• Non ci sono risultati.

Neutron number

N/A
N/A
Protected

Academic year: 2021

Condividi "Neutron number"

Copied!
12
0
0

Testo completo

(1)

Fig. 1. Photo taken at the 1997 Leuven School

Fig. 2. Photo taken at the 2003 Valencia School

Colour Section, Lect. Notes Phys.651, 211–222 (2004)

http://www.springerlink.com/  Springer-Verlag Berlin Heidelberg 2004c

(2)

Fig. 3. Chart of nuclides; see Fig. 1 of the Introduction by Huyse

Fig. 4. Spectroscopy of 135Te by means of neutron-transfer reactions; see Fig. 13 of the Introduction by Huyse

(3)

Fig. 5. Schematic representation of the two-neutron halo nucleus 11Li and one- neutron halo nucleus11Be; see Fig. 1 of the Lecture by Al-Khalili

000000 111111

00000000 11111111

000000 000000 111111 111111 00000000

11111111

0000 1111

00000000 00000000 0000 11111111 11111111 1111 000000

111111

000000 000000 000 111111 111111 000111 000111 111 0000 0000 0000 0000 0000

1111 1111 1111 1111 1111

00000000 00000000 00000000 00000000 00000000

11111111 11111111 11111111 11111111 11111111

00 11

000000 000000 000000 111111 111111 111111 000000

000000 000 111111 111111 111

000000 000000 000000 111111 111111 111111

000000 000000 000 111111 111111 111 000000 000000 000 111111 111111 111000000

111111 00 11

4 1

0C 2 N

1

N 1C

2 5 1

19C 19 1

8

N

2 17B B

3C 3

1

1 9N

N

6

2 21N22N23N 2

1 C

3 O

B

2

5

N

3

B

2 1

14

8 C

1

13 12

He

1

2 1

8 9

1 1

N

B

0

Be

1

1

1 12B 13B1B15B 14C 15C 16C 17C 18C

6N 1 17N

4 7O

1 22O

9 8

0

24

4

6O 18O19O20O21O

1Be 10Be1

7 6 5 4 3 2

7

2

C

11

Be

1

9Be 14Be

11Li 9Li 7Li 6Li

O

7

4 8

5

10

9

O

C

He 0

3 H D T

1

n

8Li 4O O1 3 1

Proton number

Neutron number

10He 6He

Halo or skin?

2-n halos (Borromean) 1-neutron halos

He

Fig. 6. Chart of halo nuclei; see Fig. 2 of the Lecture by Al-Khalili

(4)

Ener gy Loss

Time of Flight

Z = 36 N = Z

Fig. 7. Nuclei produced in78Kr-induced fragmentation reactions; see Fig. 2 of the Lecture by Morrissey and Sherrill

(5)

Fig. 8. Nuclei produced in238U-induced fission reactions; see Fig. 3 of the Lecture by Morrissey and Sherrill

(6)

1 5 10 15 20 25 30 35 40 45 Neutron Number 1

5 10 15 20 25 30 35

NumberProton

50 Target Production

1 5 10 15 20 25 30 35 40 45 Neutron Number 1

5 10 15 20 25 30 35

NumberProton

50 Image 2 Cut

1 5 10 15 20 25 30 35 40 45 Neutron Number 1

5 10 15 20 25 30 35

NumberProton

50 Focal Plane Cut

Fig. 9. In-flight selection of nuclei produced in 86Kr-induced fragmentation reac- tions; see Fig. 6 of the Lecture by Morrissey and Sherrill

Fig. 10. Chart of nuclides showing scenarios for matter creation in stars; see Fig. 6 of the Lecture by Bosch

(7)

150m,g65+Dy15065+ Tb 14362+ 143m,g62+Eu Sm

15768+Er12755+Cs

15768+Tm 17375+ 16672+16672+

18078+Pt Re HfTa 15266+ 15266+Ho Dy

15969+

15969+13659+ TmYbPr

W 16471+

17174 Lu

16471+Hf 14563+ 12253+Gd I

17576+ 16170+ 13860+

16170+

16873+16873+

Os TaW Yb Nd

Lu 14965+Tb

15668+

15668+ ErTm

15467+

15467+ HoEr 16371+

14764+ 14764+ 14764+

Dy Tb Gd Lu 16572+16572+

17275+

16371+

17074+ HfTaRe

W Hf

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 8

7 6 5 4 3 2 1

0

Frequency / Hz

Intensity/arb.units

mass known mass unknown

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Intensity/arb.units

Frequency / Hz 143g 62+

143m 62+ Sm Sm 754 keV

33800 33900 34000 34100 34200 34300 34400 34500

(1 particle) (1 particle)

m/ m 700000D ~~

Fig. 11. Schottky spectrum of nuclei produced in209Bi-induced fragmentation re- actions and stored in the Experimental Storage Ring; see Fig. 9 of the Lecture by Bosch

stable nuclei known masses

’95 Schottky measurements

‘97 Schottky measurements

‘99 TOF measurements

‘00 TOF measurements unknown masses T > 1s unknown masses T < 1s

up to 95

ProtonNumber

Neutron Number

Areas of Mass Measurements in the ESR

unknown masses only

20 28

50

82

8 8

20 28

50

82

126 1 SMS-measurementst

2 SMS-measurementnd

1 TOF-measurementst 2 TOF-measurementnd

Fig. 12. Chart of nuclides showing the results obtained by mass measurements in the Experimental Storage Ring; see Fig. 12 of the Lecture by Bosch

(8)

Fig. 13. Time traces of Schottky lines left by stored206Tl ions; see Fig. 17 of the Lecture by Bosch

000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111

p

94Pd

93Rh+p

p

19%

25%

Tc+3p 12 91

8

4

0 16

(21 )

β

93Pd+p 92

Ru+2p 92 94

Ag

γ γ

>(37/2 )

(20 )

(7 )

+

+

Rh+2p

+

E (MeV)

.

.

90Rh+

α

90Ru+

α

Fig. 14. Decay modes of the (7+) and (21+) isomers of94Ag; see Fig. 17 of the Lecture by Roeckl

(9)

1 10 102

0 5 10 15 20 25 30

40 45 50 55 60 65 70 75 80 85 90

E lab p (MeV)

Θ lab p (deg.)

0 100 200 300

0 2 4 6 8

g.s. 3/2

-

2.03 1/2

-

4.37 5/2

-

6.45 7/2

-

a)

b)

E * (MeV)

11 C + p 40.6 A.MeV

Fig. 15. Elastic scattering of 11C nuclei on a hydrogen target; see Fig. 8 of the Lecture by Alamanos and Gillibert

(10)

N

Z

Applicability of the Statistical Model (n)

20 40 60 80 100 120 140 160

20 40 60 80

Rauscher, Thielemann, Kratz 1997

Fig. 16. Stellar temperatures used in statistical-model calculations of neutron- induced reactions; see Fig. 2 of the Lecture by Langanke, Thielemann and Wiescher

N

Z

Applicability of the Statistical Model (p)

20 40 60 80 100 120 140 160

20 40 60 80

T. Rauscher 1996

Fig. 17. Stellar temperatures used in statistical-model calculations of proton- induced reactions; see Fig. 3 of the Lecture by Langanke, Thielemann and Wiescher

(11)

0 0.1 0.2 0.3 0.4 0.5 0.6 101

102 103

Time After Bounce [s]

Radius [km]

(a)

A(60%) A(40%) A(20%) B(*5) B(*7) B(*10)

0.2 0.3 0.4 0.5

0 0.05 0.1 0.45 0.5 0.55

Time After Bounce [s]

Y

(b)

0 0.05 0.1 0.15 0.2 0.25

0.46 0.48 0.5 0.52 0.54 0.56 0.58

Mass Outside Masscut [M sun]

Electron Fraction

(c)

A(60%) at t=0.64s A(40%) at t=0.53s A(20%) at t=0.44s B(*5) at t=0.53s B(*7) at t=0.43s B(*10) at t=0.40s

0.2 0.3 0.4 0.5

0 1 2 3 4 5

Time After Bounce [s]

[MeV]

(d)

Fig. 18. Results obtained in simulations of core collapse and explosion of Type II Supernovae; see Fig. 18 of the Lecture by Langanke, Thielemann and Wiescher

150 150

160 160

170 170

180 180

N 80

85 90 95

Z

150 160 170 180

80 90

λ(n,f)βdf > 109 107< λ(n,f)/λβdf <109 105< λ(n,f)/λβdf <107 103< λ(n,f)βdf <105 10 < λ(n,f)βdf <103 1 < λ(n,f)/λβdf <10 0.1< λ(n,f)βdf <1 0.01< λ(n,f)/λβdf <0.1 βdf; λn,f << λβ

Sn ~ Qβ λn,f>0.1λβ; Pβdf=0

Fig. 19. Ratios of neutron-induced to beta-delayed fission probabilities predicted for nuclei of interest in r-process calculations; see Fig. 20 of the Lecture by Lan- ganke, Thielemann and Wiescher

(12)

Fig. 20. Computer tomography section through the head of a patient, taken in connection with heavy-ion tumor therapy; see Fig. 16 of the Lecture by Kraft- Weyrather

Riferimenti

Documenti correlati

The very possibility of the counter-intuitive itinerary from equality as a goal to basic equality, besides the traditional one going in the opposite

On the one hand, the Fermilab-MILC results need to be confirmed (or challenged) by other lattice collaborations before we can settle on the values of the hadronic matrix elements

The inclusive production of charged hadrons is driven by a combination of per- turbative and nonperturbative QCD phenomena, such as saturation of parton densities,

L’insistenza sulla libera contio infatti è sì propria della propaganda antinabidea, ma sembra al tempo stesso rispondere ad un motivo ‘promozionale’ di Nabide stesso, che

Baldarelli Maria Gabriella Università degli Studi di Bologna Professor Beretta Valentina Università degli Studi di Pavia PhD Student Bertini Umberto Università degli

In particular, Cur- vaTool was used for the analysis of a 30 m SRTM DEM of an area of the central sector of the Main Ethiopian Rift Valley (MER), in order to (i) produce a map of

Because the bootstrap method involves replacing the unknown cumulative distribution function of the LR test statistic by the empirical distribution function of the

The present paper aims at obtaining a further check of our Monte Carlo code by com- paring the results pertaining to the second order of scattering with those obtained by means of