• Non ci sono risultati.

Quantum kinetic models of open quantum systems

N/A
N/A
Protected

Academic year: 2021

Condividi "Quantum kinetic models of open quantum systems"

Copied!
44
0
0

Testo completo

(1)

Quantum kinetic models of open quantum systems

in semiconductor theory

Chiara Manzini

Scuola Normale Superiore di Pisa

Westf¨alische Wilhelms-Universit¨at M¨unster

29 Aprile 2005

(2)

Outlook

1- Motivation

2- Quantum kinetic formulation 3- Analytical difficulties

4- Open quantum systems: two examples 5- The three well-posedness results

6- New tools and perspectives

7- Final considerations

(3)

1- Motivation

Trend in semiconductor technology: miniaturization

=⇒ Challenge: simulation tools

Features of novel devices =⇒ Quantum effects

Prototype: Resonant Tunneling Diode

(4)

Doping

Density

Density

(5)

Quantum description

QS Quantum System with d degrees of freedom:

• a pure state of QS ↔ ψ ∈ L

2

(R

d

; C),

• a physical state of QS ↔ ρ ˆ “density matrix” on L

2

(R

d

; C) , i.e. ρ(x, y) ∈ L

2

(R

2d

; C) kernel

ρ(x, y) = X

j∈ N

λ

j

ψ

j

(x)ψ

j

(y)

| {z }

pure state

,

j

}

j

complete orthonormal set, λ

j

≥ 0, P

j

λ

j

= 1 . The position density:

n(x) = X

λ

j

j

|

2

(x) ∈ L

1

(R

d

; R

+

) ⇔ finite mass.

(6)

Quantum Evolution: reversible dynamics

( i

dtd

ψ

j

= −

12

x

ψ

j

+ V ψ

j

, j ∈ N, x ∈ R

d

−∆V (x, t) = n(x, t) = P

j

λ

j

j

|

2

(x, t) ρ(x, y, t) = X

j∈ N

λ

j

ψ

j

(x, t)ψ

j

(y, t) , {ψ

j

(t)}

j

⊂ L

2

(R

d

; C) E.g. evolution of an electron ensemble with d d.o.f.,

ballistic regime, mean-field approximation

(7)

Quantum Evolution: reversible dynamics

( i

dtd

ψ

j

= −

12

x

ψ

j

+ V ψ

j

, j ∈ N, x ∈ R

d

−∆V (x, t) = n(x, t) = P

j

λ

j

j

|

2

(x, t) w(x, v) = F

η→v

X

j∈N

λ

j

ψ

j

(x + η

2 )ψ

j

(x − η 2 )

Quantum Liouville equation: Wigner-Poisson

 w

t

+ v · ∇

x

w − Θ[V ]w = 0

−∆

x

V (x, t) = n[w](x, t) = R

w(x, v, t) dv

F

η→v

{Θ[V ]w}(x, v) := i [V (x + η/2)−V (x − η/2)]F

v→η

w(x, η)

(8)

2- Quantum Kinetic description

A physical state of QS ←→ a quasiprobability on the phase space, w : (x, v) ∈ R

2d

7→ R =⇒

w(x, v) := F

η→v

ρ 

x + η

2 , x − η 2

 ∈ L

2

(R

2d

; R )

w is the Wigner function for the physical state of QS The position density

n[w](x, t) :=

Z

w(x, v, t) dv

w ∈ L

2

(R

2d

; R ) 6⇒ n[w] well-defined, non-negative

(9)

3- Analytical difficulties

• w ∈ L

2

(R

2d

; R ) NOT ⇒ n[w] well-defined w(x, v, t)

><

0 ⇒ n[w](x, t) :=

Z

w(x, v, t) dv

><

0 Quantum counterpart :

j

(t)}

j

⊂ L

2

(R

d

; C), λ

j

≥ 0, P

j

λ

j

= 1

⇒ n(t) = P

j

λ

j

j

|

2

(t), kn(t)k

L1

< ∞ , ∀ t

⇒ (mass cons.) kψ

j

(t)k

2L2

= const.

First a-priori estimate for Schr.-Poisson systems

(10)

3- Analytical difficulties

• w ∈ L

2

(R

2d

; R ) NOT ⇒ n[w] well-defined

• e

kin

(x, t) :=

12

R

|v|

2

w(x, v, t) dv:

w(x, v, t)

><

0 ⇒ e

kin

(x, t)

><

0 Quantum cp. : E

kin

(t) :=

12

P

j

λ

j

k∇ψ

j

(t)k

L2

1 2

P

j

λ

j

k∇ψ

j

(t)k

2L2

+ 1

2 k∇V (t)k

2L2

| {z }

Epot2 (t)

=const.

(energy cons.) ⇒ k∇ψ

j

(t)k

2L2

= const.

(11)

Advantages

• w ∈ L

2

(R

2d

; R ) is necessary for a physical state of QS

• L

2

-setting is suitable for numerical approximation (cf.[Arnold. . . 96])

• pseudo-differential operator

kΘ[V ]wk

L2x,v

= k [V (x + η/2)−V (x − η/2)]F

v→η

wk

L2x,η

< Θ[V ]w, w >

L2v

= 0 (skew-simmetry) w

t

+ v · ∇

x

w − Θ[V ]w = 0

=⇒ kw(t)k

L2x,v

= const.

(12)

4- Open QS: irreversible dynamics

Motivation for quantum kinetic approach Two examples:

• electron ensemble with d d.o.f. in RTD

[Frensley90]: Time-dependent boundary conditions (b.c.) for w model ideal reservoir

⇒ Boundary-value problem for Wigner-Poisson:

• inflow time-dependent b.c. for w

• mixed Dirichlet-Neumann b.c. for V

Remark: Reformulation with

j

}

j

impossible:

λ NOT const.

(13)

4- Open QS: irreversible dynamics

Motivation for quantum kinetic approach Two examples:

• electron ensemble with d d.o.f. in RTD

• electron ensemble with d d.o.f. in GaAs:

electron-phonon interaction

Semiclassical cp. : Boltzmann for semiconductors

Density-matrix form. : NOT suitable for boundary-

value problems

(14)

Open QS: irreversible dynamics

w

t

+ v · ∇

x

w − Θ[V ]w = Qw

Qw =

1τ

(w − M

ρ

) ⇒ [Degond,. . .03] QDD,QET

(15)

Open QS: irreversible dynamics

w

t

+ v · ∇

x

w − Θ[V ]w = Qw

Qw =

1τ

(w − M

ρ

) ⇒ [Degond,. . .03] QDD,QET

Boltzmann-like collision operator

[Demeio, . . .04] ⇒ simulation

(16)

Open QS: irreversible dynamics

w

t

+ v · ∇

x

w − Θ[V ]w = Qw

Qw =

1τ

(w − M

ρ

) ⇒ [Degond,. . .03] QDD,QET

Boltzmann-like collision operator [Demeio, . . .04] ⇒ simulation

scattering term for electron-phonon interaction

[Fromlet, . . .99]

(17)

Open QS: irreversible dynamics

w

t

+ v · ∇

x

w − Θ[V ]w = Qw

Qw =

1τ

(w − M

ρ

) ⇒ [Degond,. . .03] QDD,QET

Boltzmann-like collision operator [Demeio, . . .04] ⇒ simulation

scattering term for electron-phonon interaction [Fromlet, . . .99]

quantum Fokker-Planck term [Castella, . . .00]

⇒ [Jüngel,. . .05] QHD

Classical cp. :Vlasov-Fokker-Planck

(18)

Quantum Fokker-Planck term

Qw = βdiv

v

(vw)+σ∆

v

w+2γdiv

v

(∇

x

w) + α∆

x

w (QFP) with α, β, γ ≥ 0, σ > 0.

[Caldeira . . .83]: QS= {electrons+reservoir}

β ∼ ξ coupling, σ ∼ T temp., γ, α ∼

T1

, ǫ ∼

Tξ

Lindblad condition: α σ ≥ γ

2

+ β

2

/16

Model Term Accuracy Lindblad

Classical β div

v

(vw) + σ∆

v

w O(ǫ

2

) NOT ok

Frictionless σ∆

v

w O(ǫ) ok

Quantum (QFP) O(ǫ

3

) ok

(19)

5- Three well-posedness results

WP system with inflow, time-dependent b.c. :

d = 1, global-in-time well-p. [M,Barletti04]

d = 3, local-in-time well-p. [M05]

WPFP system, d = 3 [Arnold,Dhamo,M05]:

global-in-time well-p., NEW a-priori estimates

⇒ NEW strategy for well-p. of WP(FP)

Common feature: L

2

-setting, ONLY kinetic tools

(20)

WP system with inflow b.c. d = 1, 3

( {∂

t

+ v · ∇

x

− Θ[V (t) + V

e

(t)]} w(t) = 0, t ≥ 0,

−∆

x

V (x, t) = n[w](x, t) = R

w(x, v, t) dv

(x, v) ∈ Ω × R

d

, Ω ⊂ R

d

open, bounded, convex, V

e

≡ V

e

(x, t), (x, t) ∈ R

d

× R

+

 

w(s, v, t) = γ(s, v, t), (s, v) ∈ Φ

in

, t ≥ 0, V (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

w(x, v, 0) = w

0

(x, v) Φ

in

:= 

(s, v) ∈ ∂Ω × R

d

| v· n(s) > 0

(21)

• Weighted space:

X

k

:= L

2

(Ω × R

d

; (1 + |v|

2k

)dxdv), d = 1, 3 ⇒ k = 1, 2 cf. [Markowich,. . . 89,Arnold,. . . 96]

Prop. : d = 3, w ∈ X

2

⇒ kn[w]k

L2

≤ Ckwk

X2

(22)

• Weighted space:

X

k

:= L

2

(Ω × R

d

; (1 + |v|

2k

)dxdv), d = 1, 3 ⇒ k = 1, 2 cf. [Markowich,. . . 89,Arnold,. . . 96]

Prop. : d = 3, w ∈ X

2

⇒ kn[w]k

L2

≤ Ckwk

X2

=⇒ V solution of Poisson pb. with n[w] ∈ L

2

(Ω) : V ∈ W

01,2

(Ω) ∩ W

2,2

(Ω), kV k

W2,2

≤ Ckn[w]k

L2

Define P : X

2

−→ W

2,2

(R

3

)

P : w ∈ X

2

7−→ V 7−→ P w ≡ V a.e. Ω, P w = 0 outside Σ

(23)

WP system with inflow b.c. in X 2

 

 

w

t

+ v · ∇

x

w − Θ[P w]w = 0, t ≥ 0,

w(s, v, t) = γ(s, v, t), (s, v) ∈ Φ

in

, t ≥ 0, w(x, v, 0) = w

0

(x, v) ∈ X

2

• for all u ∈ X

2

, kΘ[U ]uk

X2

: contains kv

i2

Θ[U ]uk

L2

F

η→v



v

i2

Θ[U ]u

= ∂

η2i

{ [U (x + η/2)−U (x − η/2)]F

v→η

u }

contains ∂

ηi

, ∂

x2i

U and v

i

, v

i2

u

(24)

WP system with inflow b.c. in X 2

 

 

w

t

+ v · ∇

x

w − Θ[P w]w = 0, t ≥ 0,

w(s, v, t) = γ(s, v, t), (s, v) ∈ Φ

in

, t ≥ 0, w(x, v, 0) = w

0

(x, v) ∈ X

2

• for all u ∈ X

2

, kΘ[U ]uk

X2

: contains kv

i2

Θ[U ]uk

L2

F

η→v



v

i2

Θ[U ]u

= ∂

η2i

{ [U (x + η/2)−U (x − η/2)]F

v→η

u } Prop. : kΘ[U ]uk

X2

≤ CkU k

W2,2(R3)

kuk

X2

⇒ kΘ[P w]wk

X2

≤ CkP wk

W2,2(R3)

kwk

X2

≤ Ckwk

2X

(25)

WP system with inflow b.c. in X 2

( {∂

t

− T

γ(t)

− Θ[P w](t)} w(t) = 0, t ≥ 0, w(x, v, 0) = w

0

(x, v) ∈ X

2

w(t) ∈ D(T

γ(t)

) := {u ∈ X

2

| v · ∇

x

u ∈ X

2

, u|

Φin

= γ(t)}

Remark ∀u

1

, u

2

∈ D(T

γ(t)

) ⇒ u

1

− u

2

∈ D(T

0

)

∀ p : [0, +∞) → X

2

, s.t. p(t) ∈ D(T

γ(t)

), ∀t ≥ 0

⇒ D(T

γ(t)

) = p(t) + D(T

0

)

(cf.[Barletti00])

(26)

WP system with inflow b.c. in X 2

( {∂

t

− T

γ(t)

− Θ[P w](t)} w(t) = 0, t ≥ 0, w(x, v, 0) = w

0

(x, v) ∈ X

2

∀ w : [0, +∞) → X

2

, s.t. w(t) ∈ D(T

γ(t)

), ∀t ≥ 0 w(t) = p(t) + u(t), with u : [0, +∞) → D(T

0

)

( {∂

t

− T

0

− L

p

(t) − Θ[P u](t)} u(t) = Q

p

(t) u(x, v, 0) = w

0

(x, v) − p(x, v, 0) ∈ D(T

0

) L

p

(t)u(t) := Θ[P p](t)u(t) + Θ[P u](t)p(t)

Q

p

(t) := −{∂

t

− T

γ(t)

− Θ[P p](t)} p(t)

(27)

WP system with inflow b.c. in X 2 : local-in- t solution

( {∂

t

− T

γ(t)

− Θ[P w](t)} w(t) = 0, t ≥ 0, w(x, v, 0) = w

0

(x, v) ∈ X

2

Theorem

∀ γ s.t. ∃ p as in (1) , ∀ w

0

∈ D(T

γ(0)

), ∃t

max

≤ ∞ s.t.

∃! classical solution w(t), ∀ t ∈ [0, t

max

).

If t

max

< ∞, then lim

tրtmax

kw(t)k

X2

= ∞.

• Ex. :

γ ∈ C

1

([0, ∞); L

2

(∂Ω × R

d

; (v· n(s))(1 + |v|

4

)dsdv))

• A priori estimates are needed for global-in-t result

(28)

WPFP system, d = 3

 

 

{∂

t

+ v · ∇

x

− Θ[V (t)]} w(t) = Qw(t)

−∆

x

V (x, t) = n[w](x, t) w(x, v, t = 0) = w

0

(x, v)

w ≡ w(x, v, t), (x, v, t) ∈ R

2d

× [0, ∞)

Qw = βdiv

v

(vw) + σ∆

v

w + 2γdiv(∇

x

w ) + α∆

x

w Assume α σ > γ

2

⇒ Q uniformly elliptic in x and v.

Classical cp. : Vlasov-PFP with

non-linear term: ∇

x

V · ∇

v

w ,

FP term: β div

v

(vw) + σ∆

v

w.

(29)

Existing results

“density matrix” ρ ˆ : [Arnold, . . .03]

global-in-t solution, by conservation laws.

Quantum Kinetic: L

1

-analysis [Cañizo, . . .04]

global-in-t solution, by ρ(t) ≥ 0 ˆ , cons. laws:

w(t) ∈ L

1

(R

2d

; R) ⇒ n[w](t) ∈ L

1

(R

d

) (mass cons.) ⇒ kn[w](t)k

L1

= const.

e

kin

[w](x, t)> −∞ ⇒ e

kin

[w](x, t)< ∞

INSTEAD keep to L

2

-setting, purely kinetic analysis

(30)

• Weighted space: X

2

:= L

2

(R

6

; (1 + |v|

4

)dxdv) Prop. : w ∈ X

2

⇒ kn[w]k

L2

≤ Ckwk

X2

=⇒ V (x) := 1

4π|x| ∗ n[w](x), x ∈ R

3

:

• V ∈ L /

p

, ∀p, ∇V = − x

4π|x|

3

∗ n[w] ∈ L

6

. F

v

Θ[V ]z(x, η) = i (V (x + η/2) − V (x − η/2))

| {z }

=:δV (x,η)

F

v

z(x, η)

For η fixed, kδV (. , η)k

L

≤ C |η|

12

kn[w]k

L2

1

(31)

• Weighted space: X

2

:= L

2

(R

6

; (1 + |v|

4

)dxdv)

• V ∈ L /

p

, ∀p, ∇V = − x

4π|x|

3

∗ n[w] ∈ L

6

.

• kΘ[V ]zk

L2

≤ Ckn[w]k

L2

k|η|

12

F

v

zk

L2

Prop. : w, z, ∇

v

z ∈ X

2

kΘ[V ]zk

X2

≤ C{ kzk

X2

+ k∇

v

zk

X2

} kwk

X2

⇒ parabolic reguralization is needed

(32)

The linear equation

w

t

= Aw(t), t > 0, Aw := −v · ∇

x

w + Qw w(t = 0) = w

0

∈ X

2

,

• {e

tA

, t ≥ 0} C

0

–semigroup on X

2

(cf. [Arnold, . . .02])

⇒ kw(t)k

L2

≤ e

23βt

kw

0

k

L2

, t ≥ 0

• w(x, v, t) = G(x, v, t)∗ w

0

(cf. [Sparber, . . .03]) ⇒

k∇

v

w(t)k

X2

≤ B t

−1/2

e

κt

kw

0

k

X2

, 0 < t ≤ T

0

(cf. classical cp. VPFP [Carpio98])

(33)

The non-linear equation

∀ T ∈ (0, ∞) fixed

w

t

= Aw(t)+(Θ[V ]w)(t), t ∈ [0, T ], w(t = 0) = w

0

, Y

T

:= {z ∈ C([0, T ]; X

2

) | ∇

v

z ∈ C((0, T ]; X

2

),

t

1/2

k∇

v

z(t)k

X2

≤ C

T

∀t ∈ (0, T )}.

∀ T < T

0

, the map w ∈ Y

T

7−→ w s. t. e e

w(t) = e

tA

w

0

+

Z

t

0

e

(t−s)A

(Θ[ e V ]w)(s) ds, t ∈ [0, T ] is a strict contraction on some ball of Y

τ

with

τ (kw

0

k

X2

).

(34)

The non-linear equation

∀ T ∈ (0, ∞) fixed

w

t

= Aw(t)+(Θ[V ]w)(t), t ∈ [0, T ], w(t = 0) = w

0

, Y

T

:= {z ∈ C([0, T ]; X

2

) | ∇

v

z ∈ C((0, T ]; X

2

),

t

1/2

k∇

v

z(t)k

X2

≤ C

T

∀t ∈ (0, T )}.

Existence and Uniqueness Theorem

∀ w

0

∈ X

2

, ∃ t

max

≤ ∞ s.t. ∃ ! mild solution w ∈ Y

T

, ∀ T < t

max

. If t

max

< ∞, then

lim

tրtmax

kw(t)k

X2

= ∞.

(35)

Global-in- t well-posedness

A priori estimates

kw(t)k

2

≤ e

32βt

kw

0

k

2

, t ≥ 0,

for k|v|

2

w(t)k

2

< ∞ 0 ≤ t ≤ T,

some L

p

-bounds for ∇

x

V (t) are needed

⇒Idea: get bounds for

x

V (t) depending on kw(t)k

2

Strategy: exploit dispersive effects of the free-str.

(cf. [Perthame96]) =⇒

estimate(define) ∇

x

V via integral equation

⇒ definition of n[w] is by-passed

Anticipation: global-in- t well-posedness WITHOUT

(36)

A priori estimate for electric field: WP case

E (x, t) = −∇V (x, t) = −

1 |x|x3

∗ n(x, t) Z

R3

v

w(x, v, t) dv = Z

R3

v

w

0

(x − vt, v) dv + Z

R3

v

Z

t

0

(Θ[V ]w)(x − vs, v, t − s) ds dv Correspondingly E into

E

0

(x, t) = − 1 4π

x

|x|

3

x

Z

R3

v

w

0

(x − vt, v) dv E

1

(x, t) = − 1

x

|x|

3

x

Z Z

t

(Θ[V ]w)(x − vs, v, t − s) ds

(37)

A priori estimate for electric field: WP, E 1

n

1

(x, t) = R R

t

0

(Θ[V ]w)(x − vs, v, t − s) ds dv Classical cp. : Vlasov-Poisson [Perthame96]

n

1

(x, t) = Z

R3

v

Z

t

0

E · ∇

v

w (x − vs, v, t − s) ds dv

= div

x

Z

R3

v

Z

t

0

s(E w)(x − vs, v, t − s) ds dv

• Θ[V ]w = F

η−1

(δV w) = F b

η−1

( W [E]· d ∇

v

w ) since δV (x, η) = V (x +

η2

) − V (x −

η2

)

= η · R

12

12

E(x − rη)dr =: W [E](x, η)· η

(38)

A priori estimate for electric field: WP, E 1

n

1

(x, t) = R R

t

0

(Θ[V ]w)(x − vs, v, t − s) ds dv

• Θ[V ]w = F

η−1

(δV w) = F b

η−1

( W [E]· d ∇

v

w ) since δV (x, η) = V (x +

η2

) − V (x −

η2

)

= η · R

12

12

E(x − rη)dr =: W [E](x, η)· η

n

1

(x, t) = Z

R3

v

Z

t

0

F

η−1

( W [E]· d ∇

v

w )(x − vs, v, t − s) ds

= div

x

Z

R3

Z

t

0

s F

η−1

(W [E] w)(x − vs, v, t − s)ds b

(39)

A priori estimate for electric field: WP, E 1

E

1

(x, t) = −

1 |x|x3

∗ n

1

(x, t) =

− div

x



1 4π

x

|x|3

 ∗ R

t

0

s R

F

η−1

(W [E] w)(x − vs, v, t−s)dvds b Lemma :

RF

η−1

(W [E] w)(x−vs, v, t−s)dv b

L2x

≤ s

−3/2

kE(t − s)k

L2

x

kw(t − s)k

L2x,v

Quantum case: just in L

2

.

Classical case: L

p

-version.

(40)

A priori estimate for electric field: WP, E 1

E

1

(x, t) = −

1 |x|x3

∗ n

1

(x, t) =

− div

x



1 4π

x

|x|3

 ∗ R

t

0

s R

F

η−1

(W [E] w)(x − vs, v, t−s)dvds b Lemma :

RF

η−1

(W [E] w)(x−vs, v, t−s)dv b

L2x

≤ s

−3/2

(kE

0

(t − s)k

L2

+ kE

1

(t − s)k

L2

) kw(t − s)k

L2

Prop. : kE

0

(t)k

L2

≤ C

T

t

−ω

with ω ∈ [0, 1)

⇒ kE

1

(t)k

L2

≤ C 

T, sup

s∈[0,T ]

kw(s)k

L2



t

1/2−ω

.

NEW : w ∈ C([0, T ]; L

2

) 7→ E [w] ∈ L

1

((0, T ]; L

2

)

(41)

A priori estimate for electric field: WP, E 0

E

0

(x, t) = − 1 4π

x

|x|

3

x

Z

w

0

(x − vt, v) dv Ex. Strichartz for free-str. [Castella-Perthame ’96],

Z

w

0

(x − vt, v)dv

L6x/5

≤ t

12

kw

0

k

L1

x(L6v/5)

, t > 0.

Let ∀ t ∈ (0, T ]

Z

w

0

(x − vt, v)dv

L6/5x

≤ C

T

t

−ω

, ω ∈ [0, 1)

(HP1)

⇒ kE

0

(t)k

2

≤ C

Z

w

0

(x − vt, v)dv

L6/5

≤ CC

T

t

−ω

(42)

WPFP: global-in- t, smooth solution

w(x, v, t) = G(t, x, v)∗w

0

+

Z

t

0

G(s, x, v)∗(Θ[V ]w)(t−s)ds

E

1

∈ L

1t

((0, T ]; L

[2,6]x

) by parabolic reguralization.

Classical cp. : VPFP [Castella98]

Remark: E(t) ∈ L

3

is needed for bootstraping kvw(t)k

2

, k|v|

2

w(t)k

2

≤ C, 0 ≤ t ≤ T, ∀ T.

Theorem[Arnold,Dhamo,M05]

∀ w

0

∈ X

2

s.t. (HP1) holds, ∃!w global mild solution, w(t) ∈ C

(R

6

), ∀t > 0,

n(t), E (t) ∈ C

(R

3

), ∀t > 0.

(43)

WPFP: global-in- t, smooth solution

w(x, v, t) = G(t, x, v)∗w

0

+

Z

t

0

G(s, x, v)∗(Θ[V ]w)(t−s)ds

E

1

∈ L

1t

((0, T ]; L

[2,6]x

) by parabolic reguralization.

Remarks

• NOT used pseudo-conformal law (cf. classical cp.)

• w ∈ C([0, T ]; L

2x,v

) 7→ E

1

[w] ∈ L

1t

((0, T ]; L

[2,6]x

) 7→

V

1

[w](x, t) := −

1 |x|x3

∗ E

1

[w](x, t)

⇒ V

1

[w] ∈ L

1t

((0, T ]; L

[6,∞]x

) ⇒ fixed-point-map for w

WPFP: global-in- t, smooth solution, without weights

(44)

7- Final considerations

• kinetic analysis, L

2

-framework:

physically consistent,

suitable for real device simulation,

admissable parallelism with classical cp.

• by-pass the definition of the particle density Perspectives

• WPFP: hypoelliptic case, WP d = 3, all-space case

• a priori estimates in the bounded domain case

• long-time-behaviour: decay t → ∞ of E(t), n(t)

Riferimenti

Documenti correlati

Standard setters have perceived risks related to a broad and indistinct adoption of FVM during the financial crisis, demonstrating a growing attention to accounting

Raman spectra collected on samples CGO31 and CGO34 support the conclusions driven from the results of impedance spectroscopy, suggesting that above the threshold temperature both

determinata parola perciò il suo impiego aiuta a comprendere se per ogni anno i termini relativi a Società e Comunità crescano in numero. L’incremento del valore percentuale con

 Differenza da concambio, quando le differenze contabili dipendono dall’entità dell’aumento di capitale della società post fusione a servizio dei soci della

La storia dell’arte campana del Quattrocento registra una serie notevole di presenze straniere, altamente qualificate e non limitate, ovviamente, alla sola

La procedura ha l’obiettivo di uniformare e razionalizzare il comportamento degli operatori sanitari che erogano assistenza sanitaria, fornire raccomandazioni di comportamento

Se l’urina non esce anche dopo aver provato a schiacciare il catetere: provare ad aspirare con lo schizzettone oppure eseguire un lavaggio con soluzione fisiologica per verificare