• Non ci sono risultati.

system? Does the bank risk concentration freeze theinterbank and Finance North American Journal ofEconomics

N/A
N/A
Protected

Academic year: 2021

Condividi "system? Does the bank risk concentration freeze theinterbank and Finance North American Journal ofEconomics"

Copied!
18
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

North

American

Journal

of

Economics

and

Finance

Does

the

bank

risk

concentration

freeze

the

interbank

system?

Marcella

Lucchetta

Universita’Ca’FoscaridiVenezia,DipartimentodiEconomia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19May2014

Receivedinrevisedform2April2015

Accepted2April2015

Availableonline17April2015

Keywords:

Interbanksystem

Risksconcentration

a

b

s

t

r

a

c

t

Probably,onetestofthestabilityofthebankingsystemisto evalu-atehowriskyassetsaredistributedacrossbanks’portfoliosandthe implicationsforthecontagionviainterbankrelations.Thispaper explorestheoreticallyabanksectorwithrisksconcentrationand thefunctioningofinterbankmarkets.Itemploysasimplemodel wherebanks areexposedtobothcreditand liquidityriskthat suddenlycorrelateoverthebusinesscycle.Weshowthatrisk con-centrationmakesinterbankmarketbreakdownsmorelikelyand welfaremonotonicallydecreasesinriskconcentration.

©2015ElsevierInc.Allrightsreserved.

1. Introduction

Akeyfeatureofthe2007–2008financialcrisishasbeenthedisruptionandprolonged malfunc-tioningofinterbankmarkets(see,e.g.Acharya&Merrouche,2013;Afonso,Kovner,&Schoar,2011; Ciccarelli,Maddaloni,&Peydró,2013;Heider,Hoerova,&Holthausen,20101)sometimesrelatedtothe interbanknetworkstructure(Georg,20132).Thishascomeasasurprisetomostobservers,since inter-bankmarketshavebeenfunctioningsmoothlyhistorically,eveninthefaceofseverestressepisodes

∗ Tel.:+393356955599.

E-mailaddress:[email protected]

1Ciccarellietal.(2013)findthatfinancialintermediariesareextremelyfragileintheEU.TheECBeffectivelypartlysubstituted

theinterbankmarketand,inturn,inducedasubsequentsofteningoflendingconditions.

2Georg(2013)showsthatnetworkswiththecentralbankthatintervene,solvingmarketincompleteness,aremorestable

thanrandomnetworks.

http://dx.doi.org/10.1016/j.najef.2015.04.002

(2)

suchastheLTCMfailure(Furfine,2000)anditattachesimportancetopolicyinterestrateforloan portfolioriskandbankliquidityasrecentfoundinGiulioni(2015).

Theoreticalresearchaddressingwhyinterbankmarketsmaynotfunctionproperlyhasprovided explanationsbasedoninformationalandmarketfrictionssuchas:asymmetricinformationor mar-ketincompleteness(e.g.Acharya&Skeie,2011;Flannery,1996;Freixas&Jorge,2008;Georg,2013; Gale&Yorulmazer,2012;Heideretal.,2010);informationcontagionwherethepoorperformance ofeachbankconveyspotentialbadnewsaboutthecommonfactoraffectingloanreturns(Acharya& Yorulmazer,2008);marketpower(e.g.Acharya,Gromb,&Yorulmazer,2012;Cai&Thakor,2008);and malfunctioningsecondaryassetmarkets(e.g.Diamond&Rajan,2005,2008;Gorton&Huang,2004, 2006).

Since theearly2000s,however, therehasbeenincreasingevidenceof a positiverelationship betweenmeasuresofsystemicriskinmajorbankingsystemsandbankconcentration.3Thisevidence raisesthequestionofwhetherthecorrelationofriskspossiblyinducedbyhigherbankrisk concen-trationcouldhaveasignificantimpactonthefunctioningofinterbankmarketsandwelfare,andifso, why.Toourknowledge,thisquestionhasnotbeenaddressedintheliterature.Arecentstudydiscuss theinternationalportfoliodiversificationofMiralles-Marcelo,delMarMiralles-Quirós,and Miralles-Quirós(2015),butasidefromtheinterbankmarketandthecorrelationbetweenliquidityriskand creditrisk.

Specifically,inthispaperweexploretheimplicationsofbankingsystemriskconcentrationforthe functioningofinterbankmarketsinamodelwherebanksareexposedtobothcreditandliquidityrisk. Indeed,asshowinCornett,McNutt,Strahan,andTehranian(2011),Brunnermeier(2009),Covitzand Downing(2007)andEricssonandRenault(2006)creditandliquidityriskmaydramaticallycorrelate overthebusinesscycleespeciallyduringfinancialcrisis.Moreover,DaSilvaandDivino(2013)show thatcreditriskispro-cyclicalanddefaultriskdependsonstructuralfeatures,underliningthebanking regulationroleinpresenceofcreditandliquidityshocks.

Thelineofinquiryofthispaperisrelatedto,andbuildson,thecontributionsbyIbragimov,Jaffee, andWalden(2011)andWagner(2010,2011),whoshowthatinefficienciesmayarisefromindividual bankdiversification,whichdoesnotnecessarilyresultinamoreresilientbankingsystem.However, thesepapersdo notconsiderinterbankmarketsand multiplesourcesofrisks,suchascreditand liquidityrisk,aswedo.4

WebuildasimplemodelalongthelinesofDiamondandDybvig(1983)andBhattacharyaandGale (1987)models,wherebanksareexposedtobothcreditandliquidityrisk,andtherearenoinformational ormarketfrictions.Themarketfailureinoureconomyisthatcontractsareincompleteandtherefore, notallriskscanbeinsured.Interbankmarketbreakdownsaredefinedasparameterconfigurations underwhichthereisnointerbankmarketequilibrium,andbanksimplementautarkicallocations.

Weshowthatanincreaseintheconcentrationofrisks,possiblyarisingfromconcentratedmarket structures,makesinterbankmarketsbreakdownsmorelikely.Differingfromthepreviousliterature, ourresultsarenotdrivenbyasymmetricinformation,marketpowerordysfunctionalsecondary mar-kets.Rather,theyareexplainedbycreditandliquidityriskscorrelationassuddenlyhappensoverthe businesscycle.Asanexample,theabilitytodiversifytheserisksmaybepreventedbyriskmanagement diseconomiesassociatedwithlargesizesoffinancialinstitutionsandthewidescopeandcomplexity oftheiractivities.Indeed,systemicallyimportantfinancialinstitutions(SIFIs)areseenasinstitutions

3GroupofTen(2001)concludedthat“Evidencesuggeststhat[risk]interdependenciesbetweenlargeandcomplexbanking

organizationshaveincreasedoverthelastdecadeintheUnitedStatesandJapan,andarebeginningtodosoinEurope.Although

acausallinkhasnotbeenestablished,theseincreasesarepositivelycorrelatedwithmeasuresofconsolidation.”Apositive

relationshipbetweenbankconcentrationandmeasuresofbanksystemicriskisfoundinBoyd,DeNicolò,andLoukoianova

(2009a)andBoyd,DeNicolò,andJalal(2009b).Duringtheperiodsofintenseconsolidationofthelastdecade,DeNicolòand Kwast(2002)foundincreasedriskinterdependenciesamongU.S.largeandcomplexbankingorganizations.Riskprofilesof

largeandcomplexU.S.andEuropeanbankswerealsofoundtohaveincreasedintheU.S.inEurope,andgloballyinDeNicolò,

Hayward,andBhatia(2004a),DeNicolò,Bartholomew,Zaman,andZephirin(2004b),Stiroh(2004),Hartmann,Straetsman, anddeVries(2005),StirohandRumble(2006),andHoustonandStiroh(2006).

4ThispapercanbeviewedasalsoindirectlyrelatedtothepapersbyGaietal.(2011)andAnandetal.(2012),astheyanalyze

numericallyhownetworkconnectionsanddifferentexogenousinterbankstructuresaffectbanks’shorttermfundingbutdo

(3)

tobecarefullymonitoredbyregulatorasapotentialsourceofsystemicrisk(seee.g.ECBFinancial StabilityReview,December2009).

InSection2wedescribethemodel.Themodelset-upcapturesinstylizedformtheimportant distinctionbetweendiversificationofabankingfirmanddiversificationofthefinancialsystem empha-sizedanddocumentedempiricallybyDeNicolòandKwast(2002).Bankscanbeperfectlydiversified individually,butaggregateriskinthebankingsystemcanbeeitherperfectlydiversifiedor concen-tratedacrossbanks.Asthesystembecomescomposedoffewerandlargerbanks,eachbankwillbemore diversifiedindividually,butthebankingsystemwillbelessdiversified,sincealargerfractionofbanks isexposedtothesameaggregateshocks.Inthemodel,thedegreeofbankingsystemdiversificationis parameterizedbetweenthetwoextremesofperfectdiversificationandmaximalconcentration.

Section3definestheinterbankequilibrium.Interbankmarketbreakdownsaresimplydefinedas situationsinwhichtheinterbankequilibriumdoesnotexistandisreplacedbytheautarkic equilib-rium,whereeachbankisdisconnectedfromeachother.

InSection4,theexistenceofinterbankequilibriaisestablishedforthetwoextremecasesofa perfectlydiversifiedandamaximallyconcentratedbankingsystem.Then,itisshownthatforalarge setofeconomies,thesizeofthesetofinterbankequilibriaunderadiversifiedbankingsystemisalways strictlylargerthanthatofaconcentratedbankingsystemforanylevelofcreditandliquidityrisk.This resultindicatesthatinthepresenceofaggregaterisk,adiversifiedbankingsystemislikelytobeless pronetointerbankmarketbreakdowns.

Section5definesthewelfarepropertiesofinterbankandautarkicallocations.Whenaninterbank equilibriumexists,itgivesahigherexpectedutilitytodepositorsthantheautarkicequilibrium,but importantly,depositors’welfareismonotonicallydecreasinginthedegreeofriskconcentration.

Section6providesanexampleextendingthemodeltocapturetheShehzadandDeHaan(2013) findings.Theirresultssuggestthatstockpricesoflargebankswereaffectedmoreduringthecrisis thanthoseofsmallbanks.Theyalsofindthatmanagerialefficiency,loanquality,leverage,andthe volumeofoutstandingloansaffectbankstockprices.Thus,inourextension,riskconcentrationand ahighprobabilityofinterbankmarketbreakdownsisduetoriskmanagementdiseconomiesofscale andscopeaffectinglargeandcomplexfinancialfirms.Specifically,whenourmodelismodifiedby introducingariskcontroltechnologywithdecreasingreturnsoveracertaininvestmentthreshold, bankswillchoosealevelofriskconcentrationthatincreasesinsize.Suchlevelishigherthelargeris thecostofriskcontrolarisingfromtheinternalorganizationoflargeandcomplexfirms.Thisresult suggestsimprovementofriskcontroltechnologiesinlargeandcomplexfinancialinstitutionsandin regulatorybodiesmaybepolicyconcernsasimportantasotherpolicesconsideredintheliteratureto minimizetheprobabilityofinterbankmarketbreakdowns.

Section7concludes.ProofsofallpropositionsareintheAppendix.

2. Themodel

Therearethreeperiods,t=0,1,2,andoneriskyassetthatyieldsarandomreturnatdate2perunit investedatdate0.Itcanassumetwovalues,R=Rh,andR=Rl,withtheprobabilitiesspecifiedbelow.

Ifaportionoftheinvestmentinthisassetisliquidatedatt=1,ityieldsacertainreturnofperunit invested.Thefractionoftheassetthatisliquidatedisdenoted˛.ItisassumedthatRh>R>1l,5so thatifstorageisavailable,thistechnologywillbedominatedinrateofreturninbothdatesandwill beneverused.Thisisnotastrongassumptionsinceinthespecialcase=1,thelongassetmimicsthe storagetechnologyandcanbeliquidatedtosatisfyearlyconsumers,aswedefineshortly,ortolend intheinterbankmarket.

Atdate0consumersareendowedwithoneunitofthedate0consumptiongood,whichisassumed tobeinvestedallinonebank.Consumersareuncertainabouttheirtimepreferences:withprobability theyareearlyconsumers,whowanttoconsumeatdate1only,andwithprobability1−they

5Thisimpliesthattheexpectedvalueofthelongassetisgreaterthanone(thereturnofthestoragetechnology).Furthermore,

(4)

arelateconsumers,whowanttoconsumeatdate2only.6Weassumethatdepositorshavelimited participationintheassetsmarkettherebytheyneedbankingintermediation.7Theirpreferencesare representedbyautilityfunctionU(c),twicecontinuouslydifferentiable,increasing,andstrictly con-cave.Thefractionofearlyconsumersisalsorandomandcanassumetwovalues:=h,and=l,

with1>h>l>0.

ThebankingsectoriscomposedbyNex-anteidenticalbanksthatinvestconsumer’sendowmentsat date0.Thebankingsectorisperfectlycompetitive,sothatbanks’objectiveistomaximizedepositors’ expectedutility.

Eachbankisexposedtoliquidityandcreditriskshocks.Therealizationofbothshocksisobserved byabankatdate1.Weassumethereisnoaggregateuncertainty,sothatthefractionofbankswhich isexposedtoagivencombinationofcreditandliquidityshocksisdeterministic.However,the prob-abilities(andhencethedistribution)ofthesebanksatdate0dependsonanexogenousparameter ∈(0,1)thatindexesthedegreeofconcentrationofliquidityandcreditriskinthebankingsystem.

Specifically,thefractionofbanksthatexperienceagivenpairofrealizationsofcreditandliquidity risk(R,)isgivenbythefollowingtable,withp∈(0,1)andq∈(0,1),wherepistheprobabilityofa banktohaveahighreturnandalowliquidityshockandqistheprobabilityofabanktohaveahigh returnandahighliquidityshock.Theseprobabilities,pandq,areindependent.

Thus,asofdate1,therearefourtypesofbanks:

Thereafterwerefertoparameterasanindexof“riskconcentration”.

Afractionofbanksp(type1)experiencesalowliquidityshockandahighfinaldatereturnonthe asset;bycontrast,afractionofbanks(1−p)(type4)experiencesthereverse,thatis,ahighliquidity shockandalowfinaldatereturnontheasset.Thus,creditrisksandliquidityrisksareperfectlypositively correlatedfortype1and4banks.

Conversely,afractionofbanks(1)q(type2)experiencesahighliquidityshockbutalsoahigh finaldatereturnontheasset,whereasafractionofbanks(1−)(1−q)(type3)alowliquidityshock butalsoalowfinaldatereturnontheasset.Thus,creditriskandliquidityrisksareperfectlynegatively correlatedfortype2and3banks.

If=0,thenthebankingsystemismadeofbanksthatdiversifytheircreditandliquidityrisks.By contrast,if=1,banksconcentratetheircreditandliquidityrisks.Asincreases,thebankingsystem exhibitsahigherconcentrationofrisksforanygivenvaluesof(p,q).

3. Interbankequilibrium

Hereweexaminehowwellaninterbankmarketworksforanylevelofriskconcentration(i.e.any ).

Thereisaninterbankmarketwhereliquiditycanbetradedattheintermediatedate.Theamount offundsthateachbanktradeintheinterbankmarketisdenotedbandthegrossinterbankrateis denotedbyr.

6When=1,inthiscaseearlyconsumersreceive1suchthatinexpectationtheincentivecompatibilityconstraintissatisfied:

i.e.lateconsumersreceiveE[R]>1.

(5)

Atdate0,competitivebanksmaximizetheexpectedutilityofdepositors.Theychoosetheamount ofborrowingb(ifpositive,borrowing,ifnegative,lending)andtheamountofassettoliquidate,˛,to solve: Max ˛,b˘1=U(c1)+(1−)U(c2) (1) Subjectto c1=˛+b (2) (1−)c2=R(1−˛)−rb, (3)

whereristhe“interbank”rate,tobedeterminedinthet=1creditequilibrium. Assumeaninterbankequilibriumexists.Substituting(3)in(2)throughb,

c1+(1−)c2

r =˛+ R

r(1−˛). (4)

Thesolution˛*willbetheonethatmakesthebank’sbudgetconstraintthelargest,i.e.thatmakes

therighthandsideof(4)thelargest.Hence,thesolutionisgivenby: ˛∗=0 if R

r > and ˛∗=1 if R

r <. (5)

Observethattheexistenceofastoragetechnologywouldnotaffecttheconditionstoliquidatethe longasset.Indeed,aslongasthelongassetvalueatperiod1islowerthat,itisalwaysoptimalto liquidateit.

Anecessaryconditionfortheexistenceofaninterbankequilibriumisthat r∈



Rl , Rh 



. (6) Thisisbecauseifr≤Rl

,by(4)allbankswillnotliquidatetheinvestmentintheriskytechnology,and

by(2)theywillwishtofinancealldate1consumptionbyborrowing.Thus,therewouldbenolenders, hencenointerbankequilibrium.Likewise,ifr≥Rh

,by(5)allbankswillliquidatetheinvestmentin

theriskytechnology,andby(3)theywillwishtofinancealldate2consumptionbytherepayments onlendingatdate2.Butatdate1therewouldbenoborrowers,hencenointerbankequilibrium.

Using(2),(3)and(5)in(1),bank(R,)solves: Max b ˘1=U



˛+b 



+(1−)U



R(1−˛∗)−rb 1−



, (1a)

thefirstorderconditionwithrespecttobis U



˛∗+b 



=rU



R(1−˛∗)−rb 1



. (7)

Thus,thesolutionofthebankproblemisgivenby(5)and(7).Notethatbanksoptimalchoicesare theliquidationdecision˛*(R),whichdoesnotdependon,andb(R,␮).Theliquidationdecisionin responsetothecreditriskrealizationdoesnotdependontheliquidityshock(in(5)nothingdepends on),buttheborrowingdecisiondependsonbothshocks(by(7)).

Wecharacterizeequilibriaforlogutilitypreferences,i.e.U(c)=ln(c).Thechoiceofthisspecification ismotivatedbysimplicityandbythefactthatforthesepreferences,date1spotmarketallocationsand optimalbankingallocationsgenerallycoincideinliquiditypreferenceframeworkssuchasours(see Allen&Gale,2007).Ourresultsarerobusttomoregeneralconsumerutilityspecifications.Itiseasyto seeinEq.(7)thatitissufficienttoadoptaconsumer’sutilityfunctiontwicecontinuouslydifferentiable, increasing,andstrictlyconcave.Hence,thesepreferencescanbeviewedasausefulbenchmarkto judgedifferencesinequilibriumsandassociatedwelfarepropertiesindiversifiedandconcentrated riskeconomiesindependentlyofefficiencywedgesbetweenmarketandbankingallocations.

(6)

Eq.(7)yields:  ˛∗+b= R(1r(1˛−∗))rb. (8) Solving(8),wehave b(R,)=1r(R(1−˛∗)r(1)˛) . (9) Sincer∈



Rl ,R h 



,by(5),optimalasset’sliquidationis˛*(Rl)=1and˛*(Rh)=0.

Insum,thefourbanktypeshavethefollowingborrowing/lendingpositions

b(Rl,l)=−(1l) (9a) b(Rl,h)=−(1h) (9b) b(Rh,l)=1 r



lRh



(9c) b(Rh,h)=1 r



hRh



, (9d)

andequilibriumintheinterbankmarketrequires p1rlRh+(1)q1

rhRh−(1−)(1−q)(1−l)−(1−p)(1−h)=0. (10) Theaboveequation(10)islinearwithrespecttorandhastheuniquesolution:

r∗= Rh



pl+(1)qh



[(1−)(1−q)(1−l)+(1−p)(1−h)]. (11)

Eq.(11)saysthattheinterbankequilibriumrateraisesastheliquidityneedsandtheopportunity costofholdingtheasset,Rh,increase.

4. Comparisonsofequilibria

Inthissectionweidentifyconditionsensuringexistenceofequilibriafortheextremevaluesof, andcomparethesetofparametersforwhichequilibriaexistsforsuchvalues.

Using(11)andr∗



Rl ,R h 



,weobtain 1≥ pl+(1−)qh (1)(1q)(1l)+(1p)(1h)≥ Rl Rh. (12)

Weuse(12)toassesstheexistenceofinterbankequilibriaundertwoextremecases,thatofbanking system’sperfectdiversification(=0),andthatofmaximalriskconcentrationinthebankingsystem (=1).Themainresultissummarizedinthefollowingproposition.

Proposition1. Fortheperfectdiversifiedeconomy(=0)andfortheperfectconcentratedeconomy

(=1),thesetofinterbankequilibriaisnon-emptyforanyparameterconfigurationofcreditandliquidity risk(h,l,Rh,Rl).

Now,wewishtocomparethesizeofthesetofeconomies,indexedbypandq,forwhichequilibria existfor=0andfor=1.

Weassesstheequilibriadomainsdefiningtwosetsasbelowdetailed.Tothisscope,wemeasure thesesetscomputingthelinearextremes[

v

0,

v

1]forthecase=0and[

v

1,

v

11]for=1.Theseextremes

(7)

Usingtherightandthelefthandsideof(12),theequilibriumdomainsfor=0,[

v

0,

v

10],andfor =1,[

v

1,

v

11],arerespectively



v

0= Rl Rh(1−l) h+ Rl Rh(1−l) ,

v

10= 1−l 1+hl

(13) and



v

1= Rl Rh(1−h) l+ Rl Rh(1−h) ,

v

11= 1−h 1−h+l

. (14)

Thelargeristheintervalforwhichequilibriaexistsunderdiversificationorconcentration,the largeristhesetofeconomiesthatmaybenefitfromtherisksharingopportunitiesofferedbythe interbankmarket.

Considerthedifferencebetweentheequilibriaintervalwhen=0andwhen=1,definedas:

G≡0−1=(

v

0−

v

10)−(

v

1−

v

11). (15) Computationsgive: 0= h(1l)



1 Rl Rh



(1+hl)



h+ Rl Rh(1−l)



, (16) and 1= l(1h)



1 Rl Rh



(1−h+l)



l+Rl Rh(1−h)



. (17)

Ofparticularinterestisthecomparisonofthesetofequilibriaforrelativelylargecreditandliquidity shocks.Thiscomparisonismadeclearerbysubstitutingh=l,where 1

l ≥≥1,andRl=ˇRhwhere

ˇ≤1.Parameterisameasureoftheliquidityriskandˇisthecreditrisk.Thesmallerisˇ,thelargeris thedifferencebetweenhighandlowreturn.Thelargeris,thelargeristhedifferencebetweenlow andhighliquidityshock.

Thus,(15)canbeexpressedas

G(l,,ˇ)= l(1−l)

(1+ll)



l+ˇ(1l)



l(1l)

(1−l+l)



l+ˇ(1l)



. (18)

Thefollowingpropositionestablishesarankingofthesizeofequilibriaunderadiversifiedeconomy andarisk-concentratedeconomy.

Proposition2. Thereexistsalsuchthatforllandany(ˇ,)thesetofinterbankequilibrium

underthediversifiedeconomyisalwaysstrictlylargerthanfortheconcentratedeconomy.

Whenliquidityshocksarelarge,thesetofinterbankequilibriaofthediversifiedeconomyislarger thanthecorrespondingsetoftherisk-concentratedeconomyandtheinterbankequilibriumislikely tobreakdownformoremodelparameterranges.Therefore,adiversifiedeconomyoffersabetter insuranceagainsthighliquidityandcreditrisk.Finallynotethatby(18),forˇ=␥=1,whichamounts toabsenceofcreditandliquidityrisk,G(1,1)=0,thenthetwosetsareequivalent.Thismeansthat bankmarketstructureisimportantespeciallywhentheshocksarehigh.

Fig.1showsgraphicallytheresultofProposition2forasetofeconomies.Thesurfacerepresenting thefunctionG(l,,ˇ)isincreasinginliquidityrisk.

AsFig.1highlights,thesetofequilibriaisincreasinginthedegreeofbanks’riskdiversificationfor aliquidityriskgreaterthat¯l.Thisindicatesthataninterbankislesslikelytobreak-downwhenthe

(8)

Fig.1. BehaviorofG(l,,ˇ).

5. Welfarecomparisons

Wewanttocompareagents’welfareineconomieswithbankingsystemsdifferingaccordingto marketstructureandriskconcentration.Todothat,wecomputedepositors’expectedutility.

Using(2)and(3),theconsumptioninstates1and2is c1= ˛+b

 (19)

and

c2= R(1−˛)−rb

1− . (20)

Substitutingequilibriumvalues˛,bandrin(19)and(20),weobtaintheconsumptionallocation offeredbydifferentbanktypes,Ctype(i)=(ctype(i)

1 ,c2type(i))fori=1,2,3,4: Ctype(1)=

(1−)(1−q)(1−l)+(1p)(1h)

 pl+(1)qh ,Rh

(21a) Ctype(2)=

(1−)(1−q)(1−l)+(1p)(1h)

 pl+(1)qh ,Rh

(21b) Ctype(3)=

, R h



pl+(1)qh



(1−)(1−q)(1−l)+(1−p)(1−h)

(21c) Ctype(4)=

, R h



pl+(1)qh



(1−)(1−q)(1−l)+(1−p)(1−h)

. (21d)

Theex-antetheexpectedutilityofarepresentativeconsumeristherefore

W≡ 4



i=1 P(type(i))U(c1type(i),c type(i) 2 ) fori=1,2,3,4. (22) Equivalently:

(9)

Fig.2.ThebehaviorofWasafunctionofandliquidityrisk. Unfolding(23)weget: W ≡p

llog

(1)(1q)(1l)+(1p)(1h)

 pl+(1−)qh

+(1−l)log(Rh)

+(1−)q

hlog

(1−)(1−q)(1−l)+(1p)(1h)

 pl+(1)qh

+(1−h)log(Rh)

+(1−)(1−q)

llog()+(1l)log

Rh



pl+(1)qh



(1−)(1−q)(1−l)+(1p)(1h)

+(1−p)

hlog()+(1h)log

Rh



pl+(1)qh



(1−)(1−q)(1−l)+(1−p)(1−h)

(24)

Fig.2showsWforgivenreturnparameters.NotethatWisdecreasingbothinandintheliquidity riskparameter.

Fig.2showsthatwelfaredecreaseswhenbankingsystemriskisconcentratedandliquidityriskis high.Thecornerrepresentinghighlevelsofandcanbeviewedasa“crisis”setofriskrealizations withhighwelfarelosses.

Whentheinterbankequilibriumdoesnotexist,theautarkicallocationwillprevail.Depositors’ expectedutilityunderautarkyisgivenbythesolutionofthefollowingproblem:

Max ˛ W A=U(c1)+(1)U(c2) (1b) Subjectto c1=˛ (2b) (1−)c2=R(1−˛). (3b)

Theoptimalsolutionis˛*=.Therefore,substitutingin(2b)and(3b),theconsumptionallocations foreachbanktypeatanautarkicequilibriumare:

Ctype(1)=Ctype(2)=



,Rh



(25a)

(10)

Fig.3. BehaviorofWandWAwithdifferentliquidityshocks.

Correspondingly,theexpectedutilityofanagentattheinitialdateis:

WA≡p[llog()+(1−l)log(Rh)]+(1−)q[llog()+(1−l)log(Rh)]

+(1−)(1−q)[llog()+(1l)log(Rl)]+(1p)[llog()+(1l)log(Rl)]

(26) Fig.3showsW,theexpectedutilitywhentheinterbankequilibriumexists,andWA,theexpected

utilityunderautarky,asfunctionsofandfortwosetsofeconomies.Forhighvaluesofrisk con-centrationandliquidityrisktheinterbankequilibriumdoesnotexist,asWA>W.Whentheinterbank

surfaceliesovertheautarkyplane,theinterbankequilibriumexistssinceW>WAforallparameter

values,withWstrictlydecreasinginthedegreeofriskconcentration.

Fig.3illustratesthegeneralfindingsummarizedinthefollowingproposition3.Thefiguredescribes theexistenceoftheinterbankmarketandthewelfarebehaviorfordifferentlevelsofriskconcentration andliquidityshocks.Thecornerwithhighliquidityshocksandhighconcentrationisacrisis.Inthis casetheinterbankmarketwillnotexistsincetheautarkyequilibrium(theplaneWA)giveshigher

welfarethantheinterbankequilibrium.

Proposition3. (a)Thereexists(,¯ )¯ suchthatWA>Wforall(,)>(,¯ ).¯

(b)WhenW>WAtheinterbankequilibriumexists,andWisstrictlydecreasinginforany.

Itisusefultoillustrateexamplesfordifferentsetofeconomies.Fig.4clearlyshowsthatwhen ishighandliquidityrisk,,issufficientlyhigh,theinterbankallocationisdominatedbytheautarky allocation.

Fig.5showsthatwithhighcreditrisk,i.e.lowprobabilityofrealizationofthehighreturn,the interbankmarketismorelikelytoexistthantheautarkyallocation.Thissuggeststhatinterbank marketsinsureagainstcreditriskalso,whileWremainsdecreasingwithrespectto.

Thepictures3,4and5highlightthatwelfarealwaysdecreaseswhentheeconomyexhibitsahigh risksconcentrationandhighliquidityexposure.

6. Anexampleofendogenousdegreeofriskconcentration

Sofarthedegreeofriskconcentrationinthebankingsystem(parameter)hasbeentreatedas exogenous.Wehaveshownthatwelfaredecreasesinthedegreeofmarketconcentration.Forall

(11)

Fig.4. WandWAwithrelativelyhighpandq.

Fig.5.WandWAwithrelativelylowpandq.

examplesshown,thehighestdepositors’expectedutilityisreachedattheminimumlevelofrisk concentration(=0).

Recallthatisaparameterthatdeterminestheprobabilitiesofcreditandliquidityshocksasof date0.Therefore,achoiceofcanbeviewedasabankchoiceofcreditandliquidityrisk.Ifachieving perfectdiversificationatasystemleveliscostless,theninaperfectlycompetitivebankingsystem, bankswouldchoosetheminimumlevelofriskconcentrationandtheprobabilityofinterbankmarket breakdownswouldbeminimized.

Inreality,ShehzadandDeHaan(2013)suggestthatstockpricesoflargebankswereaffected moreduringthecrisisthanthoseofsmallbanksandtheyalsofindthatmanagerialefficiency,loan quality,leverage,andthevolumeofoutstandingloansaffectbankstockprices.Literally,achieving diversificationandcontrollingriskiscostly,sinceriskmanagementcanbeviewedasatechnology availabletofirmssimilar,forexample,tothetechnologyunderlyingcreditriskmodels.Asthesize andscopeoftheoperationsofbanksexpands,financialfirms’spanofcontrolovertheirmanyunitscan becomelessefficientincontrollingrisk.Inthislight,alackofsufficientbankingsystemdiversification

(12)

andahigherprobabilityofinterbankmarketbreakdownsmaybeinpartduetoriskcontroldiseconomies ofscaleandscope.

Thepotentialforfirstordereffectsofriskmanagementdiseconomiesofscaleandscopeonrisk concentrationinthebankingsystem,andtheirrelationshipwithbanksize,canbeillustratedbythe followingmodificationofourmodel.

Supposeatdate0bankshaveasizeS≥0,andchooseemployingpartofdate0resources. Specif-ically,theyinvestafractionxofdateresourcesinthetechnologyandchooseincurringacostz()S

asafractionofdate0resources,where>0isthescalecostparameter.Theirresourceconstraintat date0istherefore:

x+z()S=S (27)

Assumez()=a0

 +a1,witha0anda1aspositivecoefficients.Thisfunctioncanbeinterpreted

asacostfunctionofariskcontroltechnologythatexhibitsdecreasingreturnstoinvestmentovera certainthreshold.Itsparameterscoulddependonsizeandscopeoffinancialfirmsoperations,aswell asonincentivesarisingfromasymmetricinformation,marketpowerandotherfactorspointedoutin theliterature,whichmayinturnbeaffectedbyfirms’size.

TocomputeW(),wereplace1withS(1−z()S)intheconsumptionallocations,

c1= ˛S(1−z()S )+b  (28) and c2= R(1−˛)S(1−z()S )rb 1− . (29)

Then,optimalborrowing/lendingchoicesintheinterbankmarketare: b(R,)=S(1−z()S)

r (R(1−˛∗)−r(1−)˛∗) , (30)

Withtheliquidationchoices˛unchanged,theequilibriumintheinterbankmarketisthesolution ofthefollowingequation:

pS(1−z()S) r lRh+(1−)q S(1−z()S) r hRh−(1−)(1−q)S(1−z()S)(1−l) −(1−p)S(1−z()S)(1h)=0, (31) whichyields r∗= Rh



pl+(1)qh



[(1−)(1−q)(1−l)+(1−p)(1−h)]. (32)

Notethat(32)isequivalentto(11),meaningthattheequilibriuminterbankratedoesnotdepend onthefunctionS(1−z()S).Thismeansthatinthemarketforliquidityistheexcessofdemand

onsupplythatdeterminesinterbankrate.Multiplyingbothdemandandsupplyforthesizefunction wouldnotaffecttheequilibriuminterbankrate.

The consumption allocations for thefour bank typeswhich allowus tocomputedepositors’ expectedutilityare:

Ctype(1)=

(1−)(1−q)(1−l)+(1p)(1h)

S(1z()S) pl+(1)qh ,RhS(1−z()S)

(33a)

(13)

Fig.6. ExpectedutilityWwithcostsofriskcontrol=1andS=4. Ctype(2)=

(1−)(1−q)(1−l)+(1p)(1h)

S(1z()S) pl+(1)qh ,RhS(1−z()S)

(33b) Ctype(3)=

S(1−z()S), Rh



pl+(1)qh



S(1z()S) (1−)(1−q)(1−l)+(1−p)(1−h)

(33c) Ctype(4)=

S(1−z()S), Rh



pl+(1)qh



S(1z()S) (1−)(1−q)(1−l)+(1p)(1h)

. (33d)

Fig.6shows(withdifferentangles)anexampleoftheexpectedutilityfunctionWasafunctionof andtheliquidityriskparameter.ItisapparentthatfunctionWisstrictlyconcave,withamaximum forasaninteriorpoint.WeplotthesurfaceforsizeparameterS=4and=1.

Proposition4. Foranyvalueofandforagivenlevelofliquidityrisk,¯ theoptimalbankrisk

concen-trationlevel*isincreasinginS.

Proposition4statesthatthescaleparameteristhedeterminantofthedegreeofdiversification thatabankchooses,andbankdiversificationisinverselyrelatedtoitsassetssize.

Fig.6showstheconcavitypropertyofthewelfarefunctioninthecaseofcostlydiversification.This impliesthechoiceofadifferentfrom0.

Fig.7showstheoptimalfordifferentbanksize.Themaximumoftheexpectedutilityisdifferent accordingtoS.Theconcentrationisgreaterforabanksizelargerthanone.Bycontrast,forasmall banksizetheoptimalriskconcentrationapproacheszero.

Therefore,theoptimallevelofriskconcentrationmightbelargerthantheminimumfeasible.In turn,riskconcentrationislargerforalargerbanksize.Thelevelofa0anda1maydependfundamentally

(14)

Fig.7.ExpectedutilityWforS=1andS=4.

financialfirms’size,suchastoo-big-to-failincentives,maycarryhigherriskcontrolcosts,whichin turncouldresultinahigherlevelofriskconcentrationinthebankingsystem.

7. Conclusion

Ourmodelshowsthatriskconcentrationseemsoffirstorderimportanceforthesmoothfunctioning ofinterbankmarkets.Riskconcentrationmayincreaseinbanksizeunderreasonableassumptions abouttheriskmanagementtechnologyavailabletobanks.Differingfrommostliterature,ourresults areobtainedinamodelwithnoasymmetricinformation,nomarketpowerordysfunctionalsecondary markets.

Withregardtopolicy,theliteraturehasprominentlyfocusedontheimportantroleoftheCentral Bankaslenderoflastresortwheninterbankmarketbreakdownsoccur(seee.g.Freixas,Parigi,& Jean-Charles,2000;Freixas,Antoine,&Skeie,2009;Goodhart&Illing,2002;Repullo,2005).Ourmodel suggeststhattheimprovementofriskmanagementtechnologiesinlargeandcomplexfinancial insti-tutions,aswellasinregulatorybodies,maybeasimportanttominimizetheoccurrenceofinterbank

marketbreakdowns.

Acknowledgements

IacknowledgesfinancialsupportundertheprojectSYRTO,fundedbytheEuropeanUnionunder the7thFrameworkProgramme(FP7-SSH/2007-2013–GrantAgreementn◦320270)andtheproject MISURA,fundedbytheItalianMIUR.

The researchleadingtotheseresultshasreceivedfundingfromtheEuropeanUnion,Seventh

FrameworkProgrammeFP7/2007-2013undergrantagreementSYRTO-SSH-2012-320270.

IthankwithoutimplicationstheseminarInstituteandtheDeutscheBundesbankforcomments andsuggestions.

(15)

Appendix.

Proposition1. Fortheperfectlydiversifiedeconomy(=0)andfortheperfectlyconcentrated

econ-omy(=1),thesetofinterbankequilibriasisnon-emptyforanyparameterconfigurationofcreditand liquidityrisk(h,l,Rh,Rl).

Proof. Theleft-handsideinequalityof(12)canbeexpressedas:

(1−)(1+hl)q(1)(1l)+(1h)p(1h+l), (A1)

If=0, then (1+hl)q(1l) (A2)

If=1, then 0≤(1−h)p(1h+l) (A3)

Theright-handsideinequalityof(12)canbeexpressedas: (1−)(h+ Rl Rh(1−l))≥ Rl Rh[(1−h)+(1−)(1−l)]−p[(1−h) Rl Rh+l] (A4) If=0, then q



h+ Rl Rh(1−l)



≥ Rl Rh(1−l) (A5) If=1, then 0≥ Rl Rh(1−h)−p[(1−h) Rl Rh+l] (A6)

Thus,thesetofeconomiesforwhichaninterbankequilibriumexistsisindexedbyq∈[0,1]if=0, andbyp∈[0,1]if=1.

If=0,using(A2)and(A5),weget:

Rl Rh(1−l) h+ Rl Rh(1−l) ≤q≤ 1−l 1+hl. (A7)

Therefore,if=0,thesetofinterbankequilibriaisnon-emptyif 1−l 1+hl≥ Rl Rh(1−l) h+ Rl Rh(1−l) . (A8)

Inequality(A8)impliesthat(1−l)(h+Rl

Rh(1−l))≥ R l

Rh(1−l)(1+h−l),whichcanbe

fur-thersimplifiedtoh Rl

Rhh,whichinturnisalwaysverifiedsince R l

Rh <1.

If=1,using(A3)and(A6)weget: 1−h 1−h+l≥p≥ Rl Rh(1−h) l+ Rl Rh(1−h) . (A9)

Inequality(A9)isalwayssatisfied,sinceitreducestol Rl

Rhl,whichholdsas R l

Rh <1.

Proposition2. Thereexistsalsuchthatforllandany(,ˇ)thesetofinterbankequilibrium

underthediversifiedeconomyisalwaysstrictlylargerthanfortheconcentratedeconomy.

Proof. Differentiating(18)withrespecttol,andevaluatingthederivativeatl=1:

Gl(0,,ˇ)

(−1)



4(1+ˇ)2

+2ˇ(1+5ˇ)3ˇ2(1+7ˇ+8ˇ2)



(−2)2(ˇ(−1)−1)2 , (A10)

since(−1)>0and(−2)2(ˇ(1)1)2>0,(A10)ispositiveif

4(1+ˇ)2

(16)

Observethatforl1,1,then(A11)reducesto

3+2ˇ>0. (A12)

Therefore,thereexistvaluesof¯land¯suchthatforllandfor¯thefunctionG(l,,ˇ)

isincreasing.

Proposition3. (c)Thereexists(,¯ )¯ suchthatWA>Wforall(,)>(,¯ );¯

(d)WhenW>WAtheinterbankequilibriumexists,andW,isstrictlydecreasinginforany.

Proof. Weprovepart(a)and(b)separately.

(a)Thereisa(,)>(,¯ )¯ suchthattheautarkyallocationdominatestheinterbankequilibrium. Theexpectedutilityunderautarkyfor=0andfor=1are

WA0q[llog()+(1l)log(Rh)]+(1q)[llog()+(1l)log(Rl)], (A13)

and

WA1p[llog()+(1l)log(Rh)]+(1p)[llog()+(1l)log(Rl)]. (A14)

Hence,wecomparetheexpectedutilitywithinadiversifyeconomybetweeninterbankallocation andautarkyallocation

W0WA0q



llog



(1−q)(1−l) ql



+(1−l)log(Rh)



+(1−q)



llog()+(1l)log



Rhql (1−q)(1−l)





q[llog()+(1l)log(Rh)] +(1−q)[llog()+(1l)log(Rl)]



q



l



log



(1−q)(1−l) ql



−log()



+(1−q)



(1−l)



log



Rhql (1−q)(1−l)



−log(Rl)



, (A15)

Thedifferenceofexpectedutilityinariskconcentratedeconomybetweentheinterbankallocation andautarkyallocationis

W1WA1p



llog



(1−p)(1−l) pl



+(1−l)log(Rh)



+(1−p)



llog() +(1−l)log



Rhpl (1−p)(1−l)





p[llog()+(1l)log(Rh)] +(1−p)[llog()+(1l)log(Rl)]



p



l



log



(1−p)(1−l) pl



−log()



+(1−p)



(1−l)



log



Rhpl (1−p)(1−l)



−log(Rl)



. (A16)

Computing(A15)and(A16)for→ 1

l,W0−WA0>0,andW1−WA1<0.Then,weconcludethat

thereexistacouple(,)>(,¯ )¯ suchthattheautarkyallocationgivesahigherexpectedutilitythan theinterbankmarketequilibrium.

(b)Whenwehaveaninterbankequilibrium,theexpectedutilitydecreasesin.Takethederivative of(24)withrespecttoandcomputeitfor→1andfor→ 1

l, W→1



→ 1 l



→−<0. (A17)

(17)

Computethederivativealsoforl0

W→1



l→0



<0. (A18)

Therefore, as risk concentration increases, the expected utility in the interbank economy is decreasing.Moreover,theexpectedutilityfor=0andfor=1are

W0q



llog



(1−q)(1−l) ql



+(1−l)log(Rh)



+(1−q)



llog()+(1l)log



Rhql (1−q)(1−l)



(A19) and W1p



llog



(1−p)(1−l) pl



+(1−l)log(Rh)



+(1−p)



llog()+(1l)log



Rhpl (1−p)(1−l)



. (A20) Let→ 1

l,thedifferenceofexpectedutilitiesis

W0W1=q



log



(1−q)(1−l) q



+(1−q)



llog()+(1l)log



Rhq (1−q)(1−l)





p



llog( 0)+(1l)log(Rh)



+(1p)log()



>0, (A21)

sinceW1



 1 l



<0andW0



 1 l



>0. Letl0, W0W10. (A22)

Weconcludethatforanytheexpectedutilitydecreasesinconcentration,.

Proposition4. Foranyvalueofandforagivenlevelofliquidityrisk,¯ theoptimalbankrisk

concen-trationlevel*isincreasinginS.

Proof. Taketheoptimal*solvingWforagivenlevelofliquidityrisk¯andforp=q=0.5.ForS→0,

wehavethat*→0andforS→∞*→1. References

Acharya,V.V.,&Merrouche,O.(2013).Precautionaryhoardingofliquidityandinterbankmarkets:Evidencefromthesubprime

crisis.ReviewofFinance,17(1),107–160.

Acharya,V.V.,&Skeie,D.(2011).Amodelofliquidityhoardingandtermpremiaininterbankmarkets.JournalofMonetary

Economics,58.

Acharya,V.V.,Gromb,D.,&Yorulmazer,T.(2012).Imperfectcompetitionintheinterbankmarketforliquidityasarationale

forcentralbanking.AmericanEconomicJournal:Macroeconomics,4(2).

Acharya,V.,&Yorulmazer,T.(2008).Informationcontagionandbankherding.JournalofMoneyCreditandBanking,40,215–231.

Afonso,G.,Kovner,X.,&Schoar,A.(2011).Stressed,notfrozen–Thefedfundsmarketandthecrisisof2007/2008.Journalof

Finance,60.

Allen,F.,&Gale,D.(2007).Understandingfinancialcrises.Oxford,UK:OxfordUniversityPress,ClarendonLecturesinFinance.

Anand,K.,Gai,P.,&Marsilli,M.(2012).Rolloverrisk,networkstructureandsystemicrisk.JournalofEconomicsDynamicsand

Control,36,1088–1100.

Bhattacharya,S.,&Gale,D.(1987).PreferenceShocks,LiquidityandCentralBankPolicy.Newapproachestomonetaryeconomics,

(18)

Boyd,J.H.,DeNicolò,G.,&Loukoianova,E.(2009).Bankingcrisesandcrisisdating:Theoryandevidence.InIMFWorkingPaper 09/141.

Boyd,J.H.,DeNicolò,G.,&Jalal,A.M.(2009).Bankcompetition,riskandassetallocations.InIMFWorkingPaper09/143.

Brunnermeier,M.K.(2009).Decipheringtheliquidityandcreditcrunch2007–2008.TheJournalofEconomicPerspectives,77–100.

Cai,J.,&Thakor,A.V.(2008).Liquidityrisk,creditrisk,andinterbankcompetition.InWorkingpaperOlinBusinessSchool,W.D.C.

Ciccarelli,M.,Maddaloni,A.,&Peydró,J.L.(2013).Heterogeneoustransmissionmechanism:Monetarypolicyandfinancial

fragilityintheeurozone.EconomicPolicy,28(75),459–512.

Cornett,M.M.,McNutt,J.J.,Strahan,P.E.,&Tehranian,H.(2011).Liquidityriskmanagementandcreditsupplyinthefinancial

crisis.JournalofFinancialEconomics,101(2),297–312.

Covitz,D.,&Downing,C.(2007).Liquidityorcreditrisk?Thedeterminantsofveryshort-termcorporateyieldspreads.The

JournalofFinance,62(5),2303–2328.

DaSilva,M.S.,&Divino,J.A.(2013).Theroleofbankingregulationinaneconomyundercreditriskandliquidityshock.The

NorthAmericanJournalofEconomicsandFinance,26,266–281.

DeNicolò,G.,&Kwast,M.L.(2002).Systemicriskandfinancialconsolidation:Aretheyrelated?JournalofBanking&Finance,

26,861–880.

DeNicolò,G.,Hayward,P.,&Bhatia,A.V.(2004).U.S.LargeComplexBankingGroups:Businessstrategies,risksandsurveillance

issues.InIMFCountryReport04/228,July.Washington:InternationalMonetaryFund.

DeNicolò,G.,Bartholomew,P.,Zaman,J.,&Zephirin,M.(2004).Bankconsolidation,internationalizationandconglomeration:

Trendsandimplicationsforfinancialrisk.FinancialMarketsInstitutions&Instruments,13(4),173–217.

Diamond,D.W.,&Dybvig,P.H.(1983).Bankruns,depositinsurance,andliquidity.TheJournalofPoliticalEconomy,91(3),

401–419.

Diamond,D.W.,&Rajan,R.G.(2005).Liquidityshortagesandbankingcrises.JournalofFinance,60,615–647.

Diamond,D.W.,&Rajan,R.G.(2008).Illiquidityandinterestratepolicy.InWorkingpaper.UniversityofChicago.

ECB.(2009December).Financialstabilityreview.EuropeanCentralBankFrankfurtAmMain.

Ericsson,J.,&Renault,O.(2006).Liquidityandcreditrisk.TheJournalofFinance,61(5),2219–2250.

Flannery,M.J.(1996).Financialcrises,paymentsystemproblemsanddiscountwindowlending.JournalofMoneyCreditand

Banking,28,804–824.

Freixas,X.,Parigi,B.M.,&Rochet,J.-C.(2000).Systemicrisk,interbankrelations,andliquidityprovisionbytheCentralBank.

JournalofMoney,CreditandBanking,32(3),611–638.

Freixas,X.,Martin,A.,&Skeie,D.(2009).Bankliquidityinterbankmarkets,andmonetarypolicy.FederalReserveBankofNew

YorkStaffReportN.371.

Freixas,X.,&Jorge,J.(2008).Theroleofinterbankmarketsinmonetarypolicy:Amodelwithrationing.JournalofMoney,Credit

andBanking,40(6),1151–1176.

Furfine,C.H.(2000).Interbankpaymentsandthedailyfederalfundsrate.JournalofMonetaryEconomics,46,535–553.

Gai,P.,Haldane,A.,&Kapadia,S.(2011).Complexityandcontagion.JournalofMonetaryEconomics,58,453–470.

Gale,D.,&Yorulmazer,T.(2012).Liquidityhoarding,staffreport488FederalReserveBankofNewYork.InForthcomingin

theoreticaleconomics.

Georg,C.P.(2013).Theeffectoftheinterbanknetworkstructureoncontagionandcommonshocks.JournalofBanking&Finance,

37(7),2216–2228.

Giulioni,G.(2015).Policyinterestrate,loanportfoliomanagementandbankliquidity.TheNorthAmericanJournalofEconomics

andFinance,31,52–74.

Gorton,G.,&Huang,L.L.(2004).Liquidity,efficiencyandbankbailouts.AmericanEconomicReview,94,455–483.

Gorton,G.,&Huang,L.L.(2006).Bankingpanicsandendogeneitycoalitionformation.JournalofMonetaryEconomics,53,

1613–1629.

Goodhart,C.,&Illing,G.(2002).Financialcrisescontagion,andthelenderoflastresort.OxfordUniversityPress.

GroupofTen.(2001).Reportonconsolidationinthefinancialsector,January,Basel.

Hartmann,P.,Straetsman,S.,&deVries,C.(2005).Bankingsystemstability:Across-Atlanticperspective,WorkingPaperNo.527

September.Frankfurt:EuropeanCentralBank.

Heider,F.,Hoerova,M.,&Holthausen,C.(2010).Liquidityhoardingandinterbankmarketsspreads:Theroleofcounterparty

risk.InCEPRDiscussionPapers:7762.

Houston,J.F.,&Stiroh,K.J.(2006).Threedecadesoffinancialsectorrisk,“U.S.FinancialHoldingCompanies,”July.NewYork:Federal

ReserveBankofNewYork(unpublished).

Ibragimov,R.,Jaffee,D.,&Walden,J.(2011).Diversificationdisasters.JournalofFinancialEconomics,99,333–348.

Miralles-Marcelo,J.L.,delMarMiralles-Quirós,M.,&Miralles-Quirós,J.L.(2015).Improvinginternationaldiversificationbenefits

forUSinvestors.TheNorthAmericanJournalofEconomicsandFinance,32,64–76.

Repullo,R.(2005).Liquidity,risktaking,andthelenderoflastresort.InternationalJournalofCentralBanking,2,47–80.

Shehzad,C.T.,&DeHaan,J.(2013).Wasthe2007crisisreallyaglobalbankingcrisis?TheNorthAmericanJournalofEconomics

andFinance,24,113–124.

Stiroh,K.J.(2004).Diversificationinbanking:Isnoninterestincometheanswer?JournalofMoneyCreditandBanking,36(5),

853–882.

Stiroh,K.J.,&Rumble,A.(2006).Thedarksideofdiversification:ThecaseofU.S.FinancialHoldingCompanies.JournalofBanking

andFinance,30(8),2131–2161.

Wagner,W.(2010).Diversificationatfinancialinstitutionsandsystemiccrises.JournalofFinancialIntermediation,19,333–354.

Riferimenti

Documenti correlati

As previously explained, the two most signi cant parameters for the target performances are the funnel diameter D f (which regulates the velocity of the coolant in the funnel, and

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

For a real number x whose fractional part is not 1/2, let hxi denote the nearest integer

Answer: As a basis of Im A, take the first, fourth and fifth columns, so that A has rank 3. Find a basis of the kernel of A and show that it really is a basis... Does the union of

If S is not a linearly independent set of vectors, remove as many vectors as necessary to find a basis of its linear span and write the remaining vectors in S as a linear combination

We show that, whatever strategy is chosen, the probability of ever reaching the Solar System is strictly smaller than (r/R).. This bound is shown to be optimal, in the sense that

One can easily verify that every element of ~ is a right tail of 5 preordered withrespect to relation defined 1n (j).. A CHARACTERIZATION DF V-PRIME ANO 5TRONGLY V-PRIME ELHlrtHS OF

Since for systems not in thermodynamic equilibrium the total entropy production P must be positive for arbitrary fluxes (Second Law of Thermodynamics), also the second term in