• Non ci sono risultati.

References and Further Reading

N/A
N/A
Protected

Academic year: 2021

Condividi "References and Further Reading"

Copied!
179
0
0

Testo completo

(1)

1 Myelin and White Matter

Asotra K, Macklin WB. Protein kinase C activity modulates myelin gene expression in enriched oligodendrocytes.

J Neurosci Res 1993; 34: 571–588

Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81: 871–927

Benjamins JA, Iwata R, Hazlett J. Kinetics of entry of proteins into the myelin membrane. J Neurochem 1978; 31: 1077–

1085

Benveniste EN, Merrill JE. Stimulation of oligodendroglial pro- liferation and maturation by interleukin-2. Nature 1986;

321: 610–613

Berlet HH,Volk B. Studies of human myelin proteins during old age. Mech Ageing Dev 1980; 14: 211–222

Berndt JA, Kim JG, Hudson LD. Identification of cis-regulatory elements in the myelin proteolipid protein (PLP) gene.

J Biol Chem 1992; 267: 14730–14737

Boiron F, Spivack WD, Deshmukh DS, Gould RM. Basis for phos- pholipid incorporation into peripheral nerve myelin. J Neu- rochem 1993; 60: 320–329

Bologa L. Oligodendrocytes, key cells in myelination and tar- get in demyelinating diseases. J Neurosci Res 1985; 14: 1–20 Bongarzone ER, Howard SG, Schonmann SG, Schonmann V, Campagnoni AT. Identification of the dopamine D3 recep- tor in oligodendrocyte precursors: potential role in regula- tion differentiation and myelin formation. J Neurosci 1998;

18: 5344–5353

Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. I. An autop- sy study of myelination. J Neuropathol Exp Neurol 1987; 46:

283–301

Brown MC, Moreno MB, Bongarzone ER, Cohen PD, Soto EF, Pasquini JM. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J Neurosci Res 1993; 35: 402–408

Burger D, Steck AJ, Bernard CCA, Kerlero de Rosbo N. Human myelin/oligodendrocyte glycoprotein: a new member of the L2/HNK-1 family. J Neurochem 1993; 61: 1822–1827 Butt AM, Berry M. Oligodendrocytes and the control of myeli-

nation in vivo: new insights from the rat anterior medullary velum. J Neurosci Res 2000; 59: 477–488

Campagnoni AT. Molecular biology of myelin proteins from the central nervous system. J Neurochem 1988; 51: 1–14 Campagnoni AT, Verdi JM, Verity AN, Amur-Umarjee S. Post-

transcriptional events in the expression of myelin protein genes. Ann NY Acad Sci 1990; 605: 270–279

Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993; 10:

729–740

Compston A, Zajicek J, Sussman J,Webb A, Hall G, Muir D, Shaw C,Wood A, Scolding N. Glial lineages and myelination in the central nervous system. J Anat 1997; 190: 161–200

Dambska M,Laure-Kaminowska M.Myelination as a parameter of normal and retarded brain maturation. Brain Dev 1990;

12: 214–220

Davison AN, Dobbing J. Myelination as a vulnerable period in brain development. Br Med Bull 1966; 20: 40–44

Deshmukh DS,Vorbrodt AW, Lee PK, Bear WD, Kuizon S. Studies on the submicrosomal fractions of bovine oligodendroglia:

lipid composition and glycolipid biosynthesis. Neurochem Res 1988; 13: 571–582

De Vries GH, Norton WT. The fatty acid composition of sphin- golipids from bovine CNS axons and myelin. J Neurochem 1974; 22: 251–257

Dietrich RB, Bradley WG, Zaragoza IV, Otto RJ, Taira RK, Wilson GH, Kangerloo H. MR evaluation of early myelination pat- terns in normal and developmentally delayed infants. AJNR Am J Neuroradiol 1988; 9: 69–76

Dobbing J.Vulnerable periods in developing brain. In: Davison AN, Dobbing J, eds. Applied neurochemistry. Oxford: Black- well, 1968: 287–316

Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48: 757–767

Duhamel-Clerin E, Villarroya H, Mehtali M, Lapie P, Besnard F, Gumpel M, Lachapelle F. Cellular expression of an HMGCR promoter-cat fusion gene in transgenic mouse brain: evi- dence for a developmental regulation in oligodendrocytes.

Glia 1994; 11: 35–46

Dziewulska D, Jamrozik Z, Podlecka A, Rafalowska J. Do astro- cytes participate in rat spinal cord myelination? Folia Neuropathol 1999; 37: 81–86

Farrer RG, Benjamins JA. Entry of newly synthesized ganglio- sides into myelin. J Neurochem 1992; 58: 1477–1484 Fishman MA, Agrawal HC, Alexander A, Golterman J, Marten-

son RE, Mitchell RF. Biochemical maturation of human cen- tral nervous system myelin. J Neurochem 1975; 24: 689–694 Flechsig P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 1901; II: 1027–

1029

Flechsig P. Anatomie des menschlichen Gehirns und Rücken- marks. Leipzig: Georg Thieme, 1920, 7–119

Fors L,Hood L,Saavedra RA.Sequence similarities of myelin ba- sic protein promoters from mouse and shark: implications for the control of gene expression in myelinating cells.

J Neurochem 1993; 60: 513–521

Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphin- gomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 1990; 265: 8650–8657

Gilles FH. Myelination in the neonatal brain. Hum Pathol 1976;

7: 244–248

Gilles FH, Shankle W, Dooling EC. Myelinated tracts: growth patterns.In: Gilles FH, Leviton A, Dooling EC.The developing human brain. Boston: Wright, 1983, 117–192

Goddard DR, Berry M, Butt AM. In vivo actions of fibroblasts growth factor-2 and insuline-like growth factor-I on oligo- dendrocyte development and myelination in the central nervous system. J Neurosci Res 1999; 57: 74–85

References and Further Reading

(2)

Goodrum JF, Earnhardt T, Goines N, Bouldin TW. Fate of myelin lipids during degeneration and regeneration of peripheral nerve: an autoradiographic study. J Neurosci 1994; 14:

357–367

Gould RM, Spivack W, Cataneo R, Holshek J, Konat G. Lipids and myelination. In: Crescenzi S, ed. A multidisciplinary ap- proach to myelin diseases. New York: Plenum, 1987: 87–102 Gould RM, Freund CM, Palmer F, Feinstein DL. Messenger RNAs located in myelin sheath assembly sites. J Neurochem 2000; 75: 1834–1844

Gupta SK, Pringle J, Poduslo JF, Mezei C. Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon. J Neurosci Res 1993; 34: 14–23

Hasegawa M, Houdou S, Mito T,Takashima S, Asanuma K, Ohno T. Development of myelination in the human fetal and in- fant cerebrum: a myelin basic protein immunohistochemi- cal study. Brain Dev 1992; 14: 1–6

Jacoby CG,Yuh WTC, Afifi AK, Bell WE, Schelper RL, Sato Y. Accel- erated myelination in early Sturge-Weber syndrome demonstrated by MR imaging. J Comput Assist Tomogr 1987; 11: 226–231

Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F. Sphin- gomyelin is synthesized in the cis Golgi. FEBS Lett 1990;

261: 155–157

Kamholz J, Toffenetti, Lazzarini RA. Organization and expres- sion of the human myelin basic protein gene. J Neurosci Res 1988; 21: 62–70

Keene LMF, Hewer EE. Some observations on myelination in the human central nervous system. J Anat 1931; 66: 1–13 Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central

nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 1988; 47: 217–234

Kinney HC, Karthigasan J, Borenshteyn NI, Flax JD, Kirschner DA. Myelination in the developing human brain: biochemi- cal correlates. Neurochem Res 1994; 19: 983–996

Konola JT, Yamamura T, Tyler B, Lees MB. Orientation of the myelin proteolipid protein C-terminus in oligodendroglial membranes. Glia 1992; 5: 112–121

Langworthy OR. Development of behavior patterns and myelinization of the nervous system in human fetus and in- fant. (Contributions to embryology, vol XXIV) Washington DC: Carnegic Institute of Washington, 1933: 1–57

Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Vane K-A. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelina- tion. Nat Genet 2003; 33: 366–374

Larocca JN, Rodriguez-Gabin AG. Myelin biogenesis: vesicle transport in oligodendrocytes. Neurochem Res 2002; 27:

1313–1329

Lemke G. Unwrapping the genes of myelin. Neuron 1988;

1: 535–543

Lemke G. The molecular genetics of myelination: an update.

Glia 1993; 7: 263–271

Ludwin SK. Remyelination in the central nervous system and the peripheral nervous system. In: Waxman SG, ed. Ad- vances in neurology: functional recovery in neurological disease, vol 47, New York: Raven Press, 1988: 215–254 Martin DW. Membranes. In: Martin DW, Mayes PA, Rochwel VW,

Granner DK, eds. Harper’s review of biochemistry, 20th ed.

Los Altos: Lange Medical Publications, 1985, 448–463 Martin E,Boesch C, Zuerrer M, Kikinis R, Molinari L, Kaelin P,Bolt-

shauser E, Duc G. MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 1990; 14: 685–692

Matthieu JM. An introduction to the molecular basis of inherit- ed myelin diseases. J Inherit Metab Dis 1993; 16: 724–732 Matthieu JM, Comte V, Tosic M, Honegger P. Myelin gene ex-

pression during demyelination and remyelination in ag- gregating brain cell cultures. J Neuroimmunol 1992; 40:

231–234

McLaurin J, Ackerley CA, Moscarello MA. Localization of basic proteins in human myelin. J Neurosci Res 1993; 35: 618–628 Menkes JH. The leukodystrophies. N Engl J Med 1990; 322:

54–55

Meyer-Franke A, Shen S, Barres BA. Astrocytes induce oligo- dendrocyte processes to align with and adhere to axons.

Mol Cell Neurosci 1999; 14: 385–397

Mickel HS, Gilles FH. Changes in glial cells during human telen- cephalic myelinogenesis. Brain 1970; 93: 337–346 Mikol DD, Rongnoparut P, Allwardt BA, Marton LS, Stefansson

K. The oligodendrocyte-myelin glycoprotein of mouse: pri- mary structure and gene structure. Genomics 1993; 17:

604–610

Mitchell LS, Gillespie SC, McAllister F, Fanarraga ML, Kirkham D, Kelly B, Brophy PJ, Grittiths IR, Montague P, Kennedy PGE.

Developmental expression of major myelin protein genes in the CNS of X-linked hypomyelinating mutant rumpshak- er. J Neurosci Res 1992; 33; 205–217

Morell P, ed. Myelin, 2nd ed. New York: Plenum Press, 1984 Morell P, Wiesmann U. A correlative synopsis of the leukodys-

trophies. Neuropediatrics 1984; 15 (suppl): 62–65

Morell P, Quarles RH, Norton WT. Formation, structure, and bio- chemistry of myelin. In: Siegel GJ, Agranoff BW, Albers RW, eds. Basic neurochemistry: molecular, cellular and medical aspects, 4th ed. New York: Raven Press, 1989, 109–136 Norton WT. Recent advances in myelin biochemistry. Ann NY

Acad Sci 1984; 436: 5–10

Norton WT, Autilio LA.The lipid composition of purified bovine brain myelin. J Neurochem 1966; 13: 213–222

Norton WT, Cammer W. Isolation and characterization of myelin. In: Morell P, ed. Myelin. Plenum, New York, 1984, pp 147–195

Notterpek LM, Rome LH. Functional evidence for the role of ax- olemma in CNS myelination. Neuron 1994; 13: 473–485 Pagano RE. The Golgi apparatus: insights from lipid biochem-

istry. Biochem Soc Trans 1990; 18: 361–366

Patsalos PN, Wiggins RC. Brain maturation following adminis- tration of phenobarbital, phenytoin, and sodium valproate to developing rats or to their dams: effects on synthesis of brain myelin and other subcellular membrane proteins. J Neurochem 1982; 39: 915–923

Percy AK, McKhann GM. The biochemistry of myelin and the leukodystrophies. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology, vol 10, Amsterdam: North Holland Publishing Company, 1970, 134–149

Poduslo SE, Jang Y. Myelin development in infant brain. Neu- rochem Res 1984; 9: 1615–1626

Pope A. Neuroglia: quantitative aspects. In: Schoffeniels E, Franck G, Hertz L,Tower DB, eds. Dynamic properties of glia cells. New York: Pergamon Press, 1977, 13–20

Poser CM. Discussion des rapports sur les maladies démyélin- isantes. Proc Third Intern Congr Neuropathol. Brussels:

Editions Acta Medica Belgica, 1957, 106–111

Poser CM. Leukodystrophy and the concept of dysmyelination.

Arch Neurol 1961; 4: 323–332

Poser CM. Dysmyelination revisited. Arch Neurol 1978; 35: 401–

407

(3)

Probstmeier R, Fahrig T, Spiess E, Schachner M. Interactions of the neural cell adhesion molecule and the myelin-associat- ed glycoprotein with collagen type I: involvement in fibril- logenesis. J Cell Biol 1992; 116: 1063–1070

Richardson EP. Myelination in the human central nervous system. In: Haymaker W, Adams RD, eds. Histology and histopathology of the nervous system. Springfield: Charles C Thomas, 1982, 146–173

Rodriguez M. Central nervous system demyelination and re- myelination in multiple sclerosis and viral models of dis- ease. J Neuroimmunol 1992; 40: 255–264

Rodriguez M, Prayoonwiwat N, Howe C, Sanborn K. Proteolipid protein gene expression in demyelination and remyelina- tion of the central nervous system: a model for multiple sclerosis. J Neuropathol Exp Neurol 1994; 53: 136–143 Rorke LB, Riggs HE, Showers MJC, Cabrera CV, Cohn M. Myelina-

tion of the brain in the newborn. Philadelphia: Lippincott, 1969: 1–105

Royland J, Konat GW, Kanoh M,Wiggins RC. Down regulation of myelin-specific mRNAs in the mechanism of hypomyelina- tion in the undernourished developing brain. Dev Brain Res 1992; 65: 223–226

Royland JE, Konat G, Wiggins RC. Abnormal upregulation of myelin genes underlies the critical period of myelination in undernourished developing rat brain. Brain Res 1993; 607:

113–116

Royland JE, Konat GW, Wiggins RC Myelin gene activation:

a glucose sensitive critical period in development. J Neuro- sci Res 1993; 36: 399–404

Russell JW, Chen H-L, Golovoy D. Insuline-like growth factor-1 promotes myelination of peripheral sensory axons. J Neu- ropathol Exp Neurol 2000;59:575–584

Saito M,Yu RK. Role of myelin-associated neuraminidase in the ganglioside metabolism of rat brain myelin. J Neurochem 1992; 58: 83–87

Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Bakken IJ, Sonnewald U. Trafficking between glia and neu- rons of TCA cycle intermediates and related metabolites.

Glia 1997; 21: 99–105

Seitelberger F. Structural manifestations of leukodystrophies.

Neuropediatrics 1984; 15 (suppl): 53–61

Shine HD, Readhead C, Popko B, Hood L, Sidman RL. Morpho- metric analysis of normal, mutant, and transgenic CNS: cor- relation of myelin basic protein expression to myelinogen- esis. J Neurochem 1992; 58: 342–349

Sinoway MP, Kitagawa K, Timsit S, Hashim GA, Colman DR. Pro- teolipid protein interactions in transfectants: implications for myelin assembly. J Neurosci Res 1994; 37: 551–562 Skoff RP. Neuroglia: a reevaluation of their origin and develop-

ment. Pathol Res Pract 1980; 168: 279–300

Smith R. The basic protein of CNS myelin: its structure and lig- and binding. J Neurochem 1992; 59: 1589–1608

Stevens B, Porta S,Haak LL, Gallo V, Fields RD. Adenosine: a neu- ron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 2002; 36: 855–868 Stryer L. Introduction to biological membranes. In: Stryer L, ed.

Biochemistry, 2nd ed. New York: Freeman, 1981, 205–230 Svennerholm L. Some aspects of the biochemical changes in

leukodystrophy. In: Folch PJ, Bauer H, eds. Brain lipids and lipoproteins and the leukodystrophies. Amsterdam: Else- vier, 1963, 104–119

van der Knaap MS, Valk J, Bakker CJ, Schooneveld M, Faber JAJ, Willemse J, Gooskens PHJM. Myelination as expression of the functional maturity of the brain. Dev Med Child Neurol 1991; 33: 849–857

Vinores SA, Herman MM. Phagocytosis of myelin by astrocytes in explants of adult rabbit cerebral white matter main- tained on Gelfoam matrix. J Neuroimmunol 1993; 43: 169–

176

Vogel US, Thompson RJ. Molecular structure, localization, and possible functions of the myelin-associated enzyme 2’,3’-cyclic nucleotide 3’-phosphodiesterase. J Neurochem 1988; 50: 1667–1677

Vogt O. Quelques considérations genérales sur la myélo-archi- tecture du lobe frontal. Rev Neurol 1910; 20: 405–420 Vourc’h P, Andres C. Oligodendrocyte myelin glycoprotein

(OMgp): evolution, structure and function. Brain Res Rev 2004; 45: 115–124

Waxman SG, Ritchie JM. Molecular dissection of the myelinat- ed axon. Ann Neurol 1993; 33: 121–136

Waxman SG, Sims TJ. Specificity in central myelination: evi- dence for local regulation of myelin thickness. Brain Res 1984; 292: 179–185

Waxman AG, Black JA, Sontheimer H, Kocsis JD. Glial cells and axo-glial interactions: implications for demyelinating disor- ders. Clin Neurosci 1994; 2: 202–210

Weimbs T, Stoffel W. Proteolipid protein (PLP) of CNS myelin:

positions of free, disulfide-bonded and fatty acid thioester- linked cysteine residues and implications for the mem- brane topology of PLP.Biochemistry 1992; 31: 12289–12296 Wiggings RC. Myelination: a critical stage in development.

Neurotoxicology 1986; 7: 103–120

Williams KA, Deber CM. The structure and function of central nervous system myelin. Crit Rev Clin Lab Sci 1993; 30: 29–64 Wisniewski KE, Schmidt-Sidor B. Postnatal delay of myelin for- mation in brains from Down syndrome infants and chil- dren. Clin Neuropathol 1989; 8: 55–62

Wood PM, Bunge RP. The origin of remyelinating cells in the adult central nervous system: the role of the mature oligo- dendrocyte. Glia 1991; 4: 225–232

Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain.In:Minkowski A,ed.Regional devel- opment of the brain in early life. Oxford: Blackwell, 1967:

3–70

Yamamoto Y, Yoshikawa H, Nagano S, Kondoh G, Sadahiro S, Gotow T, Yanagihara T, Sakoda S. Myelin-associated oligo- dendrocytis basic protein is essential for normal arrange- ment of the radial component in central nervous system myelin. Eur J Neurosci 1999; 11: 847–855

Ye P, Carlson J, D’Ercole AJ. Insuline-lilke growth factor-I influ- ences the initiation of myelination: studies of the anterior commissure of transgenenic mice. Neurosci Lett 1995; 201:

235–238

Zurbriggen A,Vandevelde M, Steck A, Angst B. Myelin-associat- ed glycoprotein is produced before myelin basic protein in cultured oligodendrocytes. J Neuroimmunol 1984; 6: 41–49

2 Classification of Myelin Disorders

Adams RD, Kubik CS. The morbid anatomy of the demyelina- tive diseases. Am J Med 1952; 12: 510–546

Adams RD, Richardson EP. The demyelinative diseases of the human nervous system. In: Folch P, Folch J, eds. Chemical pathology of the nervous system. Oxford: Pergamon Press, 1961: 162–194

Alzheimer A. Beiträge zur Kenntnis der pathologischen Neu-

roglia und ihrer Beziehungen zu den Abbauvorgängen im

Nervengewebe. Nissl-Alzheimer Arbeiten 1910; 3: 401–562

(4)

Austin J, McAfee D, Armstrong D, O’Rourke M, Shearer L, Bach- hawat B. Low sulfatase activities in metachromatic leuko- dystrophy. Trans Am Neurol Assoc J 1964:147–150 Bérard-Badier M, Paillas JE, Gastaut H, Edgar GWF. Essai sur la

significance des démyelinisations dans l’idiotie amauro- tique infantile. Psychiatr Neurol 1958; 132: 50–93

Bielschowsky M, Henneberg R. Ueber familiäre diffuse Sklerose (leukodystrophia cerebri progressiva hereditaria) J Psychol Neurol 1928; 36: 131–181

Blackwood W.The histological classification of diffuse demyeli- nating cerebral sclerosis. In: Cerebral lipidosis, a sympo- sium. Oxford: Blackwell Scientific Publications, 1957: 1–10 Carswell R. Pathological anatomy: illustrations of the elemen-

tary forms of disease. London: Longmans, Green , 1938 Challa VR. White matter lesions in MR imaging of elderly sub-

jects. Radiology 1987; 164: 874–875

Charcot JM. Lectures on the diseases of the nervous system, vol. 3. London: New Sydenham Society, 1868 (Lectures de- livered in 1868, English translation published in 1877) Cruveilhier J. Anatomie pathologique du corps humain, vol II,

fasc XXXII. Paris: Baillière, 1835–1842

Davison AN, Dobbing J. Myelination as vulnerable period in brain development. Br Med Bull 1966; 20: 40–44

Diezel PB. Histochemische Untersuchungen an den Globoid- zellen der familiaeren infantilen diffusen Sklerose vom Ty- pus Krabbe. Virchows Arch Pathol Anat 1955; 327: 206–228 Edgar GWF. Approche biochimique des lipidoses et des leu-

codystrophies. Rev Neurol 1955; 92: 277–284

Fardeau M, Lapresle J. Maladie de Tay-Sachs avec atteinte im- portante de la substance blanche. A propos de deux obser- vations anatomo-cliniques. Rev Neurol 1963; 109: 157–175 Foelling A. Ueber Ausscheiding von Phenylbrenztraubensäure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezilität. Z Physiol Chem 1934; 227: 169–176

George AE, de Leon MJ, Gentes CI, Miller J, London E, Budzilo- vich GN, Ferris S, Chase N. Leukoencephalpathy in normal and pathologic aging: CT of brain lucencies. AJNR Am J Neuroradiol 1986; 7: 561–566

Gupta SR, Naheedy MH, Young JC, Ghobrial M, Rubino FA, Hin- do W. Periventricular white matter changes and dementia.

Clinical, neuropsychological, radiological and pathological correlation. Arch Neurol 1988; 45: 637–641

Hallervorden J. Die zentralen Entmarkungskrankheiten. Dtsch Z Nervenheilk 1940; 150: 201–239

Hauw JJ, Delaère P, Seilhean D, Cornu P. Morphology of de- myelination in the human central nervous system. J Neu- roimmunol 1992; 40: 139–152

Herschkowitz N, Schulte FJ. The lipidoses: from detect to dys- function. Neuropediatrics 1984; 15: 110–111

Heubner O. Ueber diffuse Hirnsklerose. Charité-Ann 1897; 22:

298–310

Huk WJ, Bydder GM, Curati WL. Degenerative disorders of the brain and white matter diseases. In: Huk WJ, Gademann G, Friedmann G, eds. Magnetic resonance imaging of central nervous system diseases. Berlin: Springer, 1990: 197–224 Jervis GA. Studies on phenylpyruvic oligofrenia: the position of

the metabolic error. J Biol Chem 1947; 169: 651–656 Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ,

Hayward R, Bryant DRT, Payne JA, Levene MI, Whitelaw A, Dubowitz LMS, Dubowitz V. Clinical NMR imaging of the brain in children: normal and neurologic disease. AJR Am J Roentgenol 1983; 141: 1005–1018

Krabbe K. A new familial infantile form of diffuse brain-sclero- sis. Brain 1916; 39: 74–114

Lassmann H, Ammerer HP, Kulnig W. Ultrastructural sequence of myelin degradation. Wallerian degeneration in the rat optic nerve. Acta Neuropathol (Berl) 1978; 44: 91–102 Matthieu JM. An introduction to the molecular basis of inherit-

ed myelin diseases. J Inherit Metab Dis 1993; 16: 724–732 Menkes JH. The leukodystrophies. N Engl J Med 1990; 322:

54–55

Merzbacher L. Eine eigenartige familiär-hereditäre Erkran- kungsform (aplasia axialis extracorticalis congenita). Z Gesamte Neurol Psychiatrie 1910; 3: 1–138

Morell P, Wiesmann U. A correlative synopsis of the leukodys- trophies. Neuropediatrics 1984; 15 (suppl): 62–65

Neubürger K. Histologisches zur Frage der diffusen Hirn- sklerose. Z Gesamte Neurol Psychiatrie 1921; 73: 336–352 Peiffer J. Differentiation of various types of leukodystrophy.

World Neurology 1962; 3: 580–597

Pelizaeus F. Ueber eine eigenartige familiäre Entwicklungs- hemmung vornehmlich auf motorischem Gebiet. Arch Psychiatrie Nervenkr 1899; 31: 100–104

Poser CM. Discussion des rapports sur les maladies demyelin- isantes. Proc Third Intern Congr Neuropathol. Brussels. Edi- tions Acta Medica Belgica 1957, 106–111

Poser CM. Leukodystrophy and the concept of dysmyelination.

Arch Neurol 1961; 4: 323–332

Poser CM. Dysmyelination revisited. Arch Neurol 1978; 35:

401–407

Poser CM. The dysmyelinating diseases. In: Baker AB, Joynt RJ, eds. Clinical neurology, vol 3. Philadelphia: Harper & Row, 1987: chap 34

Raine CS. The neuropathology of myelin diseases. In: Morell P, ed. Myelin, 2nd ed. New York: Plenum Press, 1984, 259–310 Ranvier L-A (1878) Leçons sur l’histologie due système

nerveux (2 vol.). Weber E. ed. Paris: Savy

Schilder P. Zur Kenntnis der sogenannten diffusen Sklerose.

Ueber Encephalitis periaxialis diffusa. Z Gesamte Neurol Psychiatrie 1912; 10, 1–60

Scholz W. Klinische, pathologisch-anatomische und erbbiolo- gische Untersuchungen bei familiärer, diffuser Hirnsklerose im Kindesalter. Z Gesamte Neurol Psychiatrie 1925; 99:

651–717

Seitelberger F. Structural manifestations of leukodystrophies.

Neuropediatrics 1984; 15 (suppl): 53–61

Stam FC, Heslinga JM, Deierkauf FA, Booij HL. Leukodystrophy of the Norman-Greenfield and Krabbe type. Psychiatry Neurol Neurosurg 1962; 65: 254–265

Stam FC. Concept, classification and nosology of the leuko- dystrophies. In:Vinken PJ, Bruyn GW, eds. Handbook of clin- ical neurology, vol 10. Amsterdam: North Holland Publish- ing Company, 1970, 1–42

Suzuki K, Suzuki Y. Globoid cell leukodystrophy (Krabbe’s dis- ease): deficiency of galactocerebroside beta-galactosidase.

Proc Natl Acad Sci 1970; 66: 302–309

Thieffry S, Bertrand I, Bargeton E, Edgar GWF, Arthuis M. Idiotie amaurotique infantile avec alterations graves de la sub- stance blanche. Rev Neurol 1960; 102: 130–152

Virchow R. Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Ge- weben. Virchows Arch Pathol Anat: 1854; 562–572

Von Hirsch T, Peiffer J. Ueber histologische Methoden in der Differentialdiagnose von Leukodystrophien und Lipi- dosen. Arch Psychiatrie Z Neurol 1955; 194: 88–104 Von Hirsch T, Peiffer J. A histochemical study of the pre-lipid

and metachromatic degenerative products in leucodystro-

phy. In: Cerebral lipidoses, a symposium. Oxford: Blackwell

Scientific Publications, 1957, 68–76

(5)

3 Selective Vulnerability

Albin RL. Basal ganglia neurotoxins. Neurol Clin 2000; 18: 665–

680

Barboriak DP, Provenzale JM, Boyko OB. MR diagnosis of Creutzfeldt-Jakob disease: significance of high signal inten- sity of the basal ganglia. AJR Am J Roentgenol 1994; 162:

137–140

Davison AN, Dobbing J. Myelination as a vulnerable period in brain development. Br Med Bull 1966; 22: 40–44

Dubeau F, De Stefano N, Zifkin BG, Arnold DL, Shoubridge EA Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedi- gree. Ann Neurol 2000; 47: 179–185

Gosztonyi G, Koprowski H. The concept of neurotropism and selective vulnerability (“pathoclisis”) in virus infections of the nervous system- a historical overview. Curr Top Micro- biol Immunol 2001; 253: 1–13

Gosztonyi G, Koprowski H.The concept of neuropotism and se- lective vulnerability (“pathoclisis”) in virus infections of the nervous system – a historical overview. Curr Top Microbiol Immunol 2001; 253: 1–13

Govaert P, Lequin M, Swarte R, Robben S, de Coo R, Weisglas- Kuperus N, de Rijke Y, Sinaasappel M, Barkovich J. Changes in globus pallidus with (pre)term kernincterus. Pediatrics 2003; 112: 1256–1263

Guentchev M, Wanschitz J, Voigtlander T, Flicker H, Badka H.

Selective neuronal vulnerability in human prion diseases.

Fatal familial insomnia differs from other types of prion dis- eases. Am J Pathol 1999; 155: 1453–1457

Hawker K, Lang AE. Hypoxic–ischemic damage of the basal ganglia. Mov Disord 1990; 5: 219–224

Johnston MV, Goldstein GW. Selective vulnerability of the de- veloping brain to lead. Curr Opin Neurol 1998; 11:689–693 Johnston MV, Hoon AH. Possible mechanisms in infants for

selective basal ganglia damage from asphyxia, kernicterus or mitochondrial encephalopathies. J Child Neurol 2000;

15: 588–591

Kodama T, Numaguchi Y, Gellad FE, Dwyer BA, Kristt DA. Mag- netic resonance imaging of limbic encephalitis. Neuroradi- ology 1991; 33: 520–523

Kölker S, Kohr G, Ahlemeyer B, Okun JG, Pawlak V, Horster F, Mayatepek E, Krieglstein J, Hoffmann GF. Ca

(2+)

and Na

(+)

dependence of 3-hydroxyglutarate-indiced excitotoxicity in primary neuronal cultures from chick embryo telen- cephalons. Pediatr Res 2002; 52: 199–206

Kölker S, Mayatepek E, Hoffmann GF. White matter disease in cerebral organic acid disorders: clinical implications and suggested pathomechanisms. Neuropediatrics 2002; 33:

225–231

Lipton SA, Rosenberg PA. Excitatory amino acids as a final com- mon pathway for neurologic disorders. N Engl J Med 1994;

330: 613–622

Ludolph AC, Riepe M, Ullrich K. Excitotoxicity, energy metabo- lism and neurodegeneration. J Inherit Metab Dis 1993; 16:

716–723

McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA.

Positron emission tomography evidence of toxic effect of MDMA (ecstasy) on brain serotonin neurons in human be- ings. Lancet 1998; 352: 1433–1437

Meyer A. Section of psychiatry. The selective regional vulnera- bility of the brain and its relation to psychiatric problems.

Proc R Soc Med 1936; 29: 1175–1181

Okun JG, Horster F, Farkas LM, feyh P, Hinz A, Sauer S, Hoffmann GF, Unsicker K, Mayatepek E, Kolker S. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 2002; 277: 14674–14680 Pasternak JF, Predey TA, Mikhael MA. Neonatal asphyxia: vul-

nerability of basal ganglia, thalamus, and brainstem. Pedi- atr Neurol 1991; 7: 147–149

Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 1985; 63:

29–37

Reneman L, Majoie CB, Habrakeb JB, Den Heeten GJ. Effects of ecstasy (MDMA) on the brain in abstinent users; initial ob- servations with diffusion and perfusion MR imaging. Radi- ology 2001; 220: 611–617

Reneman L, Majoie CBLM, Flick H, den Heeten GJ. Reduced N- acetylasparate levels in the frontal cortex of 3,4-methyl- enedioxymetamphetamine (ecstasy) users: preliminary re- sults. AJNR Am J Neuroradiol 2002; 23: 231–237

Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD. Se- vere dopaminergic neurotoxicity in primates after a com- mon recreational dose regimen of MDMA (“ecstasy”). Sci- ence 2002; 297: 2260–2263

Schmidt R, Offenbacher H, Fazekas F, Payer F, Kleinert R, Porsch G. Magnetic resonance imaging, computed tomography, and autopsy findings after cardiorespiratory arrest. J Neu- roimaging 1991; 1: 197–199

Scholz W. Selective neuronal necrosis and its topistic patterns in hypoxemia and oligemia. J Neuropathol Exp Neurol 1953; 12: 249–261

Scholz W. Topistic lesions. In: Schadé JP, McMenemey WH, eds.

Selective vulnerability of the brain in hypoxaemia. Oxford:

Blackwell ScientificPublications, 1963: 257–267

Sims NR. Energy metabolism and selective neuronal vulnera- bility following global cerebral ischemia. Neurochem Res 1992; 17: 923–931

Spielmeyer W. Zur Pathogenese örtlich elektiver Gehirnverän- derungen. Z Neurol Psychiatrie 1925; 99: 756–777 Suzuki H, Takanashi J, Saeki N, Kohno Y. Temporal parental nu-

trition in children causing T1 shortening in the anterior pi- tuitary gland and globus pallidus. Neuropediatrics 2003;

34: 200–204

Tarasów E, Panasiuk A, Siergiejczyk L, Orzechowska-Bobkie- wicz A, Lewszuk A, Waleck J, Porkopowicz D. MR and

1

H MR spectroscopy of the brain in patients with lever cirrhosis and early stages of hepatic encephalopathy. Hepatogas- troenterology 2003; 50: 2149–2153

Valk J. Selective involvement of CNS structures in pediatric neuroradiology. Riv Neuroradiol 1993; 6: 3–10

Valk J, van der Knaap MS. Selective vulnerability in toxic en- cephalopathies and metabolic disorders. Riv Neuroradiol 1996; 9: 749–760

Vogt C, Vogt O. Sitz und Wesen der Krankheiten im Licht der topistischen Hirnforschung und des Varierens der Tiere.

J Psychol Neurol 1937; 47: 237–457

Yamada M, Inaba A, Yamawaki M, Ishida K, Yokota T, Uchihara T,

Eishi Y, Okeda R. Paraneoplastic encephalo-myelo-gan-

glionitis: cellular binding sites of the antineuronal anti-

body. Acta Neuropathol (Berl) 1994; 88: 85–92

(6)

4 Myelination and Retarded Myelination

Ajayi-Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD.

Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000; 356: 1162–1163

Autti T, Raininko R, Vanhanen SL, Kallio M, Santavuori P. MRI of the normal brain from early childhood to middle age.II.Age dependence of signal intensity of T2-weighted images.

Neuroradiology 1994; 36: 649–651

Ball WS Jr. Imaging of the brain in children. Curr Opin Radiol 1991; 3: 895–905

Barkovich AJ, Kjos BO, Jackson DE, Norman D. Normal matura- tion of the neonatal and infant brain: MR imaging at 1.5T

1

. Radiology 1988; 166: 173–180

Barkovich AJ, Gressens P, Evrard P. Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol 1992;

13: 423–446

Barkovich AJ. Concepts of myelin and myelination in neuro- radiology 2000; 21: 1099–1109

Battin MR, Maalouf EF, Counsell SJ, Herlihy AH, Rutherford MA, Azzopardi D, Edwards AD. Magnetic resonance imaging of brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 1998; 101: 957–962

Benes FM, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51: 477–484

Blaser S, Harwood-Nash DCF. Radiology of the developing cen- tral nervous system. Curr Opin Neurol Neurosurg 1992; 5:

843–848

Breger RK,Yetkin FZ, Fisher ME, Papke RA, Haughton VM, Rimm AA. T

1

and T

2

in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991; 181: 545–547 Chi JG, Dooling EC, Gilles FH. Gyral development of the human

brain. Ann Neurol 1977; 1: 86–93

Childs AM, Remenghi LA, Evans DJ, Ridgeway J, Saysell M, Mar- tinez D, Arthur R, Tanner S, Levene MI. MR features of devel- oping periventricular white matter in preterm infants: evi- dence of glial cell migration. AJNR Am J Neuroradiol 1998;

19: 971–976

Childs AM, Ramenghi LA, Cornette L,Tanner SF, Arthur RJ, Mar- tinez D, Levene MI. Cerebral maturation in premature in- fants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 2001; 22: 1577–1582

Counsell SJ, Maalouf EF, Fletcher AM, Duggan P, Battin M, Lewis HJ, Herlily AH, Edwards D, Bydder GM, Rutherford MA. MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 2002; 23: 872–881

Counsell SJ, Kennea NL, Herlihy AH, Allsop JM, Harrison MC, Cowan FM, Hajnal JV, Edwards B, Edwards AD, Rutherford MA. T2 relaxation values in the developing preterm brain.

AJNR Am J Neuroradiol 2003; 24: 1654–1660

Dietrich RB, Badley WG, Zaragoza EJ IV, Otto RJ,Taira RK, Wilson GH, Kangarloo H. MR evaluation of early myelination pat- terns in normal and developmentally delayed infants. AJNR Am J Neuroradiol 1988; 9: 69–76

Dooling EC, Chi JG, Gilles FH. Telencephalic development:

changing gyral patterns. In: Gilles FH, Leviton A, Dooling EC.

The deverloping human brain. Growth and epidemiologic neuropathology. Boston: John Wright, 1983: 94–104 Duprez T, Ghaniani S, Smith AM, Gadisseux JF, Evrard P. Focal

seizure-induced premature myelination: speculation from serial MRI. Neuroradiology 1998; 40: 580–582

Engelbrecht V, Malms J, Kahn T, Grünewald S, Mödder U. Fast spin-echo MR imaging of the pediatric brain. Pediatr Radiol 1996; 26: 259–264

Engelbrecht V, Rassek M, Preiss S, Wald C, Mödder U. Age-de- pendent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 1998; 19: 1923–1929

Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Mödder U. Dif- fusion-weighted MR imaging in the brain in children: find- ings in the normal brain and in the brain with white matter diseases. Radiology 2002; 222: 410–418

Ferrie JC, Barantin L, Saliba E, Akoka S, Tranquart F, Sirinelli D, Pourcelot L. MR assessment of the brain maturation during the perinatal period: quantitative t2 MR study in premature newborns. Magn Reson Imaging 1999; 17: 1275–1288 Finelli DA, Hurst GC, Amantia P Jr, Gullapali RP, Apicella A. Cere-

bral white matter: technical development and clinical ap- plications of effective magnetization transfer (MT) power concepts for high-power transfer, thin-section, quantitative MT examinations. Radiology 1996; 199: 219–226

Flechsig P. Anatomie des menschlichen Gehirns und Rücken- marks auf myelogenetischer Grundlage. Leipzig: Georg Thieme, 1920

Forbes KPN, Pipe JG, Bird CR. Changes in brain water diffusion during the 1st year of life. Radiology 2002; 222: 405–409 Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag

G, Hassan M. Fetal cerebral cortex: normal gestational land- marks identified using prenatal MR imaging. AJNR Am J Neuroradiol 2001; 22: 184–189

Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL.

Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis.

AJNR Am J Neuroradiol 2002; 23: 1327–1333

Ge Y, Grossmann RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL.

Age-related total gray matter and white matter changes is normal adult brain. Apart II: Quantitative magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 2002; 23: 1334–1341

Girard N, Raybaud C, du Lac P. Étude de la myélinisation cérébrale en IRM. MRI study of brain myelination. J Neuro- radiol 1991; 18: 291–307

Hansen PE, Ballesteros MC, Soila K, Garcia L, Howard JM. MR imaging of the developing human brain. Part 1: prenatal development. Radiographics 1993; 13: 21–36

Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation: comparison of sequences. AJNR Am J Neuroradiol 1994; 15: 425–433 Hittmair K, Kramer J, Rand T, Bernert G, Wimberger D. Infraten-

torial brain maturation: a comparison of MRI at 0.5 and 1.5 T. Neuroradiology 1996; 38: 360–366

Holland BA, Haas DK, Norman D, Brant-Zawadski M, Newton TH. MRI of normal brain maturation. AJNR Am J Neuroradi- ol 1986; 7: 201–208

Hosoya T, Adachi M, Yamaguchi K, Haku T. MRI anatomy of white matter layers around the trigone of the lateral ventri- cle. Neuroradiology 1998; 40: 477–482

Huisman TAGM, Wisser J, Martin E, Kubik-Huch R, Marineck B.

Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 2002; 12: 1952–1261 Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolenz FA,

Volpe JJ. Microstructural development of human in as-

sessed in vivo by diffusion tensor magnetic resonance

imaging. Pediatr Res 1998; 44: 584–590

(7)

Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolensz FA, Tsuij MK, Volpe JJ. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998; 43: 224–235

Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ, Hayward R, Bryant DRT, Payne JA, Levene MI, Whitelay A, Dubowitz LMS, Dubowitz V. Clinical NMR imaging of the brain in children: normal and neurologic disease. AJNR Am J Neuroradiol 1983; 4: 1013–1025

Jolensz FA, Polak JF, Adams DF, Ruenzel PW. Myelinated and nonmyelinated nerves: comparison of proton MR proper- ties. Radiology 1987; 164: 89–91

Jones RA, Palasis S, Grattan-Smith JD. The evolution of the ap- parent diffusion coefficient in the pediatric brain at low and high diffusion weightings. J Magn Reson Imaging 2003; 18: 665–674

Keene MFL, Hewer EE. Some observations on myelination in the human nervous system. J Anat 1931; 6: 1–13

Korogi Y, Takahashi M, Sumi M, Hirai T, Sakamoto Y, Ikushima I, Miyayama H. MR signal intensity of the perirolandic cortex in the neonate and infant. Neuroradiology 1996; 38:

578–584

Krier EL, Truwit CL. The normal and abnormal genu of the cor- pus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 1996; 17: 1631–1641 Lövblad KO, Schneider J, Ruoss K, Steinlin M, Fusch C, Schroth

G.Isotropic apparent diffusion coefficient mapping of post- natal cerebral development. Neuroradiology 2003; 45:

400–403

Martin E, Kikinis R, Zuerrer M, Boesch C, Briner J, Krewitz G, Kaelin P. Developmental stages of human brain: an MR study. J Comput Assist Tomogr 1988; 12: 917–922

Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kealin P, Bolt- shauser E, Duc G. MR imaging of brain maturation in normal and developmentally handicapped children. J Comput As- sist Tomogr 1990; 14: 685–692

Martin E, Krassnitzer S, Kealin P, Boesch Ch. MR imaging of the brainstem: normal postnatal development. Neuroradiolo- gy 1991; 33: 391–395

McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hay- den CK, Amparo EG. Developmental features of the neona- tal brain: MR imaging. 1. Gray-white matter differentiation and myelination. Radiology 1987; 162: 223–229

Miller SP, Vigneron DB, Henry RG, Bohland MA, Ceppi-Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ. Serial quantitative diffusion tensor MRI of the prema- ture brain: development in newborns with and without in- jury. J Magn Reson Imaging 2002; 16: 621–632

Mukherjee P, Miller JH, Lee BCP, Almli CR, McKinstry RC. Normal brain maturation during childhood: developmental trends characterized with diffusion tensor MR imaging. Radiology 2001; 221: 349–358

Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC. Diffusion-tensor MR imaging of gray and white matter development during normal brain maturation. AJNR Am J Neuroradiol 2002; 23:

1445–1456

Murakami JW, Weinberger E, Shaw DWW. Normal myelination of the pediatric brain imaged with fluid-attenuated inver- sion-recovery (FLAIR) MR imaging. AJNR Am J Neuroradiol 1999; 20: 1406–1411

Naidich TP, Grant JL, Altman N, Zimmerman RA, Birchansky SB, Braffman B, Daniel JL. The developing cerebral surface. Pre- liminary report on the patterns of sulcal and gyral matura- tion – anatomy, ultrasound, and magnetic resonance imag- ing. Pediatr Neuroradiol 1994; 4 201–239

Naidich TP, Grant JL, Altman N, Zimmerman RA, Birchansky SB, Braffman BM, Daniel JL. The developing cerebral surface.

Neuroimaging Clin N Am 1994; 4: 201–240

Neill JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbubak E, Aronovitz JA, Miller JP, Lee BCP, Conturo TE. Nor- mal brain in human newborns: apparent diffusion coeffi- cient and diffusion anisotrophy measured by using diffu- sion tensor MR imaging. Radiology 1998; 209: 57–66 Parazzini C, Baldoli C, Scotti G,Triulzi F.Terminal zones of myeli-

nation: MR evaluation of children aged 20–40 months.

AJNR Am J Neuroradiol 2002; 23: 1669–1673

Pennock JM, Bydder GM, Dubowitz LMS, Johnson MA. Magnet- ic resonance imaging of the brain in children. Magn Reson Imaging 1986; 4: 1–9

Rademacher J, Engelbrecht V, Bürgel U, Freund H-J, Zilles K.

Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR.Neuroimage 1999; 9:

393–406

Robertson RL, Robson CD. Diffusion imaging in neonates. Neu- roimaging Clin N Am 2002; 12: 55–70

Ruoss K, Lövblad K, Schroth G, Moessinger AC, Fusch C. Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuro- pediatrics 2001; 32: 69–74

Schmithorst VJ, Wilke M, Dardzinki BJ, Holland SK. Correlation of white matter diffusivity and anisotrophy with age during childhood and adolescence: a cross-sectional diffusion- tensor MR imaging study. Radiology 2002; 222: 212–218 Schneider JFL, Il’yasov KA, Hennig J, Martin E. Fast quantitative

diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 2004; 46:

258–266

Shaw DWW, Weinberger E, Astley SJ, Tsuruda JS. Quantitative comparison of conventional spin echo and fast spin echo during brain myelination. J Comput Assist Tomogr 1997; 21:

867–871

Sie LT, van der Knaap MS, van Wezel-Meijler G, Valk J. MRI as- sessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropedi- atrics 1997; 28: 97–105

Sie LT, Barkhof F, Lafeber HN, Valk J, van der Knaap MS. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy. Eur Radiol 2000; 10: 1594–1601

Stricker T, Martin E, Boesch C. Development of the human cere- bellum observed with high-field-strength MR imaging.

Radiology 1990; 177: 431–435

Takeda K, Nomura Y, Sakuma H,Tagami T, Okuda Y, Nakagawa T.

MR assessment of normal brain development in neonates and infants: comparative study of T1-and diffusion-weight- ed images. J Comput Assist Tomogr 1997; 21: 1–7

Tanner SF, Ramenghi LA, Ridgway JP, Berry E, Saysell MA, Mar- tinez D, Arthur RJ, Smith MA, Levene MI. Quantitative com- parison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR A J Roentgenol 2000; 174:

1643–1649

Toft PB, Leth H, Peitersen B, Lou HC, Thomson C. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J Comput Assist Tomogr 1996; 20: 1006–

1011

Van Buchem MA, Steens SCA, Vrooman HA, Zwinderman AH,

McGowan JC, Rassek M, Engelbrecht V. Global estimation of

myelination in the developing brain on the basis of magne-

tization transfer imaging: a preliminary study. AJNR Am J

Neuroradiol 2001; 22: 762–766

(8)

van der Knaap MS, Valk J. MR imaging of the various stages of normal myelination during the first year of life. Neuro- radiology 1990; 31: 459–470

van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader H, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996; 200: 389–396

Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of ‘premyelination’ by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19:

28–33

Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain.In: Minkowski A,ed.Regional devel- opment of the brain in early life. Oxford: Blackwell, 1967:

pp 3–70

Zhai G, Lin W, Wilber KP, Gerig G, Gilmore JH. Comparison of re- gional white matter diffusion in healthy neonates and adults performed with a 3.0T head-only MR imaging unit.

Radiology 2003; 229: 673–681

Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE. Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Map 1997;

5: 218–221

5 Lysosomes and Lysosomal Disorders

Cavalli V, Corti M, Gruenberg J. Endocytosis and signaling cas- cades: a close encounter. Febs Lett 2001; 498: 190–196 Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariap-

pan M, von Figura K. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C

a

-formyl- glycine generating enzyme. Cell 2003; 113: 435–444.

Gerasimenko JV, Gerasimenko OV, Petersen OH. Membrane re- pair: Ca

2+

-elicited lysosomal exocytosis. Curr Biol 2001 ;11:

R971-R974

Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate recep- tors: new twists in the tale. Nat Rev 2003; 4: 202–212 Haltia M. The Neuronal Ceroid-Lipofuscinoses. J Neuropathol

Exp Neurol 2003; 62: 1–13

Mullins C, Bonifacino JS. The molecular machinery for lyso- some biogenesis. Bioessays 2001; 23: 333–343

Scriver CR, Beaudet AL, Sly WS,Valle D (eds).The metabolic and molecular basis of inherited disease. Lysosomal disorders.

McGraw-Hill, New York, 8th ed., 2001: pp 3371- 3896.

6 Metachromatic Leukodystrophy

Arbour LT, Silver K, Hechtman P, Treacy EP, Coulter-Mackie MB.

Variable onset of metachromatic leukodystrophy in a Viet- namese family. Pediatr Neurol 2000; 23: 173–176

Aurebeck G, Osterberg K, Blaw M, Chou S, Nelson E.Electron mi- croscopic observations on metachromatic leukodystrophy.

Arch Neurol 1964; 11: 273–288

Austin JH. Metachromatic form of diffuse cerebral sclerosis;

diagnosis during life by urine sediment examination. Neu- rology 1957; 7: 415–426

Barth ML, Fensom A, Harris A. The arylsulphatase A gene and molecular genetics of metachromatic leukodystrophy.

J Med Genet 1994; 31: 663–666

Bass NH,Witmer EJ, Dreifuss FE. A pedigree study of metachro- matic leukodystrophy. Neurology 1970; 20: 52–62 Baumann N, Masson M, Carreau V, Lefevre M, Herschkowitz N,

Turpin JC. Adult forms of metachromatic leukodystrophy:

clinical and biochemical approach. Dev Neurosci 1991; 13:

211–215

Baumann N, Turpin JC, Lefevre M, Colsch B. Motor and psycho- cognitive types in adult metachromatic leukodystrophy:

genotype-phenotype relationship? J Physiol 2002; 96: 301–

306

Berger J, Löschl B, Bernheimer H, Lugowska A,Tylki-Szymanska A, Gieselmann V, Molzer B. Occurrence, distribution, and phenotype of arylsulfatase A mutations in patients with metachromatic leukodystrophy. Am J Med Genet 1997; 69:

335–340

Berger J, Gmach M, Mayr U, Molzer B, Bernheimer H. Coinci- dence of two novel arylsulfatase A alleles and mutation 459+1G>A within a family with metachromatic leukodys- trophy: molecular basis of phenotypic heterogeneity. Hum Mutat 1999; 13: 61–68

Cengiz N, Özbenli T, Onar M, Yildiz L, Erta OB. Adult metachro- matic leukodystrophy: three cases with normal nerve con- duction velocities in a family. Acta Neurol Scand 2002; 105:

454–457

Clarke JTR, Skomorowski MA, Chang PL. Marked clinical differ- ence between two sibs affected with juvenile metachro- matic leukodystrophy. Am J Med Genet 1989; 33: 10–13 Comabella M, Waye JS, Raguer N, Eng B, Domínguez C, Navarro

C, Borras C, Krivit W, Montalban X. Late-onset metachro- matic leukodystrophy clinically presenting as isolated pe- ripheral neuropathy: compound heterozygosity for the IVS2+1G A mutation and a newly identified missense mu- tation (Thr408Ile) in a Spanish family. Ann Neurol 2001; 50:

108–112

Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bor- dignon C, Naldini L. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neu- ropathology and protection against learning impairments in affected mice. Nat Med 2001; 7: 310–316

Coulter-Mackie MB, Gagnier L.Two novel mutations in the aryl- sufatase A gene associated with juvenile (R39OQ) and adult onset (H397Y) metachromatic leukodystrophy. Hum Mutat 1998; suppl 1: S254–S256

Dayan AD. Peripheral neuropathy of metachromatic leucodys- trophy: observations on segmental demyelination and re- myelination and the intracellular distribution of sulphatide.

J Neurol Neurosurg Psychiatry 1967; 30: 311–318

Faerber EN, Melvin JJ, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol 1999; 29:

669–672

Felice KJ, Gomez Lira M, Natowicz M, Grunnet ML,Tsongalis GJ, Sima AAF, Kaplan RF. Adult-onset MLD: a gene mutation with isolated polyneuropathy. Neurology 2000; 55: 1036–

1039

Francis GS, Bonni A, Shen N, Hechtman P,Yamut B, Carpenter S, Karpati G, Chang PL. Metachromatic leukodystrophy: multi- ple nonfunctional and pseudodeficiency alleles in a pedi- gree: problems with diagnosis and counseling. Ann Neurol 1993; 34: 212–218

Gieselmann V, von Figura K. Advances in the molecular genet- ics of metachromatic leukodystrophy. J Inherit Metab Dis 1990; 13: 560–571

Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase

A pseudodeficiency: loss of a polyadenylation signal and

N-glycosylation site. Proc Natl Acad Sci 1989; 86: 9436–9440

(9)

Gieselmann V, Fluharty AL,Tonnesen T, von Figura K. Mutations in the arylsulfatase A pseudodeficiency allele causing metachromatic leukodystrophy. Am J Hum Genet 1991; 49:

407–413

Gieselmann V, Zlotogora J, Harris A,Wenger DA, Morris CP. Mol- ecular genetics of metachromatic leukodystrophy. Hum Mutat 1994; 4: 233–242

Gieselmann V, Polten A, Kreysing J, von Figura K. Molecular genetics of metachromatic leukodystrophy. J Inherit Metab Dis 1994; 17: 500–509

Gieselmann V, Polten A, Kreysing J, von Figura K. Molecular ge- netics of metachromatic leukodystrophy. J Inherit Metab Dis 1994; 17: 500–509

Gieselmann V, Matzner U, Hess B, Lüllmann-Rauch R, Coenen R, Hartmann D, D’Hooge R, Dedeyn P, Nagels G. Metachromat- ic leukodystrophy: molecular genetics and an animal mod- el. J Inherit Metab Dis 1998; 21: 564–574

Gieselmann V.Metachromatic leukodystrophy:recent research developments. J Child Neurol 2003; 18: 591–594

Gieselmann V, Franken S, Klein D, Mansson JE, Sandhoff R, Lüll- mann Rauch R, Hartmann D, Saravanan VPM, de Deyn PP, D’Hooge R, van der Linden AM, Schaeren-Wiemers N.

Metachromatic leukodystrophy: consequences of sul- phatide accumulation. Acta Paediatr Suppl 2003; 443:

74–79

Ginsberg L, Gershfeld NL. Membrane bilayer instability and the pathogenesis of disorders of myelin. Neurosci Lett 1991;

130: 133–136.

Gort L, Coll MJ, Chabas A. Identification of 12 novel mutations and two new polymorphisms in the arylsulfatase A gene:

haplotype and genotype-phenotype correlation studies in Spanish metachromatic leukodystrophy patients.Hum Mu- tat 1999; 14: 240–248

Grégoire A, Périer O, Dustin P. Metachromatic leukodystrophy, an electron microscopic study. J Neuropathol Exp Neurol 1966; 25: 617–636

Guffon N, Souillet G, Maire I, Dorche C, Mathieu M, Guibaud P.

Juvenile metachromatic leukodystrophy: neurological out- come two years after bone marrow transplantation.J Inher- it Metab Dis 1995; 18: 159–161

Haltia T, Palo J, Haltia M, Icen A. Juvenile metachromatic leukodystrophy: clinical, biochemical, and neuropathologic studies in nine new cases. Arch Neurol 1980; 37: 42–46 Harvey JS, Carey WF, Morris CP. Importance of the glycosylation

and polyadenylation variants in metachromatic leukodys- trophy pseudodeficiency phenotype. Hum Mol Genet 1998; 7: 1215–1219

Holtschmidt H, Sandhoff K, Kwon HY, Harzer K, Nakano T, Suzu- ki K. Sulfatide activator protein. J Biol Chem 1991; 266:

7556–7560

Inui K, Furukawa M, Nishimoto J, Okada S,Yabuuchi H. Metabo- lism of cerebroside sulphate and subcellular distribution of its metabolites in cultured skin fibroblasts derived from controls, metachromatic leukodystrophy, globoid cell leukodystrophy and Farber disease. J Inherit Metab Dis 1987; 10: 293–296

Inui K, Furukawa M, Okada S, Yabuuchi H. Metabolism of cere- broside sulfate and subcellular distribution of its metabo- lites in cultured skin fibroblasts from controls, metachro- matic leukodystrophy, and globoic cell leukodystrophy.

J Clin Invest 1988; 81: 310–317

Jayakumar PN, Aroor SR, Jha RK, Arya BYT. Computed tomogra- phy (CT) in late infantile metachromatic leucodystrophy.

Acta Neurol Scand 1989; 79: 23–26

Jervis GA. Infantile metachromatic leukodystrophy. J Neu- ropathol Exp Neurol 1960; 19: 323–340

Kapaun P, Dittmann RW, Granitzny B, Eickhoff W, Wulbrand H, Neumaier-Probst E, Zander A, Kohlschüetter A. Slow pro- gression of juvenile metachromatic leukodystrophy 6 years after bone marrow transplantation. J Child Neurol 1999;

222–228

Kappler J, von Figura K, Gieselmann V. Late-onset metachro- matic leukodystrophy: molecular pathology in two sib- lings. Ann Neurol 1992; 31: 256–261

Kidd D, Nelson J, Jones F, Dusoir H, Wallace I, McKinstry S, Pat- terson V. Long-term stabilization after bone marrow trans- plantation in juvenile metachromatic leukodystrophy. Arch Neurol 1998; 55: 98–99

Kim TS, Kim IO, Kim WS, Choi YS, Lee JY, Kim OW, Yeon KM, Kim KJ, Hwang YS. MR of childhood metachromatic leukodys- trophy. AJNR Am J Neuroradiol 1997; 18: 733–738 Kreysing J, von Figura K, Gieselmann V. Structure of the arylsul-

fatase A gene. Eur J Biochem 1990; 191: 627–631

Krivit W, Shapiro E, Kennedy W, Lipton M, Lockman L, Smith S, Gail Summers C, Wenger DA, Tsai MY, Ramsay NKC, Kersey JH, Yao JK, Kaye E. Treatment of late infantile metachromat- ic leukodystrophy by bone marrow transplantation. N Engl J Med 1990; 322: 28–32

Krivit W, Shapiro E, Hoogerbrugge PM, Moser HW. State of the art review: bone marrow transplantation treatment for storage diseases. Bone Marrow Transplant 1992; 10 (suppl 1): 87–96

Krivit W, Lockman LA, Watkins PA, Hirsch J, Shapiro EG. The fu- ture for treatment by bone marrow transplantation for adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy and Hurler syndrome. J Inherit Metab Dis 1995; 18: 398–412

Landrieu, P, Blanche S, Vanier MT, Metral S, Husson B, Sandhoff K, Fischer A. Bone marrow transplantation in metachromat- ic leukodystrophy caused by saposin-B deficiency: a case report with a 3-year follow-up period. J Pediatr 1998; 133:

129–132

Leistner S,Young E, Meaney C, Winchester B. Pseudodeficiency of arylsulphatase A: strategy for clarification of genotype in families of subjects with low ASA activity and neurological symptoms. J Inherit Metab Dis 1995; 18: 710–716

McKhann GM Metachromatic leukodystrophy: clinical and enzymatic parameters. Neuropediatrics 1984; 15: 4–10 Malm G, Ringdén O, Winiarski J, Gröndahl E, Uvebrant P, Eriks-

son U, Håkansson H, Skjeldal O, Månsson JE. Clinical out- come in four children with metachromatic leukodystrophy treated by bone marrow transplantation. Bone Marrow Transplant 1996; 17: 1003–1008

Matzner U, Hartmann D, Lüllmmann-Rauch R, Coenen R, Rothert F, Månsson JE, Fredman P, D’Hooge R, De Deyn PP, Gieselmann V. Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy:

effects on visceral and nervous system disease manifesta- tions. Gene Ther 2002; 9: 53–63

Mei Liu H. Ultrastructure of central nervous system lesions in metachromatic leukodystrophy with special reference to morphogenesis. J Neuropathol Exp Neurol 1968; 27:

624–644

Minamikawa-Tachino R, Maeda Y, Fujishiro I, Itoh K, Satake A, Aoki S, Yamada H, Suzuki Y, Sakuraba H. Three-dimensional brain visualization for metachromatic leukodystrophy.

Brain Dev 1996; 18: 394–399

Navarro C, Fernandez JM, Domínguez C, Fachal C, Albarez M.

Late juvenile metachromatic leukodystrophy treated with bone marrow transplantation: a 4-year follow-up study.

Neurology 1996; 46: 254–256

(10)

Norman RM, Urich H, Tingey AH. Metachromatic leuco-en- cephalopathy: a form of lipidosis. Brain 1960; 83: 369–380 Penzien JM, Kappler J, Herschkowitz N, Schuknecht B,

Keinekugel P, Propping P, Tonnesen T, Lou H, Moser H, Zierz S, Conzelmann E, Gieselmann V. Compound heterozygosity for metachromatic leukodystrophy and arylsulfatase A pseudodeficiency alleles is not associated with progressive neurological disease. Am J Hum Genet 1993; 52: 557–564 Polten A, Fluharty AL, Fluharty CB, Kappler J, von Figura K,

Gieselmann V. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 1991; 324:

18–22

Pridjian G, Humbert J, Willis J, Shapira E. Presymptomatic late- infantile metachromatic leukodystrophy treated with bone marrow transplantation. J Pediatr 1994; 125: 755–758 Qu Y, Shapira E, Desnick RJ. Metachromatic leukodystrophy:

subtype genotype/phenotype correlations and identifica- tion of novel missense mutations (P148L and P191T) caus- ing the junvenile-onset disease. Mol Genet Metab 1999; 67:

206–212

Regis S, Filocamo M, Corsolini F, Caroli F, Keulemans JLM, Digge- len van OP, Gatti R. An Asn >Lys substitution in saposin B in- volving a conserved amino acidic residue and leading to the loss of the sinle N-glycosylation site in a patient with metachromatic leukodystrophy and normal arylsulphatase A activity. Eur J Hum Genet 1999; 7: 125–130

Regis S, Corsolini F, Stroppiano M, Cusano R, Filocamo M. Con- tribution of arylsulfatase A mutations located on the same allele to enzyme activity reduction and metachromatic leukodystrophy severity. Hum Genet 2002; 110: 351–355 Reider-Grosswasser I, Bornstein N. CT and MRI in late-onset

metachromatic leukodystrophy. Acta Neurol Scand 1987;

75: 64–69

Sangalli A, Taveggia C, Salviati A, Wrabetz L, Bordignon C, Sev- erini GM. Transduced fibroblasts and metachromatic leukodystrophy lymphocytes transfer arylsulfatase A to myelinating Glia and deficient cells in vitro. Hum Gene Ther 1998; 9: 2111–2119

Schlote W, Harzer K, Christomanou H, Paton BC, Kustermann B, Schmid B, Seeger J, Beudt U, Schuster I, Langenbeck U.

Sphingolipid activator protein 1 deficiency in metachro- matic leucodystrophy with normal arylsulphatase A activi- ty. A clinical, morphological, biochemical, and immunolog- ical study. Eur J Pediatr 1991; 150: 584–591

Scholz W. Klinische, pathologisch-anatomische und erbbiologi- sche Untersuchungen.Z Neurol Psychiatrie 1925;99:651–717 Shapiro EG, Lockman LA, Knopman D, Krivit W. Characteristics of the dementia in late-onset metachromatic leukodystro- phy. Neurology 1994; 44: 662–665

Solders G, Celsing G, Hagenfeldt L, Ljungman P, Isberg B, Ringdén O. Improved peripheral nerve conduction, EEG and verbal IQ after bone marrow transplantation for adult metachromatic leukodystrophy. Bone Marrow Transplant 1998; 22: 1119–1122

Stillman AE, Krivit W, Shapiro E, Lockman L, Latchaw RE. Serial MR after bone marrow transplantation in two patients with metachromatic leukodystrophy. AJNR Am J Neuroradiol 1994; 15: 1929–1932

Tylki-Szymañska A, Czartoryska B, Lugowska A. Practical sug- gestions in diagnosing metachromatic leukodystrophy in probands and in testing family members. Eur Neurol 1998;

40: 67–70

Van Bogaert L, Dewulf A. Diffuse progressive leukodystrophy in the adult with production of metachromatic degenera- tive products (Alzheimer-Baroncini). Arch Neurol Psychia- try 1939; 42: 1083–1097

Von Hirsch T, Pfeiffer J. Über histologische Methoden in der Dif- ferentialdiagnose von Leukodystrophien und Lipoidosen.

Arch Psychiatrie Z Neurol 1955; 194: 88–104

Wrobe D, Henseler M. Huettler S, Pascual Pascual SI, Chabas A, Sandhoff K. A non-glycosylated and functionally deficient mutant (N215H) of the sphingolidpid activator protein B (SAP-B) in a novel case of metachromatic leukodystrophy (MLD). J Inherit Metab Dis 2000; 23: 63–76

Zafeiriou DI, Kontopoulos EE, Michelakakis HM, Anastasiou AL, Gombakis NP. Neurophysiology and MRI in late-infantile metachromatic leukodystrophy. Pediatr Neurol 1999; 21:

843–846

Zhang XL, Rafi MA, DeGala G, Wenger DA. Insertion in the mR- NA of a metachromatic leukodystrophy patient with sphin- golipid activator protein-1 deficiency. Proc Natl Acad Sci 1990; 87: 1426–1430

7 Multiple Sulfatase Deficiency

Al-Moutaery KR, Choudhury AR, Hassanen MO. Cervical cord compression and severe hydrocephalus in a child with Saudi variant of multiple sulfatase deficiency. Acta Neu- rochir (Wien) 1994; 131: 160–163

Aqeel AA, Ozand PT, Brismar J, Gascon GG, Brismar G, Nester M, Sakati N. Saudi variant of multiple sulfatase deficiency.

J Child Neurol 1992; 7 (suppl): S12–S21

Austin JH. Studies in metachromatic leukodystrophy. Arch Neurol 1973; 28: 258–264

Basner R, von Figura K, Glössl J, Klein U, Kresse H, Mlekusch W.

Multiple deficiency of mucopolysaccharide sulfatases in mucosulfatidosis. Pediatr Res 1979; 13: 1316–1318 Bateman BJ, Philippart M, Isenberg SJ. Ocular features of multi-

ple sulfatase deficiency and a new variant of metachromat- ic leukodystrophy. J Pediatr Ophthalmol Strabismus 1984;

21: 133–139

Bharucha BA, Nalk G, Savliwala AS, Joshi RM, Kumta NB.Siblings with the Austin variant of metachromatic leukodystrophy multiple sulfatidosis. Indian J Pediatr 1984; 51: 477–480 Burch M, Fesnom AH, Jackson M, Pitts-Tucker T, Congdon PJ.

Multiple sulphatase deficiency presenting at birth. Clin Genet 1986; 30: 409–415

Burk RD,Valle D,Thomas GH, Miller C, Moser A, Moser H, Rosen- baum KN. Early manifestations of multiple sulfatase defi- ciency. J Pediatr 1984; 104: 574–578

Conary JT, Hasilik A, von Figura K. Synthesis and stability of steroid sulfatase in fibroblasts from multiple sulfatase defi- ciency. Biol Chem Hoppe-Seyler 1988; 369: 297–302 Constantopoulos G. Multiple sulfatase deficiency with a novel

biochemical presentation. Eur J Pediatr 1988; 147: 634–638 Cosmo MP, Pepe S, Annuziata I, Newbold RF, Grompe M, Paren- ti G, Ballabio A. The multiple sulfatase deficiency gene encodes and essential and limiting factor for the activity of sulfatases. Cell 2003; 113: 445–456

Fedde K, Horwitz AL. Complementation of multiple sulfatase deficiency in somatic cell hybrids. Am J Hum Genet 1984;

36: 623–633

Guerra WF, Verity A, Fluharty AL, Nguyen HT, Philippart M. Mul- tiple sulfatase deficiency: clinical, neuropathological, ultra- structural and biochemical studies. J Neuropathol Exp Neu- rol 1990; 49: 406–423

Harbord M, Buncic JR, Chuang SA, Skomorowski MA, Clarke

JTR. Multiple sulfatase deficiency with early severe retinal

degeneration. J Child Neurol 1991; 6: 229–235

Riferimenti

Documenti correlati

“The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods”.. Howseman

I mezzi di contrasto in RM prendono il nome di magnetofarmaci ed agiscono sulle costanti di tempo T1 e T2 modificando temporaneamente le proprietà magnetiche delle

pixels indicate regions of increased, unchanged and decreased isotropy diffusion, respectively. b) A region of p decrease inside the tumor (blue area): these areas were

- WMH, MB, TBV, MD, indirectly related to cognitive index and psychomotor speed via global efficiency - Nodes with the strongest associations with cognitive index and

Questa ampia zona ad ovest della città, come pure la grande area a nord a cavallo della ferrovia (Ex Ferriera, ex Everest, Ex Olivetti, Pierina), possiede un grande potenziale per

The major biochemical changes related to processes of brain maturation are reflected in spectroscopic changes (Figs. 108.4) of neonatal brain is a very high PME peak, in particu- lar

Fiber tracking can benefi t from parallel imaging in a number of ways: reduced distortions result in fi ber tracts that more closely match true anatomy as well as other, less

Attenuation correction using count-limited trans- mission data in positron emission tomography.. Local threshold for segmented attenuation cor- rection of PET imaging of