• Non ci sono risultati.

In addition, show that if also allxi lie on the same side of1, then det(A + I)k−1det(A + (x1

N/A
N/A
Protected

Academic year: 2021

Condividi "In addition, show that if also allxi lie on the same side of1, then det(A + I)k−1det(A + (x1"

Copied!
1
0
0

Testo completo

(1)

Problem 11759

(American Mathematical Monthly, Vol.121, February 2014) Proposed by O. Ganea (Switzerland) and C. Lupu (USA).

LetA be an n × n skew-symmetric real matrix.

Show that for positive real numbersx1, . . . , xk withk ≥ 2,

det(A + x1I) · · · det(A + xkI) ≥ (det(A + (x1· · ·xk)1/kI))k. In addition, show that if also allxi lie on the same side of1, then

det(A + I)k−1det(A + (x1· · ·xk)I) ≥ det(A + x1I) · · · det(A + xkI).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Since A is a n × n skew-symmetric real matrix, it follows that there exists a n × n orthogonal matrix Q, and real numbers λ1, . . . λr, such that

A = Q · diag(B(λ1), . . . , B(λr), 0, · · · , 0) · Q−1 where B(λi) =

 0 λj

−λj 0

 ,

which implies that det(A + tI) = tn−rQr

j=1(t2+ λ2j). Thus, the first inequality becomes

(x1· · ·xk)n−r

k

Y

i=1 r

Y

j=1

(x2i + λ2j) ≥

(x1· · ·xk)(n−r)/k

r

Y

j=1

((x1· · ·xk)2/k+ λ2j)

k

,

that is

r

Y

j=1 k

Y

i=1

(x2i + λ2j) − ((x21· · ·x2k)1/k+ λ2j)k

!

≥0,

which holds because fj(t) = ln(et+ λ2j) is convex and

ln

k

Y

i=1

(x2i + λ2j)

!

=

k

X

i=1

fj(ln(x2i)) ≥ kfj(

k

X

i=1

ln(x2i)/k) = ln

((x21· · ·x2k)1/k+ λ2j)k .

In a similar way, the second inequality becomes

r

Y

j=1

(1 + λ2j)

k−1

(x1· · ·xk)n−r

r

Y

j=1

((x1· · ·xk)2+ λ2j)

 ≥(x1· · ·xk)n−r

k

Y

i=1 r

Y

j=1

(x2i + λ2j)

that is

r

Y

j=1

x21· · ·x2k+ λ2j 1 + λ2j

k

Y

i=1

x2i + λ2j 1 + λ2j

!

≥0

which holds by the following argument. The function gj(t) = fj(t) − ln(1 + λ2j) is convex, increasing and gj(0) = 0 which implies that it is superadditive in [0, +∞) and in (−∞, 0].

Hence, if all xi lie on the same side of 1 then all ln(x2i) lie on the same side of 0, and

ln x21· · ·x2k+ λ2j 1 + λ2j

!

= gj k

X

i=1

ln(x2i)

!

k

X

i=1

gj(ln(x2i)) = ln

k

Y

i=1

x2i + λ2j 1 + λ2j

! .



Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. Our proof is inspired

Since we are comparing two polynomials, it follows that the identity holds for all x

[r]

[r]

[r]

[r]

Doney, One-sided Local Large Deviation and Renewal Theorems in the Case of Infinite Mean, Probab. Erickson, Strong renewal theorems with infinite

Permette di ripetere l’esecuzione di un blocco di istruzioni finchè viene verificata una condizione logica valutata all’inizio del