• Non ci sono risultati.

America’s Center | St. Louis, Missouri

N/A
N/A
Protected

Academic year: 2021

Condividi "America’s Center | St. Louis, Missouri"

Copied!
4
0
0

Testo completo

(1)

10

th International

Aerosol Conference

(IAC)

September 2-7, 2018

FINAL PROGRAM

Hosted by the

American Association for Aerosol Research

America

’s Center | St. Louis, Missouri

(2)

114 10TH INTERNATIONAL AEROSOL CONFERENCE (IAC) | SEPTEMBER 2-7, 2018

10RA.15

11:45

Single Particle Analysis of Samples Collected During the Actris-2 Field Campaign at the Mt. Cimone Station.

TYLER CAPEK, Swarup China, Daniel Veghte, Angela Marinoni, Douglas Orsini, Claudio Mazzoleni, Michigan Technological University

10SA

SOURCE APPORTIONMENT I: POSTERS | EXHIBIT HALL 5

Alexander Frie and Célia Alves, chairs

10SA.1

11:45

Use of Specific Primary and Secondary Organic Markers for PM Source

Apportionment Based on Positive Matrix Factorization (PMF).

Deepchandra Srivastava, Olivier Favez, Emilie Perraudin, Jean-Luc Besombes, Franco Lucarelli, Laurent Alleman, Grazia Maria Lanzafame, Sophie Tomaz, Jean-Luc Jaffrezo, Benjamin Golly, Nicolas Bonnaire, Valerie Gros, Eric Villenave, ALEXANDRE ALBINET, INERIS

10SA.3

11:45

Physicochemical Characteristics and Source Apportionment of PM2.5 in an Inland City of Baoji, China.

ZHOU BIANHONG, Li Meijuan, Fang Ni, Zhang Zhangquan, Liu Suixin, Baoji University of Arts and Sciences

10SA.4

11:45

Assessing the PM2.5 Imbalance between a Far and Near-Road Location: High Temporal Frequency Source Apportionment and the Role of Black Carbon.

UWAYEMI SOFOWOTE, Robert Healy, Yushan Su, Jerzy Debosz, Michael Noble, Anthony Munoz, Cheol H. Jeong, Jon M. Wang, Nathan Hilker, Greg J. Evans, Philip K. Hopke,EMRB, Ontario Ministry of the Environment and Climate Change

10SA.5

11:45

An Improved Approach to Resolve Sources of Organic Aerosol by Combining Offline and Online Ambient Measurements.

DEEPCHANDRA SRIVASTAVA, Olivier Favez, Jean-Eudes Petit, Yunjiang Zhang, Uwayemi Sofowote, Philip K. Hopke, Nicolas Bonnaire, Emilie Perraudin, Valerie Gros, Eric Villenave, Alexandre Albinet, INERIS

10SA.6

11:45

Particulate matter in the Northwest of the Iberian Peninsula: A one-year study.

Fernanda Oduber, Carlos Blanco-Alegre, Ana Isabel Calvo, Amaya Castro, Roberto Fraile, Teresa Nunes, CÉLIA ALVES, University of Aveiro

10SA.7

11:45

Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time Resolution Influence.

QIONGQIONG WANG, Liping Qiao, Min Zhou, Shuhui Zhu, Stephen Griffith, Li Li, Jian Zhen Yu, Hong Kong University of Science & Technology

10SA.8

11:45

Emission Characteristics of PM2.5 and Trace Gases from Household Wood Burning in Guanzhong Plain, Northwest China.

YONG ZHANG, Jie Tian, Junji Cao, Wenjie Wang, Haiyan Ni, Suixin Liu, Zhenxing Shen, Institute of Earth Environment, Chinese Academy of Sciences

10SA.9

11:45

Application of Positive Matrix Factorisation to the Source Identification of Pcdd/Fs in Urban Air, South Korea.

EUNHWA JANG, Taewuk Jeong, Nana Yoon, Seungryul Jeong, Busan Metropolitan Institute of Health and Environment

10SA.10

11:45

Influence of Future Emission Reductions on Source Apportionment of Organic Aerosol in the Houston Region.

BONYOUNG KOO, Alan Dunker, Greg Yarwood, Ramboll

10SA.11

11:45

Impacts of Hazardous Metals and PAHs in the Ambient Air from Local and Regional Sources and Exceeded Cancer Risks in Taipei city.

CHIN-YU HSU, Shih-Min Wang, Tzu-Ting Yang, Jyh-Larng Chen, Hung-Che Chiang, Yuh-Shen Wu, Yu-Cheng Chen,National Health Research Institutes, Taiwan

10SA.12

11:45

Long-Term Field Observations of Aerosol Chemical Composition in the Boreal Forest.

LIINE HEIKKINEN, Mikko Äijälä, Matthieu Riva, Krista Luoma, Tuukka Petäjä, Douglas Worsnop, Mikael Ehn, University of Helsinki

10SA.13

11:45

Impact of Environmental Policies and the Economy on Changes in Criteria Air pollutants Concentrations and Particulate Matter Compositions in New York State during 2005-2016.

Stefania Squizzato, Mauro Masiol, David Q. Rich, PHILIP K. HOPKE,University of Rochester, Rochester, 14642, NY, USA

10SA.15

11:45

Comparison of Ambient Aerosol Sources at Rural and Suburban Background Sites in Central Europe.

OTAKAR MAKEš, Petr Vodi ka, Jaroslav Schwarz, Vladimír Ždímal, Institute of Chemical Process Fundamentals of the CAS, v.v.i

10SA.16

11:45

Seasonal Variations in Source Apportionment of the Redox Activity of Urban Fine Particulate Matter in Athens, Greece.

SINA TAGHVAEE, Mohammad Sowlat, Christopher Lovett, Konstantinos Eleftheriadis, Evangelia Diapouli, Manos Manousakas, Constantinos Sioutas,University of Southern California

10SA.17

11:45

PM2.5 Source Apportionment Using a Hybrid Environmental Receptor Model.

LUNG-WEN ANTONY CHEN, Junji Cao,University of Nevada, Las Vegas

(3)

161

10TH INTERNATIONAL AEROSOL CONFERENCE (IAC) | SEPTEMBER 2-7, 2018

Martinet, Simon – 10CB.9

Martinez, Leticia – 1IN.7

Martinez, Raul – 8AC.2

Martins, Vânia – 2IA.7, 3IA.5, 4AE.9, 4AE.15, 6AE.8

Marto, Joseph P. – 5AM.4, 10RA.4, 11AC.1, 11AC.4

Martucci, Giovanni – 11AP.6

Martuzevicius, Dainius – 1CM.4, 7IA.5

Marty, Frédéric – 7LC.3

Mascelloni, Massimiliano – 8AE.6

Masih, Amit – 6AE.1, 10MG.13

Masiol, Mauro – 7LC.18, 10SA.13, 11LC.1

Masood, Saiyada – 8MG.5

Masoud, Catherine – 2AC.1

Massabò, Dario – 10SA.31, 12BA.8, 13CB.5, 14CA.3

Massling, Andreas – 2AP.6

Massoli, Paola – 1RA.1, 8AC.1, 8AE.8

Mateus, Lady – 4CA.34, 11MG.6

Mathieu, Anne – 9AP.1

Matida, Edgar A. – 1MD.7

Matson, Pothier – 10CB.10

Matsoukas, Christos – 8ES.9

Matsuda, Kazuhide – 4OF.4

Matsui, Hitoshi – 1AM.3

Matsumi, Yutaka – 4OF.4, 12LC.3

Matsumoto, Kazuhiko – 1RA.6

Matthew, Ratcliff – 10CB.10

Matthew, Thornton – 10CB.10

Matton, Michel – 9AP.4

Maughan, Justin – 4AP.9, 12AP.5

Mauldin, Roy Lee III – 9AM.8, 13AC.6

Maunula, Teuvo – 7CB.11

Maximoff, Sergey N. – 4AP.7

May, Andrew – 2CA.8, 4AM.24, 10CA.4, 10CA.10

May, Nathaniel – 2RA.5

Mayer, Paula – 6CD.6

Mayhall, Elaine – 14BA.2

Mayhew, Alfie – 9AC.6

Mayol-Bracero, Olga L. – 11LC.8

Mayramhof, Gregor – 7IM.29

Mayya, Y.S. – 4AM.3, 4AM.13, 4AP.13, 5CM.7, 6AM.2, 7AM.9, 9AM.6, 9AP.2

Mazaheri, Mandana – 12MG.3

Mazon, Stephany – 2IM.2, 10AC.2, 11MG.7

Mazzola, Mauro – 7AP.29, 8ES.9

Mazzoleni, Claudio – 1RA.4, 1RA.5, 2RA.2, 5CA.8, 10RA.15

Mazzoleni, Lynn – 1RA.5, 2RA.2, 4AC.39, 4IM.13

Mädler, Lutz – 2MS.5, 2MS.6

Mäkelä, Antti – 5AP.6

Mäkelä, Jyrki M. – 7MS.12, 13IM.3

Mätzing, Hartmut – 10CB.14

Mbengue, Saliou – 4CA.24

McAdam, Kevin – 10HA.13

McArthur, Tim – 7LC.1

McAughey, John – 10HA.13, 10HA.14, 11HA.7

McCaffery, Cavan – 8CB.5

McClellan, Roger – 14HA.1

McCluskey, Christina – 1IN.4, 2IN.2

McComiskey, Allison – 1IN.1

McConnell, Laura – 3CM.3

McCormack, Meredith – 6AE.9

McCormick, Jordan – 8AC.9

McCubbin, Ian – 7CC.14

McDonald, Jacob – 10TO.9

McElroy, Michael – 5AC.8

McFarquhar, Greg – 1IN.4, 2IN.2

McFiggans, Gordon – 2AP.4, 7AC.27, 13MG.4

McGraw, Robert – 1AM.7, 2AP.7

McGuffin, Dana – 1AM.8

McKain, Kathryn – 4CA.26

McKay, Robert Michael – 4IN.6

McKeen, Stuart – 9AM.4

McKinney, Karena – 9AC.4, 12RA.6

McLinden, Chris – 9AM.3

McMeeking, Gavin – 2CA.8, 2IN.8, 4CA.21, 4IN.20, 7IM.27, 10CA.4, 10CA.10

McMurry, Peter H. – 7AP.33

McNeill, Kristopher – 1IN.6

McNeill, V. Faye – 11AC.7

McQueen, Jeffery – 7AC.12

Mead, Kenneth R. – 6IB.8

Mead, M.I. – 7AE.3

Medeiros, Adan – 12RA.6

Medstrand, Patrik – 7IB.19

Mehaffy, John – 8LC.3, 11LC.2

Mehra, Archit – 1OF.7, 4OF.2, 7AC.14, 9MG.8

Mehri, Rym – 1MD.7

Mei, Fan – 1AM.1, 1IN.1, 6CC.3, 9LC.2, 11AC.8

Mei, Junyu – 11CA.3, 10CA.7

Meidan, Daphne – 4OF.6, 12AC.8

Meijuan, Li – 10SA.3

Meinander, Outi – 4IN.19

Meirhofer, Florian – 2MS.6

Meišutovič-Akhtarieva, Marija – 7IA.5

Melas, Anastasios D. – 12AP.7

Melischnig, Alexander – 13IM.5

Mendes Santos, Luis – 8MG.2

Mendez, Juan Felipe – 13MG.8

Mendoza, Albert – 9LC.2

Meng, Meng – 4IA.14

Mennucci, Carlo – 13CB.5

Menon, Ratish – 4RA.23

Mensah, Amewu – 4OF.11, 5CA.3, 13CB.5

Mentel, Thomas F. – 1AC.7, 3RA.6, 4AC.14, 4AC.15, 4AC.32

Mentler, Bernhard – 4AC.20

Mercier, Xavier – 11CB.3

Merkel, Maik – 1IA.6

Mersmann, Ryan – 7IM.27

Mesbah, Boualem – 5RA.5

Mesceriakovas, Arunas – 5CM.3

Messier, Kyle – 4AE.7, 6AE.7, 9LC.1, 10IM.8

Messing, Maria E – 5MS.3

Metcalf, Andrew – 2CA.3, 4IN.20

Meyer, Jörg – 13TO.8

Meyer, Marit – 1IA.5

Meyer, Miriah – 10LC.8

Meyer-Plath, Asmus – 7CD.6, 10WA.3

Mezhericher, Maksim – 1DU.6

Meziane, Rajae – 4RA.27

Miake-Lye, Richard – 8IM.4, 9IM.6, 10CA.1

Michelsen, Hope – 11CB.6

Mickelsen, Leroy – 7IB.22

Middey, Anirban – 4CA.22, 7CM.5

Middlebrook, Ann M. – 5AC.1, 13CA.1

(4)

X

th

 International Aerosol Conference (IAC 2018) – Abstracts by Session 

Session # 10 

Copyright © 2018 by the International Aerosol Conference (IAC).  IAC hereby grants contributing authors full rights to the use of their own abstracts.  10SA.13   Impact of Environmental Policies and the Economy on Changes in Criteria Air pollutants Concentrations and  Particulate Matter Compositions in New York State during 2005‐2016. Stefania Squizzato, Mauro Masiol, David Q. Rich,  PHILIP K. HOPKE, University of Rochester, Rochester, 14642, NY, USA     Over the past several decades, several mitigation strategies have been adopted by federal and state agencies in the  United States to improve air quality. These strategies were mostly targeted to reduce SO2 and NOx emissions from light‐ 

and heavy‐duty vehicles and electric power generation. Between 2007 and 2009, the financial/economic crisis also  lowered activity and reduced emissions. Simultaneously, changes in the prices of coal and natural gas drove a shift in  fuels used for electricity generation toward natural gas.    This study investigates the seasonal patterns, diel cycles, spatial gradients, and trends of gaseous and particulate  pollutant concentrations and PM2.5 sources over New York State (NYS) between 2005 and 2016. Gaseous pollutants 

concentrations (SO2, O3, CO, and NOx) and PM2.5 mass and chemical speciation data (elements, major inorganic ions, EC, 

OC) were retrieved from USEPA (https://aqs.epa.gov/api). The final dataset included 54 sites for PM2.5 mass and gases 

(26 for PM2.5, 37 for O3, 26 for SO2, 8 for NOx, 2 for NOy, 11 for CO) and 6 urban sites (Albany, Bronx, Buffalo, Manhattan, 

Queens, and Rochester) and 2 rural sites (Pinnacle and Whiteface) for PM2.5 speciation data.    EPA PMF 5.0 was applied to the speciation data to identify and apportion the major sources of PM2.5 across these sites.  The relationships between ambient concentrations, changes in emissions retrieved from the national emission inventory  (NEI), and economic changes were studied.    Results show that the combined effects of the mitigation strategies, economic pressures, and the recession led to an  overall decrease in PM2.5 and primary gaseous pollutants concentrations across New York State ultimately resulting in 

relatively homogeneous spatial distributions for PM2.5 and SO2. PM2.5 concentrations decreased significantly at all sites 

with slopes ranging from ‐8.6%/y and –2.2%/y. SO2 concentrations dropped significantly at all sites within this period,  with the highest slopes observed at the urban sites (e.g., ‐8.5%/y at Queens, New York City).    The reduction of NOx emissions contributed to the reduction of high ozone episodes during summer, but there was no  reduction in spring maxima. Increases in autumn and winter ozone concentrations were estimated (e.g., 6.6 ± 0.4%/y on  average in New York City). Statistically significant relationships were observed between PM2.5, primary pollutants, and  economic indicators. Overall, the decrease in electricity generation with coal, and the simultaneous increase in natural  gas consumption for power generation, led to a decrease in PM2.5 and gaseous pollutants concentrations.    Seven main common sources of PM2.5 were identified across the state: (i) secondary sulfate; (ii) secondary nitrate; (iii)  gasoline emissions; (iv) diesel emission; (v) road dust; (vi) biomass burning and (vii) OP‐rich. A road salt source was  identified at Albany, Buffalo, Rochester, Pinnacle and Whiteface. Additional sources at the New York City sites (Bronx,  Manhattan, and Queens) were fresh sea salt, aged sea salt and residual oil combustion.    Among the main PM2.5 sources, decreases of secondary sulfate, secondary nitrate, and diesel emissions were observed (‐ 6.7±1.1%/y, ‐5.3±1.2%/y, ‐5.3±1.9%/y, respectively) across the state. Decreases can be associated with the mitigation  strategies aimed at reducing emissions from light‐ and heavy‐duty vehicles and electric power generation and to the  shift from high sulfur to ultralow sulfur fuels. Beginning on July 1, 2012, New York State required that all No. 2 oil sold  within the state for any purpose to have ultralow sulfur content. Gasoline emissions increased in Albany, Buffalo, and  New York City with slopes higher than 7%/y reflecting the increase of registered vehicles in the area (e.g., New York City  +9%, Buffalo +5%, and Albany +6% during 2007‐2016). 

Riferimenti

Documenti correlati

Jinjin Sun, Mingjie Liang, JIANLIN HU, Qi Ying, Hongliang Zhang, Nanjing University of Information Science &

Questa peculiarità (proprietà di Markov) è chiamata assenza di memoria. Questa proprietà permette poi di determinare la percentuale di assicurati appartenenti ad

SDN is an emerging architecture for designing, building and managing networks. The basic idea is to abstract the underlying complexity and decouple the control plane and

È chiaro insomma che quando scrive Tucidide, e forse anche alla vigilia della guerra del Peloponneso, erano attive due diverse memorie dell’atteggiamento degli

Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice laced with organics, salts, and silica

Figure 8 shows the internal scatter calculated as the standard deviation around the mean values (in some cases around a fitted linear equation, as explained earlier ), and the

83 Infatti, è pacifico che l’istituzione competente dello Stato membro ospitante dei lavoratori interessati, vale a dire l’Urssaf, ha comunicato all’istituzione emittente

Sulla base di tali osservazioni e al fine di migliorare le interazioni con porzioni lipofile del sito attivo, il mio progetto di tesi ha riguardato al sintesi