• Non ci sono risultati.

Permanent Magnet Synchronous Motors Control: Sensorless and Field-Weakening Operation

N/A
N/A
Protected

Academic year: 2021

Condividi "Permanent Magnet Synchronous Motors Control: Sensorless and Field-Weakening Operation"

Copied!
243
0
0

Testo completo

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

[ ] [ ]

[ ] [ ] [ ( ) ]

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

Current Reference Generator (torque to current, flux-weakening) 3-phase inverter D A D A + -Digital controller -+ + axes decoupling modulationPWM PMSM ∗ ∗ 𝑑∗ 𝑞∗ 𝑑 𝑒𝑔 𝑞 𝑒𝑔 𝑚∗ 𝑒∗ 𝑒𝑔 𝑑 ∗ 𝑞∗ 𝑑 𝑞 𝑎 𝑏 𝐷𝐶 ∗ ∗ 𝑙𝑖𝑚

position & speed estimation

1/ 𝑚𝑒

𝑚

(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)

𝑟 𝑚

̃

(76)
(77)

𝑟 𝑚

𝑡 𝑚

𝑑𝑒𝑔

(78)
(79)

𝑟 𝑚

(80)
(81)
(82)
(83)
(84)
(85)

(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
(100)
(101)

𝑟 𝑚

𝑑 𝑟 𝑚)

(102)

𝑟 𝑚

𝑑

𝑟 𝑚

(103)
(104)
(105)
(106)
(107)
(108)

Position & Speed Luenberger observer Error signal Position error feedback Est. rotor frame HF injection IPMSM BPF / HPF Estimator Est. rotor frame processing 𝜃 𝑚𝑒 𝑚𝑒 𝜃 𝑚𝑒 𝑖𝑏 𝑖𝑎

(109)
(110)
(111)

LPF MTPA Current Reference Generator dq ab Space Vector PWM MOSFET 3-Phase Inverter

Speed & position estimation High-Frequency Flux Injection HPFHPF D A D A compensation iib D A D A i ib IPMSM

TMS320F2811 Digital Signal Controller

a b c

(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)

𝑖 𝑖

√ ( 𝜃 )

(124)
(125)

⁄ ⁄

⁄ ⁄

(126)

⁄ ⁄ ⁄

√ ( 𝜃 )

(127)
(128)
(129)

𝑞

(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)

𝑎𝑚 𝑙𝑒 𝑎𝑚 𝑙𝑒 𝜃 𝐶 𝐷 𝑎𝑚 𝑙𝑒 𝑎𝑚 𝑙𝑒 𝐶 𝐷 [ ( )( )] [ 𝐶 𝐶 𝐷 𝐷] [𝑖𝑖 ] ( ) [ ( )( )] [ 𝐶 𝐶 𝐷 𝐷] [ 𝑖 𝑖 ] ( ) 𝜃 1 V V2 V2 V1 0 V V7 V0 t t t PWM T 1

sample sample2 sample3 sample4

(139)
(140)
(141)
(142)
(143)

𝑟 𝑚

(144)
(145)
(146)
(147)

(148)
(149)

(150)

𝐶 𝐷

𝐷

(151)

(152)
(153)

𝜃

(154)

̅ ̅ ̅

̅

(155)

(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)

(166)

𝑡

𝑟 𝑚

(167)
(168)

𝑡

(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)
(177)
(178)
(179)
(180)

-+

(181)
(182)
(183)
(184)

𝑑𝑞

𝑑

(185)
(186)
(187)

𝑑𝑞

∗ ∗

√ ⁄ ⁄

(188)
(189)

(190)
(191)

𝑑

(192)
(193)
(194)
(195)
(196)
(197)
(198)

[ ], [ ], [ ]

[ 𝑖 ( )𝑖 𝑖 ]

(199)

(200)

Riferimenti

Documenti correlati

Assuming the success of Phase III, the project measurements are to be transferred to the Capsule of the LSBB [1] for a Phase IV using twenty 50 liter BCs with a 2m all-around

Matsui, “Position sensorless control of interior permanent magnet synchronous motors using unknown input observer for high-speed drives,” IEEE Trans.. Industry

(Colour on-line) Pulse-shape particle identification plots (energy vs. charge rise-time) obtained with three different detectors having different resistivity non-homogeneities (as shown

The basic control schematic is shown in Fig. 11 Block scheme of speed control of the drive with single-phase induction motor and single-leg matrix converter. It deals with

A One-Phase System, also called a Single-Phase (SP) System works very much similar to a DC network and can be considered so far at any particular moment in time.. Electrical

Keywords: Modelling, Simulation, multi-phase synchronous motors, arbitrary rotor flux, Graphical modelling techniques, Power-Oriented Graphs.. Presenting

Function φ c (θ) of chained rotor flux can be developed in Fourier series of cosines with only odd harmonics, so vector K τ (θ) can be written as:.. Multi-phase

Apply- ing a proper state space transformation the system dynamics is expressed in a rotating frame assuming a very simple form (other approaches have been proposed in [7],[8]).On