• Non ci sono risultati.

Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival

N/A
N/A
Protected

Academic year: 2021

Condividi "Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival"

Copied!
10
0
0

Testo completo

(1)

BIBLIOGRAFIA

Bodmer R. Heart development in Drosophila and its relationship to vertebrate. Trends Cardovasc Med. 1995; 5:21–28.

Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–729.

Botto LD, Correa A. Decreasing the burden of congenital heart anomalies:

an epidemiologic evaluation of risk factors and survival. Progr Pediatr Cardiol. 2003;18:111-121.

Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002;90:509-519.

Bruneau BG. The developing heart and congenital heart defects: a make or break situation. Clin Genet. 2003; 63:252-61.

Bruneau BG. The developmental genetics of congenital heart disease.

Nature. 2008; 451(7181):943-8

Caslini C, Capo-chichi CD, Roland IH, Nicolas E, Yeung AT, Xu X-X.

Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene. 2006; 25:5446-5461.

Chapin RE., Robbis WA., Schieve LA., Sweeney AM., Tabacova SA., Tomashek KM. Off to a good start: the influence of pre- and periconceptional exposures, parental fertility, and nutrition on children’s health. Environ Health Perspect. 2004; 112:69-78.

Chen JM, Ferec C, Cooper DN. A systematic analysis of disease- associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3'UTR variants. Hum Genet. 2006;120:301-333.

(2)

Chen K, Rayewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93-103.

Chen K, Fengju S, George AC, Qingyi W, Xishan H, Wei Z.

Polymorphisms in microRNA targets: a gold mine for molecular epidemiology Carcinogenesis. 2008; 29(7):1306–1311.

Chen Y, Mao J, Sun Y, Zhang Q, Cheng Hong-Bo, Yan Wen-Hua, Choy KW, Li H. A novel mutation of GATA4 in a familial atrial septal defect.

Clinica Chimica Acta. 2010; 411: 1741-1745.

Clark KL, Yutzey KE, Benson DW. Transcription factors and congenital heart defects. Annu Rev Physiol. 2006;68:97-121.

Conne B, Stutz A, Vassalli JD. The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat Med. 2000; 6(6):637-41 Cordes KR, Srivastava D, Ivey KN. MicroRNA in cardiac development.

Pediatr Cardiol. 2010;31:349-356.

De Santis M, Di Gianantonio E, Straface G, Cavaliere AF, Caruso A, Scgiavon F, Berletti R, Clementi M. Ionizing radiations in pregnancy and teratogenesis. Reproductive Toxicology. 2005;20:323-329.

Digilio MC, Marino B, Capolino R, Dallapiccola B. Le basi genetiche delle cardiopatie congenite. Prospettive in pediatria. 2004;34:151-164.

Draus Jr JM, Hauck MA, Goetsch M, Austin III EH, Tomita-Mitchell A, Mitchell ME. Investigation of somatic NKX2-5 mutations in congenital heart disease. J Med Genet. 2009;46:115-122.

Erdogan F, Larsen LA, Zhang L, Tümer Z, Tommerup N, Chen W, Jacobsen JR, Schubert M, Jurkatis J, Tzschach A, Ropers HH, Ullmann R.

High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated

(3)

congenital heart disease. J Med Genet. 2008;45(11):704-9.

Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 2010;705(2):96-106.

Erickson RP. Somatic gene mutation and human disease other than cancer. Mutat Res. 2003;543:125-136.

Fishman MC, Chien KR. Fashioning the vertebrate heart: Earliest embryonic decisions. Development. 1997;124:2099–2117.

Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443- 7

Garg V. Insight into the genetic basis of congenital heart disease. Cell Mol Life Sci. 2006;63:1141-1148.

Gillman MW. Epidemiological challenges in studying the fetal origins of adult chronic disease. Int J Epidemiol. 2002; 31:294–299.

Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, ergul E, Conta JH, Korn JM, McCarrol SA, Gorham JM, Gabriel S, Altshuler DM, Quintanilla-Dieck Mde LG, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA, Weitnblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet.

2009;41(8):931-5.

Harvey RP. NK-2 homeobox genes and heart development. Dev Biol.

1996;178:203–216.

Heikinheimo M, Scandrett JM, Wilson DB. Localization of transcription

(4)

factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994;164(2):361-73.

Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, Furutani M, Imamura S, Takao A, Nakazawa M, Matsuoka R.

Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A.2005;135(1):47-52.

Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J. 2004;147(3):425-39.

Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39:1890-900.

Horsthuis T, Christoffels VM, Anderson RH, Moorman AF. Can recent insights into cardiac development improve our understanding of congenitally malformed hearts? Clin Anat. 2009;22(1):4-20.

Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O'Brien TX, Gourdie RG, Berul CL, Izumo S. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004;113(8):1130-7.

Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixon M, Warnes CA, Webb CL. Noninherited risk factors and congenital cardiovascular defects: current knowledge. AHA Scientific statement.

Circultion. 2007;115:2995-3014.

Jin-bin H, Liu Ying-long, Sun Pei-wu, Lv Xiao-dong, Du Ming, Fan Xiang- ming. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2009; 19(5):e183-e193.

Johnson MC, Hing A, Wood MK. Chromosome abnormalities in congenital heart disease. Am J Med Genet. 1997;70:292-298.

(5)

Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, et al. GATA-4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11: 1048–1060.

Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, Novotny J, Försti A, Hemminki K, Canzian F, Landi S. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer.

Carcinogenesis. 2008; 29:579–584

Lange UC, Schneider R. What an epigenome remembers. Bioessays.

2010;32(8):659-68.ù

Leanch IM, van der Harst P, de Boer RA. Pharmacoepigenetics in heart failure. Curr Heart Fail Rep. 2010;7(2):83-90.

Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. Nkx 2-5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendents. Development. 1993;119:419–431.

Liu Z, Li T, Liu Y, Jia Z, Li Y, Zhang C, Chen P, Ma K, Affara N, Zhou C.

WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. Biochimica et Biophysica Acta. 2009;

1793:300-311.

Lyons GE. Vertebrate heart development. Curr Opin Genet Dev.

1996;6:454–460.

Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA.

Maternal smoking and congenital heart defects. Pediatrics. 2008;121:810- 816.

Mathiyalagan P, Chang L, Xiao-Jun Du, El-Osta A. Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle. 2010;9(3):612- 617.

(6)

McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol.

2003;42(9):1650-5.

Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA-4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11: 1061–1072.

Mongomery RL, Christopher AD, Matthew JP, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson NE. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth and contractility.

Genes & Development. 2007; 21:1790-1802.

Movassagh M, Choy M-K, Goddard M, Bennet MR, Down TA, Foo RS.

Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS ONE. 2010;5(1):e8564.

Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat. 2006;27(3):293-4

Nemer M. Genetic insights into normal and abnormal heart development.

Cardiovasc Pathol. 2008;17(1):48-54.

O’Rahilly R, Muller F. Human Embryology & Teratology. 3rd ed. 2001 New York:Wiley-Liss.

Olson EN, Srivastava D. Molecular pathways controlling heart development. Science. 1996;272:671–676.

Pabst S, Wollnik B, Rohmann E, Hintz Y, Glänzer K, Vetter H, Nickenig G, Grohé C. A novel stop mutation truncating critical regions of the cardiac transcription factor NKX2-5 in a large family with autosomal-dominant inherited congenital heart disease. Clin Res Cardiol. 2008;97(1):39-42.

(7)

Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates).

Curr Opin Genet Dev. 2002;12(4):416-22.

Pierpont ME, Craig T. Basson, D. Woodrow Benson, Jr, Bruce D.

Gelb,Therese M. Giglia, Elizabeth Goldmuntz, Glenn McGee, Craig A.

Sable, Deepak, Srivastava and Catherine L. Webb. Genetic Basis for Congenital Heart Defects: Current Knowledge: A Scientific Statement From the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation 2007;115;3015-3038;

Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H. GATA transcription factors in the developing and adult heart. Cardiovasc Res.

2004;63(2):196-207.

Posch MG, Perrot A, Berger F, Ozcelik C. Molecular genetics of congenital atrial septal defects. Clin Res Cardiol. 2010;99(3):137-47.

Quach N, Goodman MF, Shibata D. In vitro mutation artefacts after formalin fixation and error prone translesion synthesis during PCR. BMC Clin Pathol. 2004; 4:1.

Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, Goldmuntz E, Broman KW, Benson DW, Smoot LB, Pu WT. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol.

2007;43(6):677-85.

Reamon-Buettner SM, Borlak J. Genetic analysis of cardiac-specific transcription factors reveals novel insight into molecular causes of congenital heart disease. Future Cardiol. 2005;1(3):355-361.

Reamon-Buettner SM, Borlak J. Somatic mutations in cardiac

(8)

malformations. J Med Genet. 2006;43(8):e45.

Reamon-Buettner SM, Borlak J. Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J Med Genet 2004;41:684-690.

Reamon-Buettner SM, Cho SH, Borlak J. Mutations in the 3'-untraslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Med Genet. 2007;25:8-38.

Reamon-Buettner SM, Hecker H, Spanel-Borowski K, Craatz S, Kuenzel E, Borlak J. Novel NKX2.5 mutations in diseased heart tissues of patients with cardiac malformations. Am J Pathol. 2004;164:2117-25.

Rochais F, Mesbah K, Kelly RG. Signaling patways controlling second heart field development. Circ Res. 2009;104(8):933-42.

Sadoxski SL. Congenital Cardiac Disease in the Newborn Infant:

Past,Present,and Future. Crit Care Nurs Clin North Am. 2009;21(1):37-48.

Satou Y, Satoh N. Gene regulatory networks for the development and evolution of the chordate heart. Genes & Development. 2010;20:2634- 2638.

Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single- nucleotide polymorphisms related to phenotypes. Am J Hum Genet.

2007;81:405–413.

Shieh JTC, Srivastava D. Heart malformation: What are the chances it could happen again? Circulation. 2009;120:269-271.

Shiojima I, Komuro I, Mizuno T, Aikawa R, Akazawa H, Oka T, Yamazaki T,

(9)

Yazaki Y. Molecular cloning and characterization of human cardiac homeobox gene CSX1. Circ. Res. 1996;79:920–929.

Srivastava D, Olson EN. A genetic blueprint for cardiac development.

Nature. 2000;407(6801):221-6.

Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E. Mutational spectrum in the cardiac transcription factor gene NKX2.5(CSX) associated with congenital heart disease.Clin Genet 2010 .

Stebbins-Boaz B, Richter JD . Translational control during early development. Crit Rev Eukaryot Gene Expr. 1997;7(1-2):73-94.

Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269–1280.

Tanaka M, Kasahara H, Bartunkova S, Schinke M, Komuro I, Inagaki H, Lee Y, Lyons GE, Izumo S. Vertebrate homologs of tinman and bagpipe:

roles of the homeobox genes in cardiovascular development. Dev Genet.

1998;22(3):239-49.

Thompson JT, Rackley MS, O'Brien TX. Upregolation of the cardiac

homeonox gene Nkx2-5 (CSX)in feline right ventricular pressure overload. Am J Physiol.

1998;274(5 Pt 2):H1569-73.

Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E. GATA4 sequence variants in patients with congenital heart disease. J Med Genet.

2007;44(12):779-83.

Wessel MW, Willems PJ. Genetic factors non-syndromic congenital heart malformations. Clin Genet. 2010;78(2):103-23.

Zhang L, Tumer Z, Jacobsen JR, Andersen PS, Tommerup N, Larsen LA.

Screening of 99 Danish patients with congenital heart disease for GATA4

(10)

mutations. Genet Test. 2006;10(4):277-80.

Zhang W, Li X, MA Zhong-yuan, Zhang Jing, Zhou Si-hai, Li Tao, Shi Lin, Li Zhong-zhi. GATA4 and NKX2.5 gene analysis in Chinese Uygur patients with congenital heart disease. Clin Med J. 2009;122(4):416-419.

Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet.

2008;51(6):527-35.

Riferimenti

Documenti correlati

Treatment of PIE caused by penicillin and gentamicin susceptible enterococci when no prosthetic material is present consists of a min- imum of four to six weeks of penicillin G at

The presence of profound pulmonary overcirculation, which may occur with a large ventricular septal defect or aortopulmonary window, may require pulmonary artery banding to

The increased spatial resolution of 0.4 mm that is possible with 64-slice CT even allows for visualization of the coronary arteries in babies, thus enabling the detec- tion of

Nevertheless, there remains a sub- group of ACHD patients who are at increased risk of developing myocardial ischemia or pre- mature coronary artery disease (CAD) as the result of:

Methods—Writing group members were nominated by the committee chair on the basis of their previous work in relevant topic areas and were approved by the American Heart

Sagittal T1 w SE plane showing the origin of the left coronary artery (arrow) from the posterior wall of the main pulmonary artery (PA) in a case of anomalous origin of left

In a recent study where 182 parents of CHD children (54 having transposed great arteries, 55 a function- ally single ventricle and 73 complex variants of functionally

Director Emeritus, Cardiothoracic Surgery, Herma Heart Center, Children's Hospital of Wisconsin; Clinical Professor of Surgery, Medical College of Wisconsin, Milwaukee,