• Non ci sono risultati.

Detectors in Nuclear Physics (42 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it

N/A
N/A
Protected

Academic year: 2021

Condividi "Detectors in Nuclear Physics (42 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it"

Copied!
35
0
0

Testo completo

(1)

Detectors in Nuclear Physics (42 hours)

Silvia Leoni, Silvia.Leoni@mi.infn.it

http://www.mi.infn.it/~sleoni

Complemetary material:

Lectures Notes on g-spectroscopy LAB

http://www.mi.infn.it/~bracco

(2)

Application to Medicine (~ 2 Lectures)

Giuseppe Battistoni (INFN, Milano), Giuseppe.Battistoni@mi.infn.it Applicazioni della fisica delle interazioni radiazione materia:

radioterapia e adroterapia

Andrea Mairani (Heildelberg e CNAO) – fino a 2019, Andrea.Mariani@mi.infn.it

(3)

Textbooks

G.F. Knoll

Radiation Detection and Measurements Wiley & Sons

W.R. Leo

Techniques for Nuclear and

Particle Physics Experiments Springer-Verlag

Additional Material:

http://www.mi.infn.it/~sleoni

(4)

Radiation Interaction

1. charged particles 2. g -rays

3. neutrons

Charged particle Radiations

Uncharged Radiations

heavy charged particles (typical distance ~10

-5

m)

neutrons

(typical distance ~10

-1

m) Fast electrons

(typical distance ~10

-3

m)

X- and g-rays

(typical distance ~10

-1

m)

Continuous interaction via Coulomb force

with electrons in the medium

- NO Coulomb Interaction

- “catastrophic” interaction which alters the particle properties in a single hit [often it involves the nucleus]

- Full/partial transfer of energy to atomic electrons or nuclei

(5)

Importance for Radioprotection

(6)

Charged Particles

8 7

10 3

/ 2 2

16

2 26

3 / 2

10 10

10 10

10

- - -

-

-

» ´ » -

´ A

cm cm A

R

nucl

= 1.2 A

1/3

fm =1.2 A

1/3

10

-13

cm

a

Z

= 1 A = 10

-8

cm

(7)

From elastic collisions between

incoming particle m

1

, v

i,1

and electron at rest

Maximum energy transfer To atomic electron

Example: proton transfer 1/500 E

p

in a single collision !!!

m

p

= 1836 m

e

~ 2000 m

e

(8)

Maximum energy transfered from charged particle to electron is 4Em

0

/m = 1/500 of the particle energy per nucleon

à loss of energy by many interactions, gradual process

Penetration distance

(9)

def

=

def

=

= Energy loss by the particle in path length dx

(10)

Stopping Power and Range tables

SRIM & TRIM

Ziegler et al.

(11)

Z

p

e = particle charge

Z

p

e, M , v

number of

interacting electrons

1.

# electrons per unit volume

(12)

2.

r

mincorresponds to maximum kinetic energy

T

maxgained by e-

r

maxcorresponds to minimum kinetic energy

T

mingained by e-

Estimate of Radial Limits:

It corresponds to head-on-collision:

Tmax = (Δpmax)2

2me = 2Zp2e4

mev2rmin2 = 2mev2 rmin2 = Zp2e4

me2v4

min IE ionization en.

T = = ~ 10 Z

eV

( )

2

4 2 2

max

2 max 2

4 2 min

2 2

v m IE

e r Z

r v m

e IE Z

T

e p

e p

=

=

=

(13)

ú û ê ù

ë

» é

IE v N m

v m

e

Z

e

e e

p 2

2 4

2

2

2 ln 4 p 1

ú û ê ù

ë

» é

- IE

v Z m

v m

e Z dx

dE

e

T e

p 2

2 4

2

2

2 ln 4 1

1 p

r

Bethe-Bloch Quantum Mechanical Equation

(for heavy particles M >> m

e

, b = v/c)

Phenomenological model

®

»

®

» -

®

»

2 2

/ 1 v dx Z

dE

Z

p

r

T Large in dense material Large for heavy ions

Large for slow particles

3.

Average

energy loss

(14)

b

for v~c; b~1 Wide minimum

Additional corrections:

(15)

Near Constant Broad Minimum for v à c

At the minimum:

very similar behaviour for different light particles at E > 100 MeV

“minimum ionizing particles”

Electrons are at the minimum of ionization at E > 1 MeV !!!

very different dE/dx behaviour for different particles at E < E

min:

Technique used for particle identification

E=mc

2

= m

0

c

2

+ E

kin

(16)

(dE/dx) min versus Z

The straight line is fitted for Z > 6.

A simple functional dependence on Z is not to be expected,

since ⟨−dE/dx⟩ also depends on other variables.

(17)

velocity

N.B. Bethe-Block is accurate for pions in the range 6 MeV-6 GeV Relativistic rise :

part of the energy is also Subtracted by light

(Cerenkov radiation)

(18)

Strong correlation q à b

: Cerenkov effect is used to identify particles

(Cerenkov counters: photomultipliers)

(19)

Corrections to Bethe-Bloch formula

Average energy loss

- d - 2 C/Z Corrections

Density correction

(importat for high energy):

- Atoms are polarized by electric field of the particle - Far electrons are shieldedà less contribution to dE/dx

Shell correction

(important for low energy):

- Velocity of incident particle comparable to orbital velocity of bound electrons

- electrons are NOTstationary with respect to incoming particle

à Picking up of electrons to the charged particle à Reduced charge

(20)

Equilibrium charge state distribution for 110 MeV

127

I ions stripped in various materials

042 . 0 )

058 . 0 (

708 .

0 -

1/2

-

= x

Z q

Average charge depends on Energy E, and for solid absorbers is

for 0.05 < x < 0.5

x= 3.858 Z-0.45 (E/A)1/2

average charge decreases with decreasing energy (see Ziegler et al. )

dE/dx decreases

R.O. Sayer, Revue de Physique Appliquee, 1977, 12 (10), 1543.

K. Shima, T. Ishihara, T. Mikumo, Nuc. Inst. Meth. 200, (1982) 605.

(21)

Nuclear physics bg < 1

Capture of low energy electrons decreases the particle charge

[the ion may become neutral]

dE/dx on large scale

Boundaries between

different approximations

(22)

Exception to Bethe-Block formula: Channeling Effects

importat for material with spatially symmetric atomic structure:

Series of correlated scattering guiding the particle down

an open channel of the lattice

à

Less electrons encounterd as compared to amorphous material (assumed by Bethe- Block)

à

Importance of crystal orientation

Critical angle for channeling is small (≈ 1° for b ≈ 0.1)

a0 = Bohr radius

d = interatomic spacing

For f > f c channeling does NOT occurn à the material can be treated as amourphous

(23)

4.

)

2 f ( v Z p ´

unique function for particle with velocity v

) ( )

(

2

2

v Z R

A Z v A

R

b

b a a

a

=

b

the particle charge changes at the end of the path due to electrons pick up

(24)

Examples for Nuclear Physics

Z

p

- dE/ dx

(25)

Z

p

E

kin

[ex. Active area of detector…]

(26)
(27)

2 2

mZ E E

E mZ dx

dE ´ µ ´ = Application:

Particle identification

E

E

Very useful method to separate ions up to more than A = 30

(28)

Bethe-Bloch Quantum Mechanical Equation

for FAST electrons FAST electrons can loose energy by - Ionization/collisions

- Radiation (bremsstrahung) Trajectories are complex :

mass is small and equal to orbital electrons

( ) ( ) ( ) ( ) ( )

ú ú û ù ê ê

ë

é ÷÷ - - - + + - + - -

ø çç ö

è æ

» -

÷ ø ç ö

è

- æ

42 2 2 2 2 2 2

1 1

2 2

8 1 1

1 1

2 ) 2 1 (ln

2 ln 2

2 b b b b

r b p

IE

E v Z m

v m

e dx

dE

e

T e

coll e

®

»

÷ ÷ ø ö ç ç

è

æ -

» +

÷ ø ç ö

è - æ

2

2 4

2 4

3 4 ln 2

137 4

) 1 (

Z E

c m

E c

m e Z

EZ dx

dE

e

r e

r r

Similar to heavy-ions relativistic terms

large for energetic electrons in heavy materials

with E in MeV

rad

Coll

(29)

For typical electron energy, bremsstrahlung photon energy is quite small Þ it is reabsorbed close to its point of origin

E

g

In nuclear physics

(30)

Absorbed dose (also known as total ionizing dose, TID) : energy deposited in a medium by a ionizing radiation per unit mass

Unit of measurements:

Joules/Kilogram = 1 gray (Gy) in SI or rad in GGS

N.B. The absorbed DOSE depends on: Incident particle and Absorbing material

Example: an X-rays can deposit up to 4 times more energy in a bone than in air and none at all in vacuum!

energy deposited per mass unit

The Bragg Peak

(31)

Charge is reduced due to electrons pick up

1/E

(32)

® it corresponds to thickness x where N(x) = N0/2

(33)

Landau has shown that the asymmetric tail is due to great energy losses in close collisions

The distribution is Gaussian only if Dx is large enough After absorber

Important in Nuclear Rections with Thick Targets

(34)

- mean distance over which a high-energy e- reduces to 1/e of its energy by bremsstrahlung - 7/9 of the mean free path for pair production by a high-energy photon

- appropriate scale length for high-energy electromagnetic cascades

After absorber

Important in Nuclear Rections with Thick Targets

(35)

Importance in application of

Monte Carlo Simulation programs !!!

(… See Lectures on hadron therapy)

Riferimenti

Documenti correlati

Queste correnti di diffusione sono dovute alle cariche generate vicino alla zona di svuotamento e che diffondono nella zona di svuotamento stessa.. τ o = vita media dei

The convection–diffusion equation can be derived in a straightforward way from the continuity equation, which states that the rate of change dn/dt for a scalar quantity in

Materiale plastico (plexiglass) opportunamente sagomato in modo da adattare la superficie di uscita dello scintillatore con quella d ’ ingresso del PMT → solo una frazione r

particelle secondarie che perdono energia sciamando, ma i parametri dello sciame sono molto diversi è pur usando materiali ed elettronica simili, le granularità,

Poichè il valore massimo di Φ e’ di 180° allora se m 1 = m 2 l'angolo massimo di scattering nel sistema di laboratorio non può essere altro che

•  The localized energy deposition of heavy charged particles can be useful therapeutically = proton radiation

Then, use relations between orbit angle θ scattering angle Θ, &amp; auxillary angle Ψ in the scattering. problem, to get Θ = Θ(b) &amp; thus the scattering

Una camera proporzionale è costituita da tanti anodi vicini e non schermati è sono accoppiati capacitivamente.. Ci si attende quindi che il segnale (negativo) dovuto al moto