• Non ci sono risultati.

for sustainable NSAIDs synthesis amides organo-catalyzed by trifluoroaceticacid Beckmann of rearrangement acetophenone oximes to thecorresponding Applied Catalysis A: General

N/A
N/A
Protected

Academic year: 2021

Condividi "for sustainable NSAIDs synthesis amides organo-catalyzed by trifluoroaceticacid Beckmann of rearrangement acetophenone oximes to thecorresponding Applied Catalysis A: General"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

A:

General

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

Beckmann

rearrangement

of

acetophenone

oximes

to

the

corresponding

amides

organo-catalyzed

by

trifluoroacetic

acid

for

sustainable

NSAIDs

synthesis

Giuseppe

Quartarone,

Elia

Rancan,

Lucio

Ronchin

,

Andrea

Vavasori

DepartmentofMolecularSciencesandNanosystems,UniversityCa’FoscariofVenice,Dorsoduro2137,30123,Venezia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16September2013 Receivedinrevisedform 27November2013 Accepted21December2013 Available online 28 December 2013 Keywords: Trifluoroaceticacid Organocatalysis Beckmannrearrangement Acetaminophen

a

b

s

t

r

a

c

t

The Beckmann rearrangement of acetophenone oximes to the corresponding amides (4-hydroxyacetophenone oxime to N-acetyl-4-hydroxyacetanilide and acetophenone oxime to N-phenylacetamide) is investigated by using trifluoroacetic acid (TFA) as catalyst. The reaction occurseitherinthepresenceorintheabsenceofasuitablesolvent.Highselectivityandpractically quantitativeyieldtoamideisachievedinbothcasesatTFA/substrate>3.BothTFAandthesolvent (wheneverpresent)couldbeeasilyreusedbydistillationsincenoprotonationofamidesoccurs.The reactionproceedsviaamultistepreactionpathandtheroleofTFAisrelatednotonlytoitsacidity butalsomainlytoitsabilityonformingreactivetrifluoroacetylatedintermediates.Inparticular,the highlyreactivetrifluoroacetylatedamideisactuallytheeffectivecatalyst.Finally,alikelyreactionpath isproposed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Acetanilide (N-phenylacetamide) and paracetamol or acetaminophen (N-acetyl-4-aminophenol) are antipyretic– analgesicdrugs.Besidesacetanilidehasbeenemployedindrug formulationsforlongtime,though,nowforthisuseitisalmost completely substituted by acetaminophen [1–5]. In any case, acetanilideisanimportantintermediateintheproductionoffine chemicals,infact,itisusedasaninhibitorofperoxides,stabilizer forcelluloseestervarnishes,asanintermediateforthesynthesis of rubber accelerators, dyeintermediate and as a precursor in penicillinsynthesis[5].

Acetaminophen production is in continuous growth and its industrialsynthesisisbasedonfourdifferentroutes:(i)from phe-nol,(ii)fromchlorobenzene,(iii)fromnitrobenzeneand(iv)from 4-hydroxyacetophenoneoxime(4-HAPO),thelatterknownalsoas theHoechst-Celaneseprocess[2,3].Inthepast,thefirsttwo pro-cesseswerepredominant,whilethelasttwohavebeenevolvingin recentyears[3].Fromeconomicalandenvironmentalpointofview thefirsttwoshowmoreconcerns,duetothelargecoproductionof unwantedbyproducts(suchasisomersandsalts).Inaddition,the processesarecarriedout inbatchreactors,thusimplyingsmall productionwithhighcosts.

∗ Correspondingauthor.

E-mailaddress:ronchin@unive.it(L.Ronchin).

Conversely,both therouteviaselectivenitrobenzene hydro-genationto4-aminophenolandtheHoechst-Celaneseprocessare continuousmultistageplantdevelopedforlargeproductions[1–4]. Theseprocessesinvolvetheuseofacidcatalystsandtheplantsin operationareactuallyusingmineralacids,whichlimittheir sus-tainabilityfrombothenvironmentalandeconomicalpointofview [4].Thelatter,particularly,comprisesseveralstageswhereacid cat-alystsareinvolved:theFriesrearrangementofphenylacetate,the oximationofthe4-hydroxyacetophenoneto4-HAPOandfinally itsBeckmannrearrangementtoparacetamol[1–3].Aboveall,Fries andBeckmannrearrangementrequirestrongacidsandsevere reac-tionconditions [1–3].Boththestages employmineralacidand inorganicbaseseachonewiththenecessaryhold-upoperation, clearlytheirsustainabilityimprovementpassesthroughtheuseof easilyreusableacidcatalyticsystem.

ThestudiesrelatedtotheBeckmannrearrangementhavebeen particularlyfocusedonthecyclohexanoneoximeto␧-caprolactam conversion,sincethisreactionisofparamountimportanceforthe industry,beingthislactamthekeyintermediatefornylon6 pro-duction[6–10].AlargenumberofpapersdealingtotheBeckmann rearrangementof ketoximes are availablein literature employ-ing liquid and solid acidcatalysts(both inorganicand organic) [11–18],butfewpapersarespecificallyavailableontheBeckmann rearrangementofthe4-hydroxyacetophenoneoximeas interme-diateforacetaminophensynthesis[14–17].Inpatentliteraturethe mostimportantapplicationarereferredtotheCelaneseprocessbut therearesomepatentsclaimingtheBeckmannrearrangementof ketoximestothecorrespondingamides[2,3,19,20].

0926-860X/$–seefrontmatter © 2014 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apcata.2013.12.026

(2)

N OH

+

N OCOCF3 -H2O N O COCF3 N O COCF3 N OH + N OCOCF3 NH O + CF3COOH

Scheme1.SchematicreactionmechanismofTFAcatalyzedBeckmannrearrangementofcyclohexanoneoximeto␧-caprolactamseeRef.[28].

Amongthe liquid acidsTFA appears tobe really interesting forsyntheticpurposes, becauseof itslow boilingpoint(346K), whichallowsaneasyrecoveryand recyclingoftheacidby dis-tillationwithoutproductsdecomposition[21,22].Inaddition,TFA isnontoxic,quitestable,itsdecompositiondoesnotgive harm-ful products and it doesnot giveaccumulation phenomena in theenvironment [23].However,except thepaperof Cossy and coworkers,whoemployedTFAfortherearrangementofketoxime carbonate[24],TFA wasnot usedforthis reactionasa catalyst and only in few cases it was employed in thesolvent system butnot recognizedascatalyst[25].During thelast5 yearsour researchgrouphasstudiedtheBeckmannrearrangementof cyclo-hexanoneoximeto␧-caprolactaminthepresenceofTFAascatalyst [26–29].For instance, we showedthat TFA in CH3CN asa

sol-ventgivespracticallyquantitativeconversionwithhighselectivity in theBeckmannrearrangement of cyclohexanoneoximeto ␧-caprolactam[27–29].Furthermore, thesolventcatalytic system CH3CN-TFAisfullyreusablebecauseoftheacidityoftheTFAdoes

notallowtheformationofthecaprolactamsalt,typicallyobserved withmineralacids,thusitdoesnotneedneutralization[26–29]. Thosepapers clearly evidenced that the reaction occursvia an organocatalyzedpathduetotheformationofcompoundsinvolving TFAesters[26–29].Theproposedreactionmechanismenvisages theformationoftheoximeesterofthetrifluoroaceticacid,which, afterrearrangement,formsatrifluoroacetylacetamide.Thelatter isthekeyintermediateofthecatalysisbeingthe trifluoroacetylat-ingcompoundoftheoxime,whichcontinuouslyreformstheester sustainingthecatalyticcycle(Scheme1).

VeryrecentlyLuoand co-workersdepositedapatentforthe synthesisofamides,basedontheuseofTFA-CH3CNsystem[30].

Asamatteroffact,theapplicationclaimsaprocedurequitesimilar tothatproposedinourpreviouspapersandthefinalresultsare practicallyoverlapping[26–30].

In this work we study TFA as catalyst for the Beckmann rearrangementofaromaticketoximestothecorrespondingamides, employingbothAPOand4-HAPOassubstratesandweshowthat TFAactsinbothcasesasanorganocatalyst.Inaddition,we inves-tigatetheinfluenceof differentsolvents(also neat TFA)and of theoperativevariablesonreactionrateconversionandselectivity. Finally,onthebasisofthereactivityoftheintermediateswe pro-poseareactionmechanism,whichexplainsthebehaviorsofboth theoximes.

2. Experimental 2.1. Materials

Allsolvents and products wereemployed as received with-out further purification. Acetophenone≥98%, trifluoroacetic acid 99%, trifluoroacetic anhydride>99%, nitroethane 96% and

hydroxylamine hydrochloride 99%, dimethyl carbonate were Aldrich products; 4-hydroxiacethophenone≥98% (HPLC), dichloromethane, acetonitrile, nitroethane, were all HPLC grade Fluka products. Dimethyl sulfoxide (DMSO) 99% and 1,2-dichloroethane 99% were ACS reagent Aldrich. Deuterated chloroform,deuteriumoxideanddeuterateddimethylsulfoxide (DMSO-d6)wereEurisoTopproducts.

2.2. Instruments

The gas-chromatograph (GC) Agilent model 6890, equipped withaHP5,filmthickness2.65␮m,30m×530␮mcolumn; detec-tor:flameionizationdetector(FID);carriergas:N2,0.9mL/min;

oven:333–523K(5min)at5K/minwasusedmainlyforthe anal-ysisofAPOreactions.

Thequantitativeanalysesof4-HAPOrearrangementwere car-riedoutexclusivelybyhighperformanceliquidchromatography (HPLC),because4-HAPOandacetaminophendecomposeintothe GCinjector.TheHPLCinstrumentemployedwasaPerkinElmer binaryLCpump250withphenomenexLuna,5␮mC18100 ˚A,LC column300mm×4.6mm(detector:PerkinElmerLC235CDiode Array,wavelengths:255nmand220nm;carrier:mixwater– ace-tonitrile witha concentrationgradient 60% water (9min), 50% water(5min)and30%water(1min)).

DespiteofbothAPOandacetanilidearestablebyGCanalysis therearrangementwasfollowedbyusingeitherGCorHPLC,since intermediatesappearstodecomposebyusingboththetechniques. Thegas-chromatograph coupledmass spectroscopy (GC-MS) Agilent model 5975C interfaced with GC Agilent model 7890 equippedwithaHP5filmthickness0.5␮m,30m×250␮mwas usedthroughouttheexperimentsforcheckingreactionproducts. ThereactioncarriedoutinthepresenceofH2SO4andCH3SO3H

were analyzed after dilution with water and extraction with dichloromethane,therestwereanalyzedwithoutany neutraliza-tion.

The1HNMRspectrawererecordedonaBrukerAC200

spec-trometeroperatingat200.13MHz,thesample temperaturewas maintainedat298K.Thereagentconcentrationswerechosenin ordertosimulatetherealcatalytic conditions.Allthechemical shiftswerereferredtointernaltetramethylsilane.

2.3. Ketoximesynthesis

4-HAPO and APO were synthesized from thecorresponding ketone (4-hydroxyacetophenone and acetophenone) by follow-ing the procedure described in literature [27,28]. In a typical preparation, aflask equipmentequippedwithrefluxcondenser wascharged with170mLof water, 0.51mol of hydroxylamine hydrochloride,0.81molofsodiumacetateand0.15molof4-HAPO. Thereactionwasheatedatca.363Kfor1handthen,aftercooling,

(3)

thesolidwasfilterandwashedwithasaturatedsolutionofNaCl andNaHCO3at273K.Thecrude4-HAPOwasdissolvedinwater

andextractedwithdiethylether.Afterevaporationofthesolvent thesolidwastwicerecrystallizedwithdiethyletherandhexane.

NMRassignments:

4-HAPO, white solid, m.p. 413-418K, 1H NMR: (200MHz,

(CD3)2SO),ı10.84(s,1H,N OH),9.60(s,1H, OH),7.49–7.45(d,

2H),6.78–6.73(d,2H),2.09(s,3H)[31];

APO,whitesolid,m.p.331-333K,1HNMR:(200MHz,CDCl 3),ı

9.04(brs,1H, OH),7.68–7.63(m,2H),7.43–7.40(m,3H),2.34(s, 3H)[32].

2.4. SynthesisofO-trifluoroacetyloximesester,N-trifluoroacetyl acetanilide,N-trifluoroacetyl4-hydroxyacetanilide

An attempt to obtain O-trifluoroacetyl-4-hydroxy-acetophenoneoxime (4-HAPO-TFA) byfollowing the procedure reportedforcyclohexanoneoximeinpreviouspapersdoesnotgive satisfactorilyresults[27,28].Infact,theformationof4-HAPO-TFA byreactingtrifluoroaceticanhydridewith4-HAPOisnotobserved since, the instantaneous rearrangement to acetaminophen is observedalsoat298K.

The reactivity of trifluoroacetic anhydride with acetophe-none oxime at 353K gives in few minutes acetanilide but, O-trifluoroacetyl acetophenone oxime (APO-TFA) is formed at 298K by following the procedure reported for cyclohexanone oximeinpreviouspapers[27,28].Thereactionoccursalmost quan-titativelyinvarioussolventinatypicalpreparation 25mmolof APOreactswithanequimolaramountoftrifluoroaceticanhydride in3mLofCH2Cl2.Toavoid fastdecompositionoftheproducts,

APO-TFAismaintainedinaDMSOsolutioninthepresenceofan over-stoichiometricamountoftrifluoroaceticanhydride(1.1equiv. withrespecttoAPO-TFA).Theproductisidentifiedby1HNMR,

GC–MSandHPLC(seesupplementarymaterials).

N-Trifluoroacetyl-4-hydroxyacetanilide (AcP-TFA) or N-trifluoroacetyl-acetanilide (AcA-TFA) are obtained by triflu-oroacetylation of acetaminophen or acetanilide in acetonitrile, theproductsareidentifiedviaGC–MSandNMR(see supplemen-tarymaterials).Inatypicalpreparation26mmolofparacetamol wasdissolved with3mLof acetonitrile and added 26mmol of trifluoroaceticanhydride in aglass flask,thenthereactionwas stirredfor1hat298K.Thesolventwaseliminatedundervacuum byarotaryevaporatorat298K; adeliquescentwhitesolidwas obtainedand analyzedby HPLC,GC–MSand NMR (see supple-mentarymaterials).Analogousprocedurewasfollowedtoprepare N-trifluoroacetyl acetanilide (see supplementary materials). It is noteworthy that all the compounds are moisture sensitive. Toavoid fastdecompositionof theproducts, both AcP-TFAand AcA-TFA are maintained in a DMSO or CH3CN solution in the

presenceofanover-stoichiometricamountofTFA(1.1equiv.with respecttoAcP-TFAorAcA-TFA).

NMRassignments:

APO-TFA, 1H NMR (200MHz, CDCl

3), ı 7.75–7.70 (m, 2H),

7.54–7.26(m,3H),2.51(s,3H);

acetanilide,whitesolidm.p.385–389K,1HNMR(200MHz,CDCl 3), ı8.19(brs,1NH),7.55–7.51(m,2H),7.33–7.25(m,2H),7.13–7.06 (m,1H),2.15(s,3H)[33]; AcA-TFA, 1H NMR (200MHz, CDCl 3), ı 7.52–7.47 (m, 3H), 7.25–7.20(m,2H),2.55(s,3H);

acetaminophen,whitesolidm.p.440–443K1HNMR((CD 3)2SO,

200MHz),ı9.63(s,1H, OH),9.12(brs,1H, NH),7.36–7.31(d, 2H),6.69–6.65(d,2H),1.98(s,3H)[34];

AcP-TFA,1HNMRı9.64(s,1H, OH),7.45–7.32(d,2H),6.70–6.65

(d,2H),1.97(s,3H).

2.5. Beckmannrearrangementreactions

Alltheoperationswerecarriedoutundernitrogen(chargedat atmosphericpressure)inajacketedsealedglassreactor(10mL) atseveraltemperaturesandautogenouspressure.Thecourseof reactionswascheckedsamplingtheliquidphasebyasyringeat establishedintervals.AlltheanalyseswerecarriedoutbyGCand GC–MSwhen APOwasemployedas substrate,while HPLCand GC–MSwereusedwhenthesubstratewas4-HAPO.Thepotentialof themethodasanalternativesyntheticrouteforobtainingdifferent amideshasbeentestedonseveraloximesgiving,inanycase,high yieldinthecorrespondingamides(seesupplementarymaterials).

In a typical experiment, a glass reactor was charged with 1.3mmolof4-HAPO,9mLofnitroethaneand 12.5mmolofTFA under nitrogen.Thereaction time wascomputedafter theTFA addition.

The firstderivativeat time 0 ofthe third orderpolynomial, obtainedbyfittingthetimedecreasingconcentrationof4-HAPO, givestheoverallinitialreactionrate,thusallowingthecontrolof theinfluenceoftheoperativevariableonthereactionkinetics.In thiscasesubstrateconsumptionandamideformationhasbeen fol-lowedbyHPLCanalysissinceGCcannotbeemployedsinceeither 4-HAPOoracetaminophendecomposeintheGCinjectionsystem, givingnotreliableresultsinthequantitativeanalysis.

TheinitialrateofAPOrearrangementwasmeasuredbythefirst derivativeattime0ofthethirdorderpolynomialobtainedbyfitting thetimevs.acetanilideformationdata.Thedifferentmethodsinthe calculationoftheinitialrateofreactionforthetwosubstrateisdue thefactthatAPOshowsacomplexreactionpath,thenacetanilide formationappearstobeasimpleandreproducibleparameterfor measuringtheoverallreactionrate.

2.6. Products,solventandcatalystrecovery

Thereactedmixtureistransferredtoaminidistillation appara-tusequippedwithmembranepump,operatingat130Paandwitha condenserchilledat273Kwithacirculatingthermostat.The mix-tureisheatedat353K,thanthesolventquicklydistils.Thesolvent recoveredisover95%oftheinitialsolvent,therestisinthe distil-lationapparatus.Theresidueisrecoveredandtheisolatedyieldof acetanilideandacetaminophenareca.90–95%.

3. Resultsanddiscussion

3.1. InfluenceofthesolventontheBeckmannrearrangementof 4-HAPOandAPOcatalyzedbyTFA

Table1reportstheinfluenceofthesolventontheBeckmann rearrangementreactionof4-HAPOandAPOafter2hofreaction.

Itisnoteworthythatconversionsareclosetocompletenessin thepresenceofvarioussolvents,insomecasesthereactionis prac-ticallyquantitativetothedesiredamide,exceptentries4,6and 8thatarecarriedoutinthepresenceofethanol,DMCandDMSO, respectively.Asregardthereactivityin ethanol,thebehavioris expected,since TFA reacts almostinstantlywith thealcohol to giveethyltrifluoroacetate,thussubtractingtheacidtothe reac-tionenvironment.InthepresenceofDMCthereactiondoesnot proceed but no byproductswere observed. Thisstrong solvent effect is generally related toa stabilizationof a charged inter-mediate, whose stability increases theactivation energy of the overallprocess[35].Thisstrongsolventinteractioninhibitsalso allthereactionsinvolvedintheprocess(oximehydrolysisand/or

(4)

Table1

Beckmannrearrangementof4-HAPOandAPOcatalyzedbyTFAinthepresenceofvarioussolvent.

Entry Solvent 4-HAPO APO

Conv.a(%) Select.b(%) T(K) Conv.a(%) Select.c(%) T(K)

1 Acetonitrile 99 99 343 >99 60.2d 358 2 Nitromethane >99 99 343 >99 99 358 3 Nitroethane >99 >99 343 >99 >99 358 4 Ethanol /e / 343 /e / 358 5 1,2-Dichloroethane 97 96 343 96 95 358 6 DMC <1 / 343 <1 / 358 7 DMSO / / 343 / / 358 8 Chloroform 96 96 343 96 98 358 9 TFA 97 96 343 >99 99 358 10 CH3SO3H 98 99 343 99 99 358 11 H2SO475% 99 99 343 99 99 358

Runcondition:molarratioTFA/substrate=10,TFA=13.2mmol,totalvolume=10.8mL,timeofreaction120min.

aOximeconversion. b Selectivitytoacetaminophen. c Selectivitytoacetanilide.

d FormationofAPO-TFAareobserved;after18hofreactionacetanilideyield99%. eTFAisconvertedquantitativelytoitsethylesterandreactiondoesnotproceedfurther.

esterification).Infact,thesereactionsareobservedforAPO(entry1) aswellasforcyclohexanoneoximerearrangementinTFA–CH3CN

[26–29].Correspondingly,inDMSO(entry7),thereactiondoesnot proceed,likelyforasimilarsolventreason[35].Entry8showshigh conversionandselectivityforboth4-HAPOandAPOinchloroform asthesolvent.

ReactionscarriedoutinneatTFA(entry9)showhighconversion andselectivitytothedesiredamideforeither4-HAPOorAPO.

Entries10and11showthereactivityinCH3SO3HandH2SO4

70%, as expected in both cases high conversion and selectiv-ity are achieved but dilution in water and extraction with dichloromethaneneedstorecovertheproducts.

Theprocedurehasalsobeentestedonseveralketoximesand aldoximesgivinghighyieldinthedesiredamides,some prelim-inaryresultsareavailableonsupplementarymaterialsbutthisis beyondthescopeofthepresentresearchandfurtherinvestigations areincourse.

3.2. Timevs.concentrationsprofileoftheTFAcatalyzed Beckmannrearrangementinnitroethaneasasolvent

Fig.1showsthetimevs.concentrationsprofileoftheBeckmann rearrangementof4-HAPOandAPOcatalyzedbyTFAinnitroethane asasolvent.

ThecomparisonofthetwoplotsofFig.1showsapparentlytwo completelydifferenttrends.The4-HAPOrearrangementshowsthe disappearingoftheoximewiththeconcomitantincreaseofthe rel-ativeamide(acetaminophen).Onthecontrary,therearrangement ofAPOshowsacomplexreactionpattern,inwhichisevidenced thatpartofthestartingoximeistransformedalmostimmediately invariousintermediatesaftertheadditionoftheTFA.Furthermore, acetanilideformationpresentsaninductionperiod;thissuggests thattheformationofacatalyticallyactiveintermediaterequiresa certaintimetoreachtheminimumconcentrationforstartingthe catalysisoftherearrangementtoacetanilide.Suchaninduction periodistemperaturedependant(seesupplementarymaterials) anddecreasesastemperatureraises.TheintermediateofFig.1(b) hasbeenidentified(GC–MS,NMRandcomparedwithastandard seesupplementarymaterials)asAPO-TFAandAcA-TFA,while ace-tophenonederivefromAPOhydrolysisduetothereactionofthe protonatedformofAPO(APOpKa=2.52,TFApKa≈0.47)withthe

waterderivingfromtheformationoftheAPO-TFA(esterification), orfromasecondaryreactionpathalreadydescribedinaprevious paper[27–29,36–38].

Thisclass of products, suggestsa reaction path for theAPO Beckmannrearrangement,similartothatproposedfor cyclohex-anoneoxime[27,28].Onthecontrary,thetimevs.concentration profileofthe4-HAPOrearrangementwould suggesta Brønsted

a

0 20 40 60 80 0 25 50 75 100 S pec ies, m ol (% ) Time, (min)

b

0 50 100 150 200 250 300 350 0 25 50 75 100 Specie s, (m ol %) Time, (min)

Fig.1. Timevs.concentrationsprofileoftheBeckmannrearrangementof4-HAPO(a)andAPO(b)innitroethane.Runconditions:reactiontemperature343K,molarratio TFA/substrate=10,nitroethane/substrate=100,TFA=13.2mmol(14mmolforAPO).In(a):()=4-HAPO,(䊉)=AcP;in(b):()=APO,()=acetophenone,()=APO-TFA, ()=AcA-TFA,(䊉)=acetanilide.

(5)

0 50 100 150 200 250 300 350 0 25 50 75 100 S pec ies, (m ole %)

Time, (minutes)

Fig.2.Timevs.concentrationsprofileoftheBeckmannrearrangementofAPOin nitroethanebyusingGCanalysis.Runconditions:reactiontemperature353K,molar ratioTFA/substrate=12,nitroethane/substrate=100,TFA=14.0mmol;()=APO, ()=acetophenone,(䊉)=acetanilide,()=acetanilideGC.

acidcatalyzedrearrangementsimilartothatobservedinmineral acid[38–41].Nevertheless,thismarkeddifferenceinthereaction pathbetweenAPOand4-HAPO,evidencedinFig.1couldbeonly apparent,becauseofthedifferentmethodofanalysisemployedfor thetwosubstrates(GCandHPLC,respectively).Infact,theneed ofusing HPLCfor analyzingthesamplesof reactionof4-HAPO rearrangement may cause the hydrolysis of the intermediates, which,onthecontrary,areactuallypresentintothereaction mix-ture.Thisisdemonstratedbyfollowing4-HAPOrearrangementvia NMRinCDCl3,thespectrashowcomplexreactionpattern,where

severalintermediatesareobserved,butanunambiguous identifi-cationoftheintermediatesisnotpossible(seesupplementary).A furtherhintthatthelackoftheintermediatesofthetimevs. con-centrationsprofileof4-HAPOrearrangementisduetoananalytical problemisevidentbynotinginFig.2(comparewithFig.1(b))that thetimevs.profileofAPOrearrangementisdifferentifthereaction courseisfollowedbyHPLCorbyGC.Asamatteroffact,thevarious intermediates,evidencedbyGCanalysisdisappear.Fig.1(b)shows theformationofAcA-TFA,immediatelyaftertheadditionofTFA thussuggestingafastrearrangementofAPO-TFA.

Inordertohighlightthisbehaviorsthereactivityofreagents and intermediateswithoximes,water and theirstability under differentconditionsarereportedinTable2.

The trifluoroacetylation of both the molecules occurs easily withtrifluoroaceticanhydride.Infact,theanhydridereactswith 4-HAPOat298Kgivingseveralcompounds,whoseequilibriaafter dilution give acetaminophenquantitatively (see supplementary materials).Incontrast,APOreactswithtrifluoroaceticanhydride giving APO-TFA, which is stable at 298K, but it rearranges at 343KinthepresenceofTFA.Inthegasphase,intotheGC injec-tor,APO-TFArearranges promptlytoAcA-TFA (yield70%),thus explaining theinstantaneousformation ofAcP-TFAobserved in Fig.1(b).APO-TFA,AcP-TFAandAcA-TFAaremoisturesensitive givingfasthydrolysistoAPOandtothecorrespondingamidesand releasingTFA.Intheabsenceofwater,AcP-TFAandAcA-TFAreact almostquantitativelywithAPOtoAPO-TFAand/ortoacetanilide and acetaminophen. Furthermore,AcP-TFA and AcA-TFAin the presenceof4-HAPOmediateitsrearrangementtoacetaminophen also at 298K (see Table 2). This explains the trend of Fig. 2, wherenointermediatesareobservedbutonlyAPOconsumption andacetanilideformationduetothehydrolysisofthe interme-diatesduringHPLCanalysis.Startingfromtheseresultsitisclear

0.00280 0.00285 0.00290 0.00295 0.00300 0.00305 0.00310 -0.018 -0.016 -0.014 -0.012 -0.010 -0.008 TC = -53 kcal mol-1 TC = -32 kcal mol-1 R ln r0 , ( kc al K -1 mo l -1 ) T-1, ( K-1) TC = -20 kcal mol-1

Fig. 3.Arrhenius plot of initial rate from Beckmann rearrangement from 4-HAPO in nitroethane. Run conditions: molar ratio TFA/substrate=10, nitroethane/substrate=100,TFA=13.2mmol.

thataprecisequantificationofreactionintermediatescannotbe obtained,sincethermalrearrangementandhydrolysisalter signif-icantlytheirdistributionvs.time.Thisbehaviorsuggeststhatthe formationofthetrifluoroacetylated-amideintermediateisthekey stepintherearrangementofbothoximesinagreementwithour previousinvestigation[26–29].

In addition, the reactivity of the trifluoroacetylated amides allowsproductsrecoverywithoutwork-upoperations,whichare converselyindispensableinthepresenceofmineralacids[26–29]. 3.3. EffectoftemperatureontheinitialrateofBeckmann

rearrangementinnitroethaneasasolvent

Theeffectofthetemperatureoninitialratesofrearrangement of 4-HAPOis reported in Fig.3. The Arrheniusplot of 4-HAPO rearrangement(Fig.3)showsanoticeablenonlineartrend,thus suggestingacomplexreactionpath,whichisinagreementwith themultistepmechanismproposedintheprevioussection.From anestimateofthetemperaturecoefficient(TC),calculatedby divid-inginzonesthecurveoftheArrheniusplot,itappearsvaluesofTC rangingfrom20to50kcalmol−1.Thisconfirmsthatseveralstages influencetheoverallkinetics, thusthevariationoftemperature causesthechangesoftheactivationenergyoftheratedetermining step.

Atdifferenceofwhatobservedfor4-HAPO,theinitialrateof theBeckmannrearrangementofAPOislinear(seesupplementary materials).ApparentlythisdisagreeswiththeresultsofFig.1(b), whichshowstheformationofseveralintermediates.Thevalueof theTCofabout20kcalmol−1issimilartothatmeasuredfor4-HAPO athighertemperaturesandispracticallythesamewithrespectto thatmeasuredinmineralacid[38–41].

3.4. Effectofsubstrateconcentrationontheinitialrateof Beckmannrearrangementinnitroethaneasasolvent

Fig.4reportstheinfluenceofthesubstrateconcentrationon theinitialrateofBeckmannrearrangementof4-HAPOandAPO. Asexpectedinbothcases,theinitialrateofreactionincreasesas substrateconcentrationraise.Apowerlowequationrate satisfac-torilyfitexperimentaldatabecauseofthelinearityofthedouble logarithmicplot(seesupplementarymaterials)andthecalculated

(6)

Table2

Stabilityofthereagentsandintermediatesafter60minofreactionsundervariousconditions.

Compoundtested Stabilityundervariousconditions Reagent

Liquid298K Liquid343K GasGC533K APO343K 4-HAPO343K H2O298K

Yield%

4-HAPO NR Est/Rea Decb / / Hyc/Re=1/2

APO NR Est/30 NR / / Hyc=1

4-HAPO-TFA Re=100 Re=100 Decb / / /

APO-TFA NR Re=30 Re=70 / / Hy=100d

AcP-TFA NR NR Decb Ex/Re=100/30 Ex/Re=100/40 Hy=100e

AcA-TFA NR NR NR Ex=100 Ex/Re=100/40 Hy=100e

Runconditions:solventCH3CN,reactionvolume10mL,TFAconcentration0.1molL−1,TFA/substrate=1,substrate/reagent=1.

Est=esterification,GasGC=GCinjector,Re=rearrangement,Dec=decomposition,NR=noreaction,Ex=exchange,Hy=hydrolysis.

aViaNMR.

b Tracesoftrifluoroacetylatedcompoundsareobservedbutextensivedecompositionoccursduetothepoorthermalstabilityofphenolsandaminophenols. c Hydrolysistoketone.

d Hydrolysistooxime. eHydrolysistoamide

reactionordersare0.7and0.6for4-HAPOandAPO,respectively.A nonintegerreactionordersuggeststhattherearesomestepsthat influencetheratedeterminingstepofthereaction[42,43].Thisis evidentfortherearrangementofAPO,whosetimevs. concentra-tionprofile(Fig.1(b))showssomeintermediates.Forinstance,the formationofAPO-TFA,whichisanester,isastepwhose contribu-tioneasilyexplainsanonintegerreactionorder[42,43].Itislikely thatalsofor4-HAPOrearrangementthekineticsshouldbe influ-encedbyanalogousesterificationandprotonationequilibria,thus explainingthenonintegerreactionorderandthevariationofthe TCwithtemperature.

3.5. InfluenceofTFAontheinitialrateofBeckmann rearrangementinnitroethaneasasolvent

InTable3theinfluenceoftheTFA/substrateratioonconversion andselectivityafter18hofreactionisreported.Itisnoteworthy thatataratiohigherthan3theconversionispractically quantita-tiveandselectivityisashighas95%inthedesiredamideandonly atTFA/substrateratioof1ketoneformationoccursnoticeably.The reasonofsuchabehaviorislikelyduetotheesterificationequilibria oftheoxime,whichisfavoredatthehighestTFA/substrate.

InFig.5thetrendoftheinitialrateofrearrangementof4-HAPO andAPOvs.theconcentrationofTFAisreported.

In both cases the trend of theinitial rateof rearrangement increaseswithrespecttoTFAconcentrationupto2molL−1.AtTFA

concentrationshigherthan2molL−1,therateofrearrangement of 4-HAPOreachesa plateauand after 2.5molL−1 alsoa slight decreasecanbenoted.AnalogoustrendisobservedalsoforAPO, withaconstantincrease till3.2molL−1,athigherconcentration two phases is observed. It is likely that, as already observed for the Beckmann rearrangement of cyclohexanone oxime in TFA–CH3CN,protonation,esterificationandexchangebetweenthe

trifluoroacetylatedamideandthestartingoxime,areallreactions affectingtheoverallreactionrate[26–29].

3.6. BeckmannrearrangementinTFAascatalystandsolvent Fig.6showsthetimevs.concentrationprofilesregardingtothe Beckmannrearrangementof4-HAPOandAPO,respectively, cat-alyzedbyneatTFA,whichactsalsoasthesolvent.Bothreaction profilesaresimilartothoseobservedinthepresenceofnitroethane asasolvent(seeFig.1), excepttheabsenceofacetophenoneas byproduct,fortherearrangementofAPO,whichcausesafurther increaseoftheselectivitytowardtheacetanilide(seeFig.6(b)). Thesamebehaviorofthereactioncarriedoutinthepresenceof nitroethane(Fig.2)isobservedbyanalyzingthesamplesviaHPLC (seesupplementary)inwhichnointermediatesareobservedfor APOrearrangement.Thisisinagreementwithwhatalready dis-cussed in Section 3.2 suggesting that HPLC analysiscausesthe hydrolysisofthetrifluoroacetylatedintermediates(4-HAPO-TFA andAcP-TFA)alsointhecaseof4-HAPO.

Fig.4.Influenceof4-HAPO(a)andAPO(b)concentrationontheinitialrateofBeckmannrearrangementof4-HAPOinnitroethane.Runconditions:reactiontemperature 343K,molarrationitroethane/TFA=10,TFA=13.2mmol(14mmolforAPO).

(7)

Table3

InfluenceoftheTFA/substrateratio.

Entry TFA/substrate 4-HAPO APO

Conv.a(%) Selectivity(%) Conv.a(%) Selectivity(%)

Amide Ketone Othersb Amide Ketone Othersc

1 1 64 29 70 1 55 5 75 20 2 1.5 90 51 31 18 84 27 60 13 3 2 99 76 14 10 91 46 20 14 4 3 99 95 3 2 99 94 3 3 5 5 99 98 / 2 99 96 / 3 6 10 99 99 / 1 99 98 / 2

Runconditions:solventCH3CH2NO2,reactionvolume10mL,TFAconcentration0.1molL−1,T=353K,timeofreaction18h. aOximeconversion.

bCondensationproducts.

c Othersaremainlytrifluoroacetylatedamideandketoxime.

3.7. EffectoftemperatureoninitialrateofBeckmann rearrangementinTFA

The trend of the Arrhenius plot of the initial rate of rearrangementof4-HAPOandAPOaresimilarofthoseobtained innitroethane(seesupplementarymaterials),withanonconstant valueoftheTCfor4-HAPOcomprisedbetween7and30kcalmol−1. Asalreadypointedoutforthereactioncarriedinthepresenceof

nitroethaneasasolvent,thisbehaviorsuggestsacomplexreaction path,whereseveralstagesinstationarystateareinvolved.Thenon homogeneousvaluesoftheTCforAPOrearrangementarefurther evidencesthatthereactionismultistepwithequilibria[42,43].

ThevalueofTCfortherearrangementof4-HAPOinneatTFAis lowerthanthatobservedinthepresenceofnitroethane, suggest-ingastabilizationeffectoftheactivatedstateinthepresenceof neatTFA.TheTCforAPOrearrangementispracticallythesame

Fig.5.InfluenceofTFAconcentrationontheinitialrateofBeckmannrearrangementof4-HAPO(a)andAPO(b)innitroethaneasasolvent.Runconditions:reaction temperature363K,molarrationitroethane/TFA=10,nitroethane/substrate=100,TFA=13.2mmol(14.0mmolforAPO),molarrationitroethane/substrate=100.

a

0 25 50 75 100 125 0 25 50 75 100 Sp eci es , ( mo les %) Time, (min)

b

0 50 100 150 200 250 0 25 50 75 100 Sp ec ies, ( mo les %) Time, (min)

Fig.6. Timevs.concentrationsprofileoftheBeckmannrearrangementof4-HAPO(a)andAPO(b)inneatTFA.Runconditions:reactiontemperature343K,molarratio TFA/substrate=10,TFA=33.1mmol.In(a):()=4-HAPO,(䊉)=AcP;in(b):()=APO,()=AcA-TFA,()=APO-TFA,(䊉)=acetanilide.

(8)

Table4

InfluenceoftheTFA/substrateratio.

Entry TFA/substrate 4-HAPO APO

Conv.a(%) Selectivity(%) Conv.a(%) Selectivity(%)

Amide Ketone Othersb Amide Ketone Othersc

1 1 66 70 29 1 56 8 16 62 2 1.5 99 85 3 12 99 58 2 40 3 2 99 94 2 4 99 93 2 5 4 3 99 96 2 2 99 95 2 2 5 5 99 98 / 2 99 98 / 2 6 10 99 99 / 1 99 99 / 1

Runconditions:substrate1mmolT=353K,timeofreaction18h.

aOximeconversion. b Condensationproducts.

c Othersaremainlytrifluoroacetylatedamideandketoxime.

of that measured in the presence of nitroethane as a solvent (TF=21kcalmol−1).

3.8. Effectofsubstrateconcentrationontheinitialrateof BeckmannrearrangementinTFA

InTable4theinfluenceoftheTFA/substrateratioonconversion andselectivityafter18hofreactionisreported.Asinthepresence ofnitroethaneasasolventataratiohigherthan3theconversion ispracticallyquantitativeandwithamidesselectivityhigherthan 95%.

InFig.7arereportedtheinitialrateof4-HAPOandAPO.Fig.7 shows in both cases an increasing trend of the initial rate of rearrangementastheconcentrationofsubstrateraise.Asregard 4-HAPO,thepowerlawkineticsgivesagoodfitofthe experimen-taldatawithareactionorderof1.72(seesupplementarymaterials), atdifferenceofwhatobservedinnitroethaneasasolvent,where thekineticsshowsareactionorderlowerthan1(0.72).This behav-iorislikelyduetothesolventeffectontheequilibria(forinstance protonationand/oresterificationofoxime)inwhichthesubstrate isinvolved,andnotfromachangeofreactionmechanismforthe absenceofthesolvent[42,43].

Fig.7(b)reportsthetrendofinitialrateofrearrangementvs. APOinitialconcentration;thepowerlawkineticsfitsthedata giv-inganoverallreactionorderofabout1.78,whichisalsointhis casegreaterthan1.Inthisway,thereactionorderisincreasedof anunitycomparedtothatmeasuredinthereactioncarriedoutin nitroethane.Alsointhiscase,asolventeffectislikelyactingonthe variousequilibriapresentinthereactionenvironment[35,42,43].

3.9. Hypothesisonreactionmechanismandreactivityofthe intermediates

The reaction path for APO rearrangement is clearly via the intermediatesAPO-TFAandAcA-TFA,whichareevidencedinthe reactionmixture (Figs. 1(b)and 6(b))and isolated(see supple-mentary).Inadditions,thereactivityoftheintermediatessuggests theactiveroleofTFAasorganocatalystbeingtheessential com-ponentintheirformationandnotonlytheprotondonor.Inany case,areactionpathviaapurelyBrønstedacidcatalysiscannot becompletelyruledoutbeingtheoximeeasilyprotonatedinthis rangeofacidity[38,39].Inaddition,theFT-IRspectraofthe 2,4,6-trimethylacetophenoneoximeinthepresenceofTFAat298Kdo notshowformationofnitriliumion(seespectrainsupplementary materials),whichisobservedinstrongmineralacidunderthesame conditionswiththisoxime[38–41].

The induction period in the acetanilide formation is a fur-therevidencethat a Brønsted acidcatalysisfor APOBeckmann rearrangementispoorlyprobable.Asamatteroffact,protonation isafastreaction,andthenitdoesnotexplaintheinductionperiod observedinacetanilideformation.Onthecontrary,theexplanation ofaninductionperiodcouldbeconnectedwiththeformationofa longlivingintermediate,whichretardstheconversiontothefinal product[42,43].Anotherpossibleexplanationofthelong induc-tionperiodcouldberelatedtoanautocatalyticphenomena[42,43]. For thesereasonsit is morelikely that theinductionperiod in acetanilideformationiscausedbytheneedsofformingAcA-TFA, whichistheintermediatethatclosethecatalyticcycle(Scheme2). Theseevidencessuggestareactionmechanism(Scheme2),which

(9)

Scheme2. MechanismoftheBeckmannrearrangementcatalyzedbyTFA.

isinagreementwiththatproposedforthecyclohexanoneoxime andincludingthefollowingsteps:

(i)APO reacts with TFA to give the ester APO-TFA (equilib-rium)[26–29].Thiscompoundhasahighlyelectrondeficient nitrogenatom,thusallowingeasyBeckmannrearrangement [38–41].

(ii)APO-TFArearrangestoAcA-TFA(irreversible)[38–41]. (iii)AcA-TFAreactswithAPOtogiveacetanilideplusAPO-TFAand

withwatertogiveTFAplusacetanilide.

Unfortunately,itisnotpossibleastraightparallelismbetween the reactivity of 4-HAPO with that of APO, since the time vs. concentration profileof theformer present apparently no evi-dentintermediates,thenitdoesnotallowanydirectcomparison. However,asalreadypointedoutinSection3.2,theabsenceof inter-mediatesisduetotheirhydrolysisduringsamplespreparationfor carryingoutHPLCanalysis.4-HAPOrearrangementhasbeen fol-lowedbyNMRinCDCl3 anditshowscomplexreactionpattern,

whereseveralintermediatesareobserved,butasureidentification oftheseintermediatesisnotpossible(seesupplementary materi-als).Inaddition,thereactivityofAPOand4-HAPOwithAcP-TFA givesalmostinstantlyatroomtemperatureexchangereactionto acetanilideplusacetaminophenanda furtherrearrangementto acetaminophenisobservedfor4-HAPO(seeTable2).Startingfrom theseevidences,eventhough,AcP-TFAhasnotbedirectlyobserved duringthereaction,itislikelythatAcP-TFAcouldbeinvolvedin 4-HAPOrearrangement,thussuggestingtofollowthesame mecha-nismproposedforAPO(Scheme2).Fig.8reportssomeNMRspectra

relatingthetransformationof4-HAPOintrifluoroaceticanhydride toAcP-TFA.

AtdifferenceofAPO-TFA,wearenotabletoisolate 4-HAPO-TFA(seeTable2),buttheNMRspectraofthereactionof4-HAPO withtrifluoroaceticanhydrideat298KinDMSOgivessome use-fulinformation.Forinstance(seespectra3–4),inthepresenceof 0.3and0.7equiv.oftrifluoroaceticanhydride(withrespecttothe 4-HAPO)itappearstwospecies:AcP-TFAandthesecondonehas thesamespectrumofthe4-HAPOinthepresenceofTFA (com-parewithspectrum2).Increasingto0.9equiv.oftrifluoroacetic anhydride,thesignaloftheAcP-TFAremainspracticallytheonly one(comparewithspectra5and6).Itisnoteworthyto remem-berthatthereactiondoesnotoccurinthepresenceofTFAand inDMSOasasolvent(seeTable1),butisfastinthepresenceof trifluoroaceticanhydrideat298K,too.Itislikelythatacharged intermediate isnot necessary,inthepresence oftrifluoroacetic anhydride,sinceitisaquitestrongneutralelectrophilewhose reac-tivityislessinfluencedbysolventpolarity[35].Thisbehavioris inagreementwiththeformationofaneutralintermediatesuchas theester(forinstanceAPO-TFAand/or4-HAPO-TFA),which under-goesrearrangementwithouttheinvolvementofanacidcatalysis. ThepresenceofthestronglysolvatingDMSOorDMCstabilizesthe protonatedoximes,whicharenotinvolvedinthecatalyticprocess. ThecomplexbehavioroftheTCisaclearevidencethatthe4-HAPO rearrangementfollowsamultistepmechanism,sincethis behav-iorcannotbeexplainedmerelyintermsofaBrønstedacidcatalysis [42,43].Themultisteporganocatalyzedreactionmechanism,which isevidentforAPO,explainswithoutcontradictionsalsothe reactiv-ityof4-HAPO,ofAcP-TFAandthecomplexbehavioroftheTC,for

(10)

Fig.8.1HNMR((CD

3)2SO,200MHz)spectrarelatingthetransformationof4-HAPOinthepresenceoftrifluoroaceticanhydride(ATF)andTFAandthecomparisonwith

AcP-TFAandacetaminophen(AcP)inthepresenceofTFA.

thisreasons,itappearsmorelikelythantheBrønstedacidcatalyzed path.

4. Conclusions

TheuseofTFAinthesynthesisofparacetamolandacetanilide withrespecttothetraditional processeswhichemploymineral acidorthionylchloridepresentsthefollowingbenefits:

i.lowertoxicity;

ii. easierseparationofreactionmixtureandrecyclablesolvent; iii.TFAmaybeusedpureorincombinationwithotheraqueousor

notaqueoussolvent.

Besides,thenewfeaturesofthesyntheticprocedure,we pro-poseareactionpathwaywhereTFAactsasanorganocatalystby formingtheoximeester,whichrearrangetothecorresponding tri-fluoroacetylamide,beingthelatter,inturn,responsibleforthe trifluoroacetylationoftheoxime,closing thecatalytic cycleand

givingfinallythedesiredamide.Thisreactionmechanismseemsto bequiteevidentforAPO,butbytakingintoaccountthebehavior oftheTC,thereactivityof4-HAPOintrifluoroaceticanhydrideand thatofAcP-TFA,suchpathwaycouldbereasonablyextendedalso toacetaminophenformation.

Acknowledgements

FinancialsupportbyCa’FoscariUniversityofVeniceisgratefully acknowledged(ADIRfund2011).AspecialthanktoMr.Claudio Tortatoforthehelpfuldiscussions.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.apcata. 2013.12.026.

(11)

References

[1]M.S.C.Mitchell,R.H.Waring,Aminophenols,Ullmann’sEncyclopediaof Indus-trialChemistry,sixthed.,WileyVCH,1998.

[2]K.G.Davenport,C.B.Hilton,USPatent4,524,217AtoCelaneseCo.(1985). [3]J.R.Fritch,O.S.Fruchney,T.Horlenko,D.A.Aguilar,C.B.Hilton,P.S.Snyder,W.J.

Seelinger,USPatent5,155,273toHechst-CelaneseCo.(1992). [4]http://www.dsir.gov.in/reports/techreps/tsr131.pdf

[5]F.R.Lawrence,W.J.Marshall,Aniline,Ullmann’sEncyclopediaofIndustrial Chemistry,sixthed.,WileyVCH,1998.

[6]G.Petrini,G.Leonfanti,M.A.Mantegazza,F.Pignataro,P.T.Anastas,T.C. Wil-iamson,GreenChemistry.DesigningChemistryfortheEnvironment,American ChemicalSociety,Washington,DC,1996,pp.33.

[7]L.Forni,G.Fornasari,F.Trifirò,A.Aloise,A.Katovic,G.Giordano,J.B.Nagy, MicroporousMesoporousMater.101(2007)153–160.

[8]W.F.Holderich,G.Dahloff,H.Ichihashi,K.Sugita,USPatent6,531,595B2to SumitomoChemicalCompany(2003).

[9]L.DeLuca,G.Giacomelli,A.Porcheddu,J.Org.Chem.67(2002)6272–6274. [10]J.K.Augustine,R.Kumar,A.B.Ashis,B.Mandal,TetrahedronLett.52(2011)

1074–1077.

[11]L.S.Roselin,R.Selvin,P.Aneesh,M.Bououdina,S.Krishnaswamya,Kinet.Catal. 52(2011)823–827.

[12]N.R. Shiju,H.M.Williams, D.R.Brown,Appl.Catal.B:Environ.90 (2009) 451–457.

[13]X. Liu,L. Xiao,H.Wua,Z.Li, J. Chen,C.Xia, Catal.Commun. 10 (2009) 424–427.

[14]Y.M.Chung,H.K.Rhee,J.Mol.Catal.A:Chem.159(2000)389–396. [15]Y.M.Chung,H.K.Rhee,J.Mol.Catal.A:Chem.175(2001)249–257. [16]M.J.Climent,A.Corma,S.Iborra,J.Catal.233(2005)308–316.

[17]M.Ghiaci,H.Aghaei,M.Oroojeni,B.Aghabarari,V.Rives,M.A.Vicente,I. Sobra-dos,J.Sanz,Catal.Commun.10(2009)1486–1492.

[18]A.Zicmanis,S.Katkevica,P.Mekss,Catal.Commun.10(2009)614–619. [19]K.Ishihara,J.Patent2006219470(A)toNagoyaUniversity(2006).

[20]H.P.Krimmer,M.Roos,S.Schauhoff,M.Trageser, EvonikDegussaGmbH EP2013162A1(2009).

[21]N.Kaur,P.Sharma,D.Kishore,J.Chem.Pharm.Res.4(2012)1938–1946.

[22]Physicalconstantsoforganiccompounds,in:D.R.Lide(Ed.),CRCHandbookof ChemistryandPhysics,CRCPress,BocaRaton,2005,p.3-456.

[23]J.C.Boutonnet,P.Bingham,D.Calamari,C.deRooij,J.Franklin,T.Kawano,J.-M. Libre,A.McCul-loch,G.Malinverno,J.MartinOdom,G.M.Rusch,K.Smythel,I. Sobolev,R.Thompsonn,J.M.Tiedje,Hum.Ecol.Risk.Assess.5(1999)59–124. [24]S.His,C.Meyer,J.Cossy,G.Emeric,A.Greine,TetrahedronLett.44(2003)

8581–8584.

[25]M.Hashimoto,Y.Obora,Y.Ishii,Org.ProcessRes.Dev.13(2009)411–414. [26]N.C.Marziano,L.Ronchin,C.Tortato,A.Vavasori,M.Bortoluzzi,J.Mol.Catal.A:

Chem.290(2008)79–87.

[27]L.Ronchin,A.Vavasori,M.Bortoluzzi,Catal.Commun.10(2008)251–256. [28]L.Ronchin,A.Vavasori,J.Mol.Catal.A:Chem.313(2009)22–30.

[29]L.Ronchin,M.Bortoluzzi,A.Vavasori,J.Mol.Struct.:THEOCHEM858(2008) 46–50.

[30]J.Zhang,G.Luo,L.V.Yangcheng,K.Wang,CNPatent102895969toTsinghua University(2013).

[31]G.Zhang,X.Wen,Y.Wang,W.Mo,C.Ding,J.Org.Chem.76(2011)4665–4668. [32]S.Prateeptongkum,I.Jovel,R.Jackstell,N.Vogl,C.Weckbecker,M.Beller,Chem.

Commun.(2009)1990–1992.

[33]L.Liu,J.Hu,X.C.Wang,M.J.Zhong,X.Y.Liu,S.D.Yang,Y.M.Liang,Tetrahedron 68(2012)5391–5395.

[34]C.L.Allen,A.R.Chatwal,J.M.J.Williams,Chem.Commun.48(2012)666–668. [35]C.Reichardt,SolventsandSolventEffectsinOrganicChemistry,seconded.,

VCH,Weinheim,1988,pp.79.

[36]J.H.Smith,J.H.Heidema,E.T.Kaiser,J.Am.Chem.Soc.94(1972)9276–9277. [37]D.J.Bowden,S.L.Clegg,P.Brimblecombe,Chemosphere32(1996)405–420. [38]M.I.Vinnik,N.G.Zarakhani,Russ.Chem.Rev.36(1967)51–64.

[39]N.C.Marziano,C.Tortato,L.Ronchin,O.Tonon,R.Bertani,Int.J.Chem.Kinet. 36(2004)417–425.

[40]M.T.Nguyen,G.Raspoet,L.G.Vanquickenborne,J.Am.Chem.Soc.119(1997) 2552–2562.

[41]B.J.Gregory,R.B.Moodie,K.Schofield,J.Chem.Soc.B(1970)338–345. [42]K.J.Laidler,ChemicalKinetics,seconded.,McGraw-Hill,NewYork,1965,pp.

321.

[43]J.B.But,ReactionKineticsandReactorDesign,seconded.,MarcelDekker,NY, 2000,pp.169.

Riferimenti

Documenti correlati

Summary: In Italy, due to guidelines issued by the Ministry of Health and to the new code of medical deontology, the role of physicians becomes a part of a complex strategy of

IC-CCU, Bari, 5 th and 6 th of December 2019 Paolo Sonzini, Università degli studi di Milano paolo.sonzini@unimi.it. IC-CCU, Bari, 5 th and 6 th of

An truly active and comprehensive participation inspired by a balanced and integral interpretation of the principle of Common but Differentiated Responsibility

The comparison between the two curves As regard to point (iii), in order to verify whether clearly indicates that the protonated substrate achieves mandelic acid,

Because of the variety of the feedstock, these properties change form production to production but, knowing their typical behaviour inside the reactor, it is possible

Il nostro studio ha preso in esame pazienti anziani sottoposti a intervento chirurgico per frattura del femore prossimale con lo scopo di valutare se i

Dato che l’espulsione di meconio avviene una volta raggiunta la maturazione del feto, si tratta di una condizione più comune nei neonati a termine e post-termine, soprattutto se in

Hydrometeor number size distributions are measured upstream and downstream of the droplet evaporation unit using two WELAS 2500 aerosol sensor systems (white- light