• Non ci sono risultati.

The Ultimate Ge Array: γ-ray tracking & PSA AGATA & GRETA

N/A
N/A
Protected

Academic year: 2021

Condividi "The Ultimate Ge Array: γ-ray tracking & PSA AGATA & GRETA"

Copied!
83
0
0

Testo completo

(1)The Ultimate Ge Array: γ-ray tracking & PSA AGATA & GRETA FAIR SPIRAL2 SPES REX-ISOLDE MAFF EURISOL HI-Stable ACS arrays. § § § § § . Low intensity High background Large Doppler broadening High counting rates High γ-ray multiplicities. Harsh conditions! Need instrumentation with. efficiency. composite detectors. Single detectors. High efficiency High sensitivity High throughput Ancillary detectors. Conventional arrays will not be enough!.

(2) Present Arrays. Large HpGe & Anti-Compton shields. ε ∼ 10 — 5 % ( Mγ=1 — Mγ=30). Future Arrays Segmented Ge’s Tracking & PSA. ε ∼ 40 — 20 % ( Mγ=1 — Mγ=30). By removing ACS it is possible to increase the Ge solid angle. Ideal pure Ge shell:. . εph~ 60% N=1000. to distinguish simultaneous γ’s (Mγ ~ 20). Prohibitive costs !!!. Tracking array: Identify and track the interactions of all γ’s even if several interact in one detector ⇒ construction of array of 100 highly segmented Ge’s.

(3) From conventional arrays to γ-ray tracking Compton Shielded Ge. εph Ndet. ~ 10% ~ 100. Ω ~40%. θ ~ 8º. Ge Shell. εph. Ndet. ~ 50% ~ 1000. θ ~ 3º. Ge Tracking Array εph Ndet. ~ 50% ~ 100. Ω ~80%. θ ~ 1º. Efficiency is lost due to the solid angle covered by the shield; poor energy resolution at high recoil velocity because of the large opening angle Using only conventional Ge detectors, too many detectors are needed to avoid summing effects and keep the resolution to good values. The proposed solution: Use the detectors in a non-conventional way!. AGATA and GRETA.

(4) Principle. Information on position of interactions is used to - reconstruct time order sequence - original γ direction - γ-ray energy. full tracking of γ-rays.

(5) Interaction of photons in germanium Mean free path determines size of detectors: λ( 10 keV) λ(100 keV) λ(200 keV) λ(500 keV) λ( 1 MeV) λ( 2 MeV) λ( 5 MeV) λ(10 MeV). ~ 55 µm ~ 0.3 cm ~ 1.1 cm ~ 2.3 cm ~ 3.3 cm ~ 4.5 cm ~ 5.9 cm ~ 5.9 cm. typical segment size. d x R 1.5 cm x 3.6 cm. R d.

(6) Tracking Principle determination of individual γ-rays interactions and scattering sequence in time order NOT possible with timing measurements: interaction distance: d ~ 1 mm-1 cm interval between interactions: t = d/(c/√εrµr) ~ (10-2-10-3m)/(3x108/(√16x100) m/s) =0.1-1.2 ns Ge time resolution:. τ ~ 5 ns. >> t. ⇒ individual interactions are seen in coincidence. Solution: reconstruction of interaction path via tracking algorithms based on. i) Compton scattering (dominant process), ii) pair production and iii) photoelectric interaction. 3! = 6 permutations. Required position resolution: 1-2 mm. exact sequence is determined by Compton scattering laws. & Required energy resolution : 2-3 keV. Position resolution is achieved with Pulse Shape Analysis.

(7) Ingredients of Gamma Tracking 1 Highly segmented HPGe detectors. Identified interaction points (x,y,z,E,t)i. 4 Reconstruction of tracks evaluating permutations of interaction points. · ·. 2 Digital electronics to record and process segment signals. Pulse Shape Analysis to decompose recorded waves. 3. Reconstructed gamma-rays.

(8) Pulse Shape Analysis (PSA) The charge collection process induces signals with Shapes & Amplitude depending on the interaction point detailed study of preamplifier signals particularly the leading edge, which carries information on the charge collection time tc. V(t). Vmax=Q/C. tc << RC.

(9) Th. Kröll, NIM A 463 (2001) 227. Pulse Shape Analysis (PSA). Analysis of amplitude & shape of recorded signals in each segment allows to determine the 3-dimentional position of interaction point Procedure:. • • •. • •. • •. •. • •. •. •. •. •. •. •. •. •. net charge signals (Q≠0). 1. The charge collection process induces signals with Shapes & Amplitude depending on the interaction point. *. transient signals (Q=0). 2. Shapes & Amplitudes can be calculated rather well using finite elements analysis 3. Genetic algorithms are used to determine points of interactions with ~2 mm precision. Digital electronics is needed to sample preamplifiers signals with fast ADC (100 MHz, 14 bits). •. •. •. •. •. •. •. Only the subset of samples relative to the leading edge is transferred to ACQ tc. •. leading edge signals from PREAMP. V(t). Vmax=Q/C. tc << RC.

(10) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. (10,10,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(11) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. (10,15,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(12) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. (10,20,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(13) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. (10,25,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(14) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. (10,30,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(15) Pulse  Shape  Analysis  concept   A3. A4. A5. B3. B4. B5. C3. C4. C5. Result of Grid Search Algorithm. (10,25,46) y. CORE. C4. measured calculated. 791 keV deposited in segment B4. B4. D4. A4 E4. F4. z = 46 mm. x.

(16) Digitization of electronic signals digitizing, or digitization, is the process of turning an analog (continous) signal into a digital representation of that signal (sequence of integers). way of storing signals in a form suitable for transmission and computer processing. Digital signal:. Analog signal:. discrete variable (sequence if integers). continous variable. low sample frequency. Analog to digital conversion Precision in digitization: § sample frequency § bits used to represent the integer tc. ~100 ns. tc = 100 ns = 10-7s Sample frequency ~ 100 MHz 14 Bits = 214 = 16384. high sample frequency. V(t). ~50 µs. Vmax=Q/C. Analog signal tc << RC. from Ge detector pre-amplifier.

(17) γ-ray tracking A high multiplicity event. Given the interaction points (PSA) one has to identify the sequence of interactions points belonging to each individual photon. Eγ=1.33MeV, Mγ=30. in ideal Ge shell Basic formula is Compton scattering. Tough problem!. especially for high-multiplicity events. Tracking methods 1 – Cluster (forward) tracking World map. 2 – Backtracking 3 – Other approaches (fuzzy tracking, etc.).

(18) Reconstruc5on  of  0.1÷10  MeV  gammas    . MC  simula5on  of  a  high-­‐mul5plicity  event  . Efficiency  depends  on  posi5on  resolu5on  . Mγ = 30. Position resolution (FWHM, mm).

(19)

(20) Cluster tracking. (G.Schmid, 1999; mgt implementation by D.Bazzacco, Padova). 1. Create cluster pool => for each cluster, Eγ0 = ∑ cluster depositions 2. Test the 3 mechanisms. 1. do the interaction points satisfy the Compton scattering rules ?. χ. 2. 2 ⎛ E γ' − EPos ⎞ γ' ⎟ ≈ ∑ Wn ⋅ ⎜⎜ ⎟ E n =1 γ ⎝ ⎠ n N −1. 2. does the interaction satisfy photoelectric conditions (e1,depth,distance to other points) ? 3. do the interaction points correspond to a pair production event ?. E1st = Eγ – 2 mec2. 3. Select clusters based on. χ2.

(21) Backtracking. (J. Van der Marel et al., 1999). Photoelectric energy deposition is approximately independent of incident energy and is peaked around 100-250 keV. 83% 87%. ⇒ interaction points within a given deposited energy interval (emin < ei < emax) will be considered as the last interaction of a fully absorbed gamma. ⇒ trace back the interaction path on basis of Compton , ….

(22) Benefits of γ-ray tracking (Doppler Correction). v/c = 20 %. 2. ⎛ v ⎞ 1 − ⎜ ⎟ ⎝ c ⎠ Eγ = Eγ 0 v 1 − cosθ c. recoil. scarce. Doppler correction capability. Definition of the photon direction. Detector. Segment. Pulse shape analysis + tracking γ. good Energy (keV).

(23) In-beam test of PSA: MARS detector. (6x4+1) segments. Coulex. of 56Fe at 240 MeV on 208Pb, v = 0.08c MC limit assuming 5 mm FWHM position resolution: 4.2 keV. E. =E. Lab γ. FWHM 6.3 keV. FWHM 16.5 keV. recoil CM γ. FWHM 4.5 keV. 1 − βcos(θ) 1− β2. Corrected using points determined with a Genetic Algorithm Corrected using center of segments. à 24 detectors with Δθ ≈ 9° Corrected using center of crystal. à one detector with Δθ ≈ 22°. Eγ (keV). Position resolution  5 mm FWHM Similar result from an experiment done with the GRETA detector.

(24) Doppler Correction Capability, “large” v/c inelastic scattering 17O @ 20 MeV/u on 208Pb. Recoils detected in TRACE F   O  . 16O   No  Doppler  Corr.   Crystal  Centers   Segment  Centers   PSA+Tracking  . dE  (MeV)  . N  . v/c 20%. C   B   Be   Li  . α. F.  Crespi,  Milano  . TKE  (MeV)  .

(25) Arrays of segmented Ge detectors (for Doppler correction). EXOGAM segmented clovers with 4x4 fold segmentation. MINIBALL triple-clusters with 6 and 12 fold segmentation Segmented Germanium Array (SeGA) with 32-fold segmentation.

(26) based on position sensitive Ge. AGATA. Advanced Gamma Tracking Array. 192 segmented Ge detectors (36 segments each) ⇒ 6780 segments 180 hexagonal Ge in 60 triple clusters 12 pentagonal Ge. AGATA 25. FWHM (keV). 2.5 tons Rinner = 17 cm, Router = 26 cm Ω ≈ 77% ε ≈ 40% (Mγ=1), 20% (Mγ=30) P/T ≈ 65% (Mγ=1), 50% (Mγ=30) FWHM ≈ 1 keV (1 MeV, source) ≈ 6 keV (1 MeV, v/c ≈50%) instead of 40 keV at present !!. 20 15 10 5 0 5. Count rate ~ 3 MHz - 300 kHz. 15. 25. 35. 45. v/c (%). § Digital electronics (to record and process segments signals) § Pulse Shape Analysis (to extract position and energy of interaction) § Tracking Analysis (to reconstruct γ-rays tracks from interaction points). Construction ≈ 8 y, Cost ≈ 40 M€.

(27) Tracking array performances absolute efficiency. Ωε. AGAT A/GRE TA. comparable with scintillators arrays. n vs. γ discrimination ? possibly from different clustering of signals. Calculations for 1 γ ray and NO tracking. Event rates will be increased by factor 20: ~ 3 MHz (Mγ = 1) - 300 kHz (Mγ = 30). as a consequence of shorter processing time & increased number of segments.

(28) AGATA/GRETA Prototypes. Encapsulation 0.8 mm Al walls 0.4 mm spacing. MINIBALL-style cryostat used for acceptance tests “standard” preamplifiers. 36-fold segmented, encapsulated detector.

(29) AGATA Cryostats. Individual, for tests. Köln September 2005: 10Triple-cluster test. Triple, for experiments. differential-output preamplifiers with fast reset of saturated signals (Milano/Ganil, Köln).

(30) AGATA detector scanning. Full scan in 1 mm3 grid almost impossible à define characteristic points to calibrate calculations.

(31) Liverpool coincidence setup with multileaf collimator Other system being developed at CSNSM Orsay and GSI.

(32) High Count Rate Performance • • • • . The detection efficiency of AGATA is, so far, provided by a small number of crystals. Experiments want to collect big statistics è need to run at high singles rates (> 50 kHz). Digital Signal Processing allows to work at rates “impossible” with analogue electronics. Under these “extreme” conditions, the performance of the detectors is still acceptable. 8. FWHM @ 1.3 MeV (keV). 7 60Co. - fixed. Shaping (trapezoid risetime /2.5) (us). 6. Base Line Restorer (width/4) (us). 5 4. 137Cs. – 6 positions. Two Sources Method. 3 2 1 0 0. 20. 40. 60. 80. 100. 120. 140. 160. 180. 200. Singles Rate (kHz) • A limit exists, due to pileup of the signals which exhausts the dynamical range of the FADC. Can counteract this by reducing the gain of the preamplifiers, but then energy resolution is a bit worse also at low counting rate. • However, running at high singles rates has consequences ….

(33) AGATA:  Neutron  Damage   q Flux  of  fast  neutrons  from  the  reaction  scales  with  the  counting  rate                  10-­‐15  times  more  fast  neutrons/s  than  in  the  past    . q Result:  accelerated  neutron  damage    . q Effect:                  increased  hole  trapping  .              slight  reduction  of  pulse  amplitude                à  no  significant  change  in  pulse  shape    . Energy  resolution  of  Core  is  degraded  only  slightly   Energy  resolution  of  Segments  is  degraded  significantly   Pulse  shape  analysis  is  almost  insensitive  to  neutron  damage   PSA  provides  the  information  to  correct  OFF-­‐LINE  for  this  effect    . q Real  recovery  of  neutron  damage:  ANNEALING  the  detectors                à  Risky  operation  which  can  be  delayed  by  the  PSA-­‐based  corrections  .

(34) Neutron  damage:  shape  of  the  1332  keV  line  . Blue:    April  2010  à    FWHM(core)  ~2.3  keV    FWHM(segments)  ~2.0  keV   Red:      July      2010  à    FWHM(core)  ~2.4  keV    FWHM(segments)  ~3  keV   Damage  after  3  high  counting-­‐rate  experiments    (3  weeks  of  beam  at  30-­‐80  kHz  singles)    . Worsening  seen  in  most  of  the  detectors;  more  severe  on  the  forward  crystals;  . segments  are  the  most  affected,  cores  almost  unchanged    (as  expected  for  n-­‐type  HPGe)  .

(35) Crystal  C002   April  2010  . CC   r=15mm  . SG   r=15mm  . July  2010  . CC   r=15mm  .   corrected  . SG   r=15mm  . The  1332  keV  peak  as  a  function  of  crystall  depth  (z)  for    interactions                                                  at  r                          =  15mm   The  charge  loss  due  to  neutron  damage  is  proportional  to  the   path  length  to  the  electrodes.  The  position  is  provided  by  the  PSA   (which  is  barely  affected  by  the  amplitude  loss).   Knowing  the  path,  the  charge  trapping  can  be  modeled  and   corrected  away  (Bart  Bruyneel,  IKP  Köln)  .

(36) Energy  resolution  at  the  end  of  the  LNL  campaign   Before  and  After  charge-­‐trapping  correction   cold  detectors  …  . Core   Sum  of  15  spectra   FWHM      3.2  keV    2.8  keV   FWTM      7.2  keV    5.6  keV  . OFF Line Correction. Segments   Sum  of  15*36=540  spectra   FWHM      5.5  keV      2.9  keV   FWTM    15.5  keV    6.8  keV   Eγ  (keV)  . Undamaged  detectors:  FWHM  ~2.5  keV,    FWTM  ~4.8  keV  .

(37) Real  Recovery:  Crystal  Annealing   ATC  1  detector   @LNL   Cold  . @IKP   Warm  .                    C  E2  .                    C  E2  . After  24  h  . 2.1  keV     New     detector  . courtesy  of  P.  Reiter  (IKP)     ANNEALING  . After  24  h  Annealing   segment  . segment  . 105°. After  96  h  . After  120  h   2.1  keV     New     detector  .   120  hours  of  annealing  do  not  recover  from  neutron  damage  @  1.3  MeV  .

(38) Impact on applied research - High Energy Astrophysics - Biomedical Research - National Security - Industrial non destructive asessments Medicine: ultra-low radiation (full body scan). γ-ray source loalization.

(39) The First Step:. The AGATA Demonstrator. Objective of the final R&D phase 2003-2008 1 symmetric triple-cluster 5 asymmetric triple-clusters 36-fold segmented crystals 540 segments 555 digital-channels Eff. 3 – 8 % @ Mγ = 1. Eff. 2 – 4 % @ Mγ = 30 Full ACQ with on line PSA and γ-ray tracking Test Sites: Ω∼1/3 π-2/3π. LNL, GANIL, GSI, Jyväskylä, Köln. 2007-2008: Commissioning & 1st physics Campaign @ LNL with PRISMA spectrometer.

(40) 9th April 2010 – Legnaro National Laboratory INFN.

(41) 9th April 2010 – Legnaro National Laboratory INFN.

(42)

(43)

(44)

(45)

(46) 15 Clusters 1π. Efficiency (%). The Phases of AGATA. 2. 50 45 40. Solid Angle (%) Efficiency M = 1 Efficiency M = 10 Efficiency M = 20. 35. Efficiency M = 30. 30 25 20 15 10 5 0. β = 10. The first “real” tracking array Used at FAIR-HISPEC, SPIRAL2, SPES, HI-SIB Coupled to spectrometer, beam tracker, LCP arrays … Spectroscopy at the N=Z (100Sn), n-drip line nuclei, …. β =2 0.5. Ready by 2014.

(47)  From  the  Demonstrator  to  AGATA  1π   Plans  for  the  next  few  years   LNL: 2010-2011 15 crystals (5TC) Total Eff. ~6%. Demonstrator + PRISMA “backward”. GSI: 2012-2013 25 crystals (5DC+5TC) Total Eff.~10%. AGATA + FRS “forward”. GANIL: 2014-2015 45 crystals (15 TC) Total Eff. ~15%. AGATA+VAMOS “backward”.

(48) The Phases of AGATA. 3. 45 Clusters 3π. Ideal instrument for FAIR / EURISOL Also used as partial arrays in different labs Higher performance by coupling with ancillaries Ready by 20..??.

(49) The Phases of AGATA. 4. 60 Clusters 4π. Full ball, ideal to study extreme deformations and the most exotic nuclear species Most of the time used as partial arrays Maximum performance by coupling to ancillaries Ready by 20..??.

(50) Long Range Plan 2004. Recommendations and priorities. … In order to exploit present and future facilities fully and most efficiently, advanced instrumentation and detection equipment will be required to carry on the various programmes. The project AGATA, for a 4p-array of highly segmented Ge detectors for g-ray detection and tracking, will benefit research programmes in the various facilities in Europe. NuPECC gives full support for the construction of AGATA and recommends that the R&D phase be pursued with vigour..

(51) AGATA Steering Committee Chairperson J.Gerl, Vice Chairperson, N.Alamanos G.deAngelis, A.Atac, D.Balabanski, D.Bucurescu, B.Cederwall, D.Guillemaud-Mueller, J.Jolie, R.Julin, W.Meczynski, P.J.Nolan, M.Pignanelli, G.Sletten, P.M.Walker. AGATA Managing Board J.Simpson (Project Manager) D.Bazzacco, G.Duchêne, J.Eberth, A.Gadea, W.Korten, R.Krücken, J.Nyberg. AGATA Working Groups Detector Module J.Eberth. Detector Performance R.Krücken. Data Processing D.Bazzacco. Design and Infrastructure G.Duchêne. Ancillary detectors and Integration A.Gadea. Simulation and Data Analysis J.Nyberg. EURONS W.Korten. AGATA Teams Preamplifiers PSA Digitisation Mechanical design Electr. and data acq. Gamma-ray A.Pullia R.Gernhäuser/ P.Medina K.Fayz/J.Simpson Ch. Theisen Tracking P.Desesquelles W.Lopez-Martens Pre-processing Detector and Infrastructure Impact on performance I.Lazarus Cryostat Detector P.Jones M.Palacz Experiment simulation D.Weisshaar Characterisation Global clock E.Farnea A.Boston R&D on gamma Mechanical integration and Trigger detectors Detector data base M.Bellato D.Curien Devices for key K.Hauschild Data acquisition Experiments X.Grave N.Redon Data analysis O.Stezowski Run Control & GUI AGATA organisation April G.Maron. 2005.

(52) The GALILEO Project at ! INFN-Legnaro National Laboratory! ! Legnaro-Padova-Milano-Firenze ! + European Collaborators!.

(53) Gamma–ray spectroscopy at LNL" a brief history". GASP – 1992" " 40 HPGe (80%) + AC" " εph (1.3MeV) ~ 3% (@ 27 cm)" ~ 6% (@ 22 cm)" P/T ~ 60%" " high–spin states populated in " fusion–evaporation reactions".

(54) Gamma–ray spectroscopy at LNL" a brief history". EUROBALL – 1997–1998" European Collaboration" " 15 cluster detectors + AC " 26 clover detectors + AC" 30 tapered detectors + AC" " εph (1.3MeV) ~ 9%" P/T ~ 50" " high–spin states populated in " fusion–evaporation reactions".

(55) Gamma–ray spectroscopy at LNL" EUROBALL Legacy". RISING". a brief history" ERIKA". EUROBALL" GALILEO" FRS" tapered" (30)". JUROGAM" ORGAM" RITU" CLARA". European Gammapool Owners" Committee" PRISMA".

(56) Gamma–ray spectroscopy at LNL" nowadays". AGATA D – 2010" European Collaboration" ". 5 triple cluster detectors" segmented detectors" tracking array" ". εph (1.3MeV) ~ 6%" Beam time distribution" Sept. 28, 2011 – Mar. 14, 2012" 8piLP 16%. Coupled to the PRISMA " magnetic spectrometer up to end 2011" EXOTIC 13% PRISMA 14%. TRAPS 7%. AGATA 14%. AGATA +PRISMA 36%.

(57) Gamma–ray spectroscopy at LNL" GALILEO – 2012-" new gamma–ray array. ". European Collaboration take advantage of the recent technical developments for AGATA preamplifiers, digital sampling, preprocessing, DAQ → high counting rates (50 kHz/det) use of existing detectors EB cluster detectors capsules GASP detectors → high photopeak efficiency use beam facilities at LNL Tandem, ALPI, PIAVE – stable SPES – RIB → production of new nuclei.

(58) Physics Case" - structure of N~Z nuclei" - isospin symmetry" - study of neutron–rich nuclei" - exotic decay of high–spin states " - nuclear structure close to 100Sn " - cluster and highly deformed states in sd–shell nuclei. "". - giant resonances and warm rotations " - symmetries and shape–phase transitions in nuclei " - shape coexistence in neutron–deficient nuclei " - g–factor measurements" - measurement of astrophysical interest cross sections – surrogate NR method " ".

(59) The GALILEO array". • Main ingredients" – the capsules of the EUROBALL cluster detectors" – the GASP tapered detectors".

(60) The capsules of the EB cluster detectors" 15 x 7– cluster detectors (GSI–RISING array)" encapsulated n–type HPGe detectors" FWHM < 2.4 keV @ 1332.5 keV" εint ~60% @ 1332.5 keV" common cryostat" HV/LV/FE independent" New triple cryostat".

(61) The GASP tapered detectors". 40 n–type HPGe detectors" FWHM < 2.4 keV @ 1332.5 keV" εint ~80% @ 1332.5 keV" P/T ~ 25% (60Co source)" " 40 BGO anti–Compton shields" P/T ~ 60% (60Co source)" ".

(62) GALILEO R&D activities – Mechanics" " • Development of the triple cryostat" – end–cap" – dewar" – internal cabling" – optimizing the thermal conduction (LN2 consumption)" • Design of the anti–Compton shield" – recovery of the individual EB cluster BGO crystals" • Design of the holding structure" – more space for ancillary detectors" – flexible configuration (modifiable target–detectors distance, easy mounting of ancillary detectors)" – modify the LN2 and vacuum systems" • Design of the mechanical structure for G.GALILEO" – g–factor measurement setup".

(63) Carbon Fiber End–Cap – Demonstration Research and Development at LNL" GASP detector end–cap".

(64) Carbon Fiber End–Cap – Demonstration Research and Development at LNL" GASP detector end–cap" Stainless Steel" Carbon Fiber".

(65) Carbon Fiber End–Cap – Demonstration" GASP detector end–cap". Vacuum tightness good" Mass analysis (water) " – fiber storage (-18oC)".

(66) The triple cryostat". front–end electronics (warm part). end–cap in Carbon fiber . capsules. Technical design is ready. Zeolites container. cold finger. dewar. started the prototype building".

(67) The Anti-Compton shield for the triple cryostat". Investigated the possibility to " re–use the single BGO crystals" from the EUROBAL cluster" anti–Compton shields".

(68) Anti–Compton shield for GALILEO". q a proposal for the construction of the triple cluster AC shield out of the individual crystals of the original EB cluster shield " → one can build only one new shield from the original one" " q recently moved one EB cluster AC shield to Legnaro" → investigate the possibility of safely dismounting the crystals " and phototubes".

(69) Assembled triple cluster detector". P/T ~ 36%". Need of shared suppression among " neighboring detectors to improve P/T " GEANT4 by E.Farnea!.

(70) Mounting of the triple clusters".

(71) GALILEO – GEANT4 Simulation". GEANT4 by E.Farnea!. Mixed configuration" 30 GASP detectors @ 22.5cm " 5 5 5 5 5 5" 29o 51o 59o 121o 129o 151o" 10 triple cluster @ 24cm" 90o". Definition of the new triple cluster detectors" " q symmetrical coverage of the solid angle (ang. distr., DSAM)" q good granularity" q at 90o detectors have relatively lower solid angle aperture" q anti–Compton shields " q for GASP detectors already available" q for the triple clusters new AC shields" q Limited impact on the array performance when dismounting the first ring of detectors to allow insertion of ancillary detectors". εph ~ 8%. P/T ~ 50%".

(72) Holding structure of the array". Design by C.Fanin".

(73) Holding structure of the array". Design by C.Fanin".

(74) Holding structure of the array". Design by C.Fanin".

(75) Holding structure of the array". Design by C.Fanin".

(76) Holding structure of the array". Design by C.Fanin".

(77) Holding structure of the array". Design by C.Fanin".

(78) Holding structure of the array". Design by C.Fanin".

(79) Holding structure of the array". Design by C.Fanin".

(80) Holding structure of the array". Design by C.Fanin".

(81) GALILEO – location". Experimental Hall II – replacing GASP".

(82) GALILEO – location". Experimental Hall II – replacing GASP".

(83) Possibilità di tesi Strumentali su Ge detectors in collegamento a progetto GALILEO . - Magistrali - Triennali rivolgersi a Silvia Leoni".

(84)

Riferimenti

Documenti correlati

Such a simple strategy was conceived in order to extract wealth and income by controlling former empires (Aztec and Inca in America, Mogul in India): labour, riches, income

The left panel show the improvement of energy resolution of the 847 keV peak obtained with event–by–event Doppler shift correction using the position of the first interaction point

Figure 11 represents the multiplicity returned by the tracking algorithm with the condition of a total energy within 2 keV from the transition energy, when only the emission of a

The photo of experimental setup is presented in Figure 2.2, in which the detectors in the 90 ◦ ring of the γ-ray spectrometer GALILEO, the Si-ball EUCLIDES and the Neutron Wall

Nel 2017 è stata pubblicata in tiratura limitata la sua più recente, breve raccolta: Alla fine delle favole, Origini edizioni, Livorno. È di prossima pubblicazione, per Effigie,

practically constant, the preformation (dashed curve) differs from one decay mode to an- other but it is not changed very much for a given radioactivity, while the general trend

This decay path through quasi-molecular shapes seems compatible with the experi- mental fission data : symmetric and asymmetric fission barrier heights, half-lives of the

The surgical regenerative procedures expected in: – bilateral sinus lifts; – correction of vertical discrepancy by alveoloplastic procedure and occlusal onlay, in the left maxilla;