3<?& .
(331)
(332)
(333)
(334)
(335)
(336)
(337)
(338) $@<11& #
(339)
(340)
(341) . C'/ "',/'
(342) $1%& <
(343) C'/
(344) .
(345)
(346)
(347) . . 3.1. Theory
(348)
(349) B C'/ ் ݍൌ െ݇ ் ܶ ் . ݇
(350) ்
(351) ݇௪ ݇௦் . ் ݇ ் ൌ ݇௦் ݊ܵ݇௪
(352) C'/
(353)
(354) .
(355) .
(356) .
(357) C'/ D ߲ܶ ்ܿ ் ݍ ߩ ܿ௪ ݍ௪ ή ܶെ ݍ௩் ൌ Ͳ ߲ݐ .
(358) ݍ
(359) ் ݍ௪ ݍ௩்
(360) ߩ . ܿ௪ ܿ ் ܿ ் ൌ ߩௗ ܥ௩ ݊ܵߩ ܿ௪ " ߩௗ ܥ௩
(361) , . <@. 9
(362)
(363)
(364) . 15 *
(365) %E9F-. 9
(366) . 1% <1.*
(367) %E9F-. 9
(368) . 1% <?*
(369) %E9F-. 9
(370)
(371) . 413. 9 . 443. 9 . 453. ,
(372) . 1>@G/. +
(373) . %1G/. (
(374) . % A9. , . HIIJKLF:. , . MNHOJKLF:. / . 1>. / . 4>. ( . 1?34E
(375) .. =
(376) . %@344*P@-
(377) 9<
(378)
(379). . 9
(380)
(381) .
(382) * 3- . . 5. 9
(383) . 9
(384) 2 154444
(385)
(386)
(387) 441441
(388)
(389) . *'99CQ -
(390) > /
(391) %1 . / . 3.2 Numerical model of the embankment
(392)
(393) .
(394)
(395)
(396)
(397)
(398)
(399) ? %
(400). * 3-
(401)
(402)
(403) 4A
(404).
(405) .
(406) . 1613161 '
(407)
(408)
(409) ,
(410)
(411)
(412)
(413).
(414) . .
(415)
(416)
(417) 8
(418).
(419)
(420). . . 4.
(421) E3S Web of Conferences 7, 03018 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703018.
(422)
(423) . R, R
(424)
(425) 2
(426)
(427) 3
(428) . Figure 6. Water level in the container. / . 6
(429)
(430) @ *%@344-
(431) <
(432) =
(433)
(434) .
(435)
(436) .
(437) 2
(438). * 3-. Figure 7. The height of the water column in piezometers depending on the duration of the experiment. 4 Discussion of the results ? 2
(439). .
(440) * -
(441)
(442)
(443)
(444) "
(445)
(446)
(447)
(448)
(449)
(450) 2
(451). /1 .
(452)
(453) +
(454)
(455)
(456)
(457) 2
(458). A
(459)
(460) 35
(461) 0 2
(462). /%
(463)
(464) 13
(465)
(466)
(467)
(468)
(469)
(470)
(471)
(472) .
(473) 54
(474) " 2
(475). /.
(476) %4
(477)
(478)
(479)
(480)
(481)
(482)
(483)
(484) 2
(485). 1>
(486) 5
(487)
(488)
(489) "
(490)
(491)
(492)
(493)
(494) .
(495) .
(496)
(497)
(498) .
(499)
(500) "
(501)
(502)
(503) .
(504)
(505)
(506)
(507) 9
(508) . Figure 8. Piezometers temperature distribution depending on the duration of the experiment. @
(509)
(510)
(511) 2
(512). .
(513) * -
(514)
(515)
(516)
(517)
(518) ' . 2
(519). /1. .
(520)
(521)
(522)
(523)
(524) .
(525)
(526)
(527) .
(528)
(529)
(530)
(531)
(532) 2
(533). /% /.
(534) .
(535) 8 .
(536)
(537)
(538)
(539)
(540) 2
(541). /%
(542)
(543) /.D
(544)
(545)
(546) ,
(547)
(548)
(549)
(550) .
(551)
(552) *13<%4G/- . 5.
(553) E3S Web of Conferences 7, 03018 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.
(554)
(555)
(556) ,
(557) . .
(558).
(559) .
(560)
(561) .
(562)
(563)
(564) '
(565) /% /. 2
(566). )
(567)
(568)
(569)
(570)
(571) . DOI: 10.1051/ e3sconf/2016 0703018. 6 References 1.. 2. 3. 4.. 5 Conclusions. 5..
(572)
(573)
(574)
(575)
(576)
(577)
(578)
(579) ' .
(580) 9
(581). .
(582) .
(583)
(584)
(585). *
(586) - '
(587)
(588)
(589) B
(590) 2
(591) . . " .
(592) * 2
(593). /1- .
(594)
(595)
(596)
(597) .
(598) " /% /.. . S
(599) *S - *9;/ -
(600) '
(601)
(602)
(603)
(604)
(605)
(606) .
(607)
(608)
(609)
(610)
(611)
(612)
(613)
(614) . .
(615)
(616)
(617)
(618)
(619)
(620) . 6.. 7.. 8.. 9.. 10.. 11.. Acknowledgments 12.. !"# $ # % $!&'(!)('*(+,'- '*,.-."/'0
(621) 123 4 & # 5
(622) 2 # 2 6 $ #
(623) % '''''7,8'-. 13.. 6. ISMOP - Computer System for Monitoring River Embankments (in Polish: Informatyczny System
(624) . www.ismop.edu.pl Flood Control IJkdijk, www.floodontrolijkdijk.nl. UrbanFlood Project, www.urbanflood.eu. !" #$ %. &'()* +
(625) , ,-./
(626) . przeciwpowodziowe (eng. Selected levee monitoring , 0$/ 1$0 62 10/2 699-703, in Polish. Rutqvist J., Wu Y.S., Tsang C.-F., Bodvarsson G. (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock Int J Rock Mech Min Sci, 39, 4296442 McKenzie J.M., Voss C.I., Siegel D.I. (2007), Groundwater flow with energy transport and waterice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs Adv. Water Resour., 30, 9666983 Pan P, Feng X (2013) Numerical study on coupled thermo-mechanical processes in Äspö Pillar Stability Experiment. J Rock Mech Geotech Eng 5(2):1366 144 Radzicki K. and Bonelli S. (2012). Monitoring of suffusion process development using thermal analysis performed with IRFTA model, 6th International Conference on Scour and Erosion, 593600 7 8 &'()9 :-, $. modelling of temperature and pore pressure distribution in the embankment during flooding processes SGEM 2015: Science and Technologies in Geology, Exploration and Mining : 15th International Multidisciplinary Scientific Geoconference : 18-24, June, 2015, Albena, Bulgaria : conference proceedings Vol. 2, Hydrogeology, Engineering Geology and Geotechnics, 479-496. Carvajal C., Peyras L., Arnaud, P., Boissier D. and Royet P. (2009). Probabilistic Modeling of Floodwater Level for Dam Reservoirs, Journal of Hydrologic Engineering, 14(3), 223-232 Liu Z., Bonelli S. and Mercier F. (2015) Breaching of levees: An erosion model that takes into account thesoil tensile strength, Scour and erosion: Proceedings of the 7th International Conference on Scour and Erosion, Taylor Francis Group, 419-425 FLAC, User;s Manual, Itasca Consulting Group Inc. Minneapolis, 2011 Farouki O. T. (1981). Thermal properties of soils. CRREL Monograph, 81-1, pp. 1-151..
(627)
Documenti correlati
The salinisation cycle, which involves seawater intrusion or saltwater upconing in deep confined aquifers, extraction of this saltwater by pumping, use of the
Limit equilibrium analyses were performed both in steady-state and in transient flow conditions, as induced by river water levels and rainfall events registered since
8 and 9 shows that in the last stage of the process related to fixed carbon combustion, the higher temperature was obtained for softwood – ca.. 250˚C for hardwood,
The value of soil thermal conductivity is assumed as 0.5 W/(m K). It can be seen, that for the analyzed system, when the thermal backfill with high thermal conductivity is
Three linear resistive tensometers and three thermoelements were placed in the key areas of radiator (the inlet and outlet of cooling liquid to the heat exchanger and separator of
Il trasporto parziale di sabbia che si verifica nel tratto bimodale di monte e quello totale che si sviluppa nel tratto unimodale di valle, portano a due stati di equilibrio
For an autocatalytic reaction to take place in a BATCH reactor, some minimal amount of product P must be present to make sure that the reaction rate is not
It is seen that, with the growth of γ , the induction time increases, while the rate of growth of temperature does not change significantly from what is observed for lower values of