• Non ci sono risultati.

(ii) the use of complex mathematical models for the analysis of the experimental data

N/A
N/A
Protected

Academic year: 2021

Condividi "(ii) the use of complex mathematical models for the analysis of the experimental data"

Copied!
14
0
0

Testo completo

(1)

Conclusions

The potential offered by Solid State NMR has been exploited in order to get detailed and quanti- tative information about the dynamic processes occurring in crystalline solid phases. This work is mainly characterized by the combination of (i) the application of advanced SSNMR experi- ments, performed over an unconventional range of temperatures and at different instrumental frequencies; (ii) the use of complex mathematical models for the analysis of the experimental data; (iii) the exploitation of DFT calculations as a support to the experimental work.

The systems to which the developed SSNMR approaches were applied are four widely used non-steroidal anti-inflammatory drugs: Ibuprofen, Sodium Ibuprofen, Naproxen and Sodium Naproxen. These systems exhibit a quite similar chemical and crystal structure, for instance the presence of an isopropionic group (either acid of salified) bonded to an hydrophobic moiety, and the crystal structures which in all the cases presents regions with strong electrostatic interactions alternated with regions dominated by the hydrophobic fragments. In spite of this, as carried out from the thesis work, their dynamic behaviors were found to be quite different.

The system with the largest interconformational mobility was the di-hydrated form of Sodium Ibuprofen, where methyl rotations about their symmetry axes and the interconformational mo- tion of the isobuthyl group were found to be in the fast regime (frequencies larger than 106 Hz) and the π-flip of the aromatic ring was found to be in the intermediate regime (frequency between 103 and 106 Hz) at room temperature. All the molecular motions were quantitatively characterized by means of variable temperature13C CP-MAS spectra,13C chemical shift tensors ad 1H and 13C relaxation times, with the use of models for spectral simulation and fitting of relaxation data. It is worth noticing that for a system with many fast motions like this the contribution of Cryogenic NMR measurements was particularly relevant.

The acid form of Ibuprofen showed a different dynamic behavior, in particular the fast interconformational motions found were the rotation of the methyl groups and the π-flip of the cyclic dimeric structure formed by the acidic groups, while the interconformational motion of the isobuthyl group and the π-flip of the aromatic ring were found to be frozen and in the slow

(2)

regime, respectively. The rigidity, in particular of the aromatic fragment, allowed the effects of small-amplitude motions on 13C chemical shift tensors to be identified and analyzed. For this purpose, a combined SSNMR and DFT approach was developed and applied to Ibuprofen.

The validity of this solid state NMR/DFT method was checked also by variable temperature

13C chemical shift tensors measurements, and the results obtained suggest that in comparing experimental and calculated chemical shift tensors the role of vibrations should always be taken into account.

Naproxen and Sodium Naproxen crystalline forms show the most restricted interconforma- tional mobility. For both these samples only the rotations of methyl and methoxyl groups were identified and quantitatively characterized by the fitting of relaxation time data. The very rigid structure of the two compounds allowed interesting static interactions to be highlighted. In par- ticular, noticeable intermolecular ring current effects on 1H chemical shifts have been observed for both samples. The extent of these effects is different for different nuclei and for the same nucleus in the two forms. The observed ring current effects have been quantified by comparing the1H chemical shifts calculated in the crystal structures and for isolated molecules (“in vacuo”).

The three studies presented show how SSNMR approaches can be devised for the study of systems with different dynamic properties and that, with decreasing the degree of interconfor- mational mobility, other aspects, such as vibrational motions and ring current effects, can be highlighted. In all cases the wide range of temperature investigated, the combination of different experiments and the use of suitable mathematical models together with the support of DFT calculations led to a very detailed characterization of the systems studied.

(3)

Appendix A Euler Angles

In NMR, it is common to define rotation operators using the Euler angles between two axes frames, for example (X, Y, Z) and (x, y, z). Euler angles are generally labelled Ω = (α, β, γ).

Figure A.1: Operative definition of Euler angles [13]. The transformation of frame (X, Y, Z) into (x, y, z) is described by a rotation of (X, Y, Z) (a) by angle α about Z. This takes the (X, Y, Z) frame into (X1, Y1, Z). Then (b) a rotation of an angle β, about the Y2 axis resulting from the previous rotation, takes the (X1, Y1, Z) into (X2, Y1, Z2). Finally (c) there is a rotation of an angle γ about the new Z2axis, which takes (X2, Y1, Z2) into the (x, y, z) frame

Following the definition of ref. [13], the transformation of frame (X, Y, Z) into (x, y, z) is described by a rotation of (X, Y, Z) by angle α about Z. This takes the (X, Y, Z) frame into (X1, Y1, Z). Then a rotation of an angle β, about the Y2 axis resulting from the previous rotation, takes the (X1, Y1, Z) into (X2, Y1, Z2). Finally there is a rotation of an angle γ about the new

(4)

170 Euler Angles

Z2 axis, which takes (X2, Y1, Z2) into the (x, y, z) frame. The process is described in Figure A.1.

The relation between Euler angles and polar angles is often useful:

• (α, β) are the polar angles (θ, φ) of the z-axis in the (X, Y, Z) frame.

• (β, 180− γ) are the polar angles (θ, φ) of the Z-axis in the (x, y, z) frame.

Rotation of Cartesian axis frames can be performed through the rotation matrix R, which describes how to rotate an axis frame (x, y, z) fixed on an object within a frame (X, Y, Z), and therefore rotate the object in the process. The rotation matrix that performs this transformation is:

RZ(γ) =

cos γ − sin γ 0 sin γ cos γ 0

0 0 1

(A.1)

The rotation matrix describing the following rotation of β about Y is of the form:

RY(β) =

cos β 0 sin β

0 1 0

− sin β 0 cos β

(A.2)

Finally the last rotation of α about Z is described by:

RZ(α) =

cos α − sin α 0 sin α cos α 0

0 0 1

(A.3)

The total transformation matrix R(α, β, γ), to go from (X, Y, Z) to the final orientation (x, y, z), by multiplying the three matrices of Equations A.1, A.2, A.3:

R(α, β, γ) = RZ(α)RY(β)RZ(γ)=

cos α cos β cos γ − sin α sin γ − cos α cos β sin γ − sin α cos γ cos α sin β sin α cos β cos γ + cos α sin γ − sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ sin β sin γ cos β

(A.4)

At last, for the transformation of a cartesian tensor T from being expressed in frame (X, Y, Z) to being expressed in a frame (x, y, z), i.e. a passive rotation, the rotation matrix R(α, β, γ) of equation A.4 can be used as follows:

(5)

171

T (x, y, z) = R−1(α, β, γ) T (X, Y, Z) R(α, β, γ) (A.5)

(6)

172 Euler Angles

(7)

Bibliography

[1] Byrn, S. R.; Xu, W.; Newman, A. W. Adv. Drug Deliver. Rev. 2001, 48, 115–136.

[2] Geppi, M.; Mollica, G.; Borsacchi, S.; Veracini, C. A. Appl. Spectrosc. Rev. 2008, 43, 202–302.

[3] Bugay, D. E. Adv. Drug Deliver. Rev. 2001, 48, 43–65.

[4] Tishmack, P. A.; Bugay, D. E.; Byrn, S. R. J. Pharm. Sci. 2003, 92, 441–474.

[5] Brown, S. P.; Spiess, H. W. Chem. Rev. 2001, 101, 4125–4155.

[6] R. K. Harris, and R. E. Wasylishen, and M. Duer, NMR crystallography; 2009, John Wiley

& Sons.

[7] Abragam, A. Principles of Nuclear Magnetism; Oxford University Press, 1961.

[8] Levitt, M. H. Spin Dynamics, 2nd ed.; Wiley, 2008.

[9] Keeler, J. Understanding NMR Spectroscopy, 2nd ed.; Wiley, 2010.

[10] R. Ernst, G. Bodenhausen, A. W. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Oxford University Press, 1987.

[11] Marks, D.; Vega, S. J. Magn. Reson. Ser. A 1996, 118, 157–172.

[12] Harris, R. K.; Becker, E. D.; CabralDeMenezes, S. M.; Granger, P.; Hoffman, R. E.;

Zilm, K. W. Pure Appl. Chem. 2008, 80, 59–84.

[13] Duer, M. J. Solid-State NMR Spectroscopy; Blackwell Publishing, 2002.

[14] Bryce, D. L.; Bernard, G. M.; Gee, M.; Lumsden, M. D.; Eichele, K.; E.Wasylishen, R.

Can. J. Anal. Sci. Spect. 2001, 46, 46–82.

[15] Hodgkinson, P. in Encyclopedia of Nuclear Magnetic Resonance 46–82, R. K. Harris and R. E. Wasylishen Eds. John Wile and son.

[16] Connel, H. M. J. Chem. Phys. 1958, 28, 439–431.

(8)

174 BIBLIOGRAPHY

[17] Twyman, J. M.; Dobsons, C. M. J. Chem. Soc., Chem. Commun. 1988, 12, 786 – 788.

[18] Rothwell, W. P.; Waugh, J. S. J. Chem. Phys 1981, 74, 2721.

[19] VanderHart, D. L.; Earl, W. L.; Garroway, A. N. J. Chem. Phys. 1981, 44, 361–401.

[20] Redfield, A. G. Adv. Magn. Res. 1965, 1, 1–32.

[21] Redfield, A. G. Science 1969, 164, 1015–1023.

[22] Kenwright, a. M.; Say, B. J. Solid State Nucl. Magn. Reson. 1996, 7, 85–93.

[23] Geppi, M.; Harris, R. K.; Kenwright, a. M.; Say, B. J. Solid State Nucl. Magn. Reson.

1998, 12, 15–20.

[24] Mcbrierty, V. J.; Parcker, K. J. Nuclear Magnetic Resonance in Solid Polymers; 1993, Cambridge University Press.

[25] VanderHart, D. L.; Garroway, A. N. J. Chem. Phys. 1979, 71, 2773–2787.

[26] Carignani, E.; Borsacchi, S.; Geppi, M. Chemphyschem 2011, 12, 974–81.

[27] Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. Rev. 1948, 73, 679–712.

[28] Beckmann, P. A. Phys. Rep 1988, 171, 85–128.

[29] Gutowsky, H. S.; Pake, G. E. J. Chem. Phys. 1950, 18, 162.

[30] Andrew, E. R. J. Chem. Phys. 1950, 18, 607.

[31] Stejskal, E. O.; Gutowsky, H. S. J. Chem. Phys. 1958, 28, 388.

[32] Stejskal, E. O.; Woessner, D. E.; Farrar, T. C.; Gutowsky, H. S. J. Chem. Phys. 1959, 31, 55.

[33] Latanowicz, L. Concepts Magn. Res. A 2005, 27A, 38–53.

[34] a.J. Horsewill, Prog. Nucl. Magn. Reson. Spect. 1999, 35, 359–389.

[35] Latanowicz, L. J. Phys. Chem. A 2004, 108, 11172–11182.

[36] Maricq, M.; Waugh, J. S. J. Chem. Phys. 1979, 70, 3300–3316.

[37] Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1973, 59, 569–590.

[38] Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1972, 56, 1776–1777.

[39] Concistr`e, M.; Gansm¨uller, A.; McLean, N.; Johannessen, O. G.; Mar´ın Montesinos, I.;

Bovee-Geurts, P. H. M.; Verdegem, P.; Lugtenburg, J.; Brown, R. C. D.; DeGrip, W. J.;

Levitt, M. H. J. Am. Chem. Soc. 2008, 130, 10490–1.

[40] Bielecki, A.; Burum, D. P. J. Magn. Reson. Ser. A 1995, 116, 215 – 220.

(9)

BIBLIOGRAPHY 175

[41] Neue, G.; Dybowski, C. Solid State Nucl. Magn. Reson. 1997, 7, 333 – 336.

[42] Sarkar, R.; Concistr`e, M.; Johannessen, O. G.; Beckett, P.; Denning, M.; Carravetta, M.;

Al-Mosawi, M.; Beduz, C.; Yang, Y.; Levitt, M. H. J. Magn. Reson. 2011, 212, 460–3.

[43] Beduz, C. et al. Proc. Nat. Acad. Sci. USA 2012, 109, 12894–12898.

[44] Thurber, K. R.; Tycko, R. J. Magn. Reson. 2008, 195, 179–86.

[45] Carravetta, M.; Johannessen, O. G.; Levitt, M. H.; Heinmaa, I.; Stern, R.; Samoson, a.;

Horsewill, a. J.; Murata, Y.; Komatsu, K. J. Chem. Phys. 2006, 124, 104507.

[46] Hackmann, A.; Seidel, H.; Kendrick, R.; Myhre, P.; Yannoni, C. J. Magn. Reson. (1969) 1988, 79, 148 – 153.

[47] Yannoni, C. S.; Myhre, P. C.; Webb, G. G. J. Am. Chem. Soc. 1990, 112, 8991–8992.

[48] Myhre, P. C.; Webb, G. G.; Yannoni, C. S. J. Am. Chem. Soc. 1990, 112, 8992–8994.

[49] Hodgkinson, P. Prog. Nucl. Magn. Reson. Spect. 2005, 46, 197–222.

[50] Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G. J. Chem. Phys.

1995, 103, 6951.

[51] Fung, B. M.; Khitrin, A. K.; Ermolaev, K. J. Magn. Reson. 2000, 142, 97–101.

[52] Laws, D. D.; Bitter, H.-M. L.; Jerschow, A. Angew. Chem. Int. Edit. 2002, 41, 3096–129.

[53] E. Vinogradov, P. K. Madhu, S. V. Topics in Current Chemistry 2004, in New Techniques in Solid-State NMR, Vol. 246, .

[54] Lee, M.; Goldburg, W. Phys. Rev. 1965, 140, A1261–A1271.

[55] Bielecki, A.; Kolbert, A.; Levitt, M. Chem. Phys. Lett. 1989, 155, 341 – 346.

[56] Sakellariou, D.; Lesage, A.; Hodgkinson, P.; Emsley, L. Chem. Phys. Lett. 2000, 319, 253–260.

[57] Lesage, A.; Sakellariou, D.; Hediger, S.; El´ena, B.; Charmont, P.; Steuernagel, S.; Ems- ley, L. J. Magn. Reson. 2003, 163, 105–113.

[58] Elena, B.; de Pa¨epe, G.; Emsley, L. Chem. Phys. Lett. 2004, 398, 532–538.

[59] Maricq, M. M.; Waugh, J. S. J. Chem. Phys. 1979, 70, 3300–3316.

[60] Herzfeld, J.; Berger, A. J. Chem. Phys. 1980, 73, 6021–6030.

[61] Tycko, R.; Dabbagh, G.; Mirau, P. A. J. Magn. Reson. 1989, 85, 265 – 274.

[62] Liu, S.-F.; Mao, J.-D.; Schmidt-Rohr, K. J. Magn. Reson. 2002, 155, 15–28.

(10)

176 BIBLIOGRAPHY

[63] Antzutkin, O. N.; Shekar, S. C.; Levitt, M. H. J. Magn. Reson. Ser. A 1995, 115, 7 – 19.

[64] Antzutkin, O. N.; Lee, Y. K.; Levitt, M. H. J. Magn. Reson. 1998, 135, 144 – 155.

[65] Hohwy, M.; Jakobsen, H. J.; Ede ˜An, M.; Levitt, M. H.; Nielsen, N. C. J. Chem. Phys.

1998, 108, 2686.

[66] Brown, S. P.; Lesage, A.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2004, 126, 13230–1.

[67] van Rossum, B. J.; F¨ostrer, H.; de Groot, H. J. M. J. Magn. Reson. 1997, 519, 516–519.

[68] Lesage, A.; Sakellariou, D.; Steuernagel, S.; Emsley, L. J. Am. Chem. Soc. 1998, 120, 13194–13201.

[69] Elena, B.; Lesage, A.; Steuernagel, S.; B¨ockmann, A.; Emsley, L. J. Am. Chem. Soc. 2005, 127, 17296–302.

[70] O.W Sørensen and R.R Ernst, J. Magn. Reson. (1969) 1983, 51, 477 – 489.

[71] Torchia, D. A. J. Magn. Reson. 1979, 30, 613–616.

[72] Kitamaru, R.; Horii, F.; Murayama, K. Macromolecules 1986, 19, 636–643.

[73] Powles, J. G.; Strange, J. H. P. Phys. Soc. 1963, 86, 6–15.

[74] Hansen, E. W.; Kristiansen, P. E.; Pedersen, B. r. J. Phys. Chem. B 1998, 102, 5444–5450.

[75] Look, D. C. J. Chem. Phys. 1966, 44, 3441.

[76] M. Abramovitz, and I. Stegun, Handbook of Mathematical Functions; 1970, Dover.

[77] Pake, G. E. J. Chem. Phys. 1948, 16, 327.

[78] Brereton, M. G. Macromolecules 1990, 23, 1119–1131.

[79] Weibull, W. J. Appl. Mech. 1988, 18, 293 – 297.

[80] Geppi, M.; Guccione, S.; Mollica, G.; Pignatello, R.; Veracini, C. A. Pharm. Res. 2005, 22, 1544–1555.

[81] Carignani, E.; Borsacchi, S.; Geppi, M. J. Phys. Chem. A 2011, 115, 8783–90.

[82] Forte, C.; Geppi, M.; Malvaldi, M.; Mattoli, V. J. Phys. Chem. B 2004, 108, 10832–10837.

[83] Levitt, M. H.; Madhu, P. K.; Hughes, C. E. J. Magn. Reson. 2002, 155, 300–6.

[84] Ivchenko, N.; Hughes, C. E.; Levitt, M. H. J. Magn. Reson. 2003, 164, 286–293.

[85] Eichele, K.; Wasylishen, R. E. HBA 1.6 ; Dalhousie University andUniversitatT ubingen, 2009.

[86] Kimmich, R.; Fatkullin, N. Adv. Polym. Sci. 2004, 170, 1–113.

(11)

BIBLIOGRAPHY 177

[87] DeJean de la Batie, R.; Laupretre, F.; Monnerie, L. Macromolecules 1988, 21, 2045–2052.

[88] Dejean de la Batie, R.; Laupretre, F.; Monnerie, L. Macromolecules 1989, 22, 122–129.

[89] Kaji, H.; Fuke, K.; Horii, F. Macromolecules 2003, 36, 4414 – 4423.

[90] Fischbach, I.; Spiess, H. W.; Saalwachter, K.; Goward, G. R. J. Phys. Chem. B 2004, 108, 18500 – 18508.

[91] Murakami, M.; Ishida, H.; Kaji, H.; Horii, F. Polym. J. 2004, 36, 403–412.

[92] Z.Zhang, G. G.; Paspal, S. Y. L.; Suryanarayanan, R.; Grant, D. J. W. J. Pharm. Sci.

2003, 92, 1356–1366.

[93] Di Martino, P.; Barth´el´emy, C.; Joiris, E.; Capsoni, D.; Masic, A.; Massarotti, V.; Gob- etto, R.; Bini, M.; Martelli, S. J. Pharm. Sci. 2007, 96, 156–67.

[94] Henry, E. R.; Szabo, A. J. Chem. Phys. 1985, 82, 4753.

[95] Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4546–4559.

[96] Ottiger, M.; Bax, A. J. Am. Chem. Soc. 1998, 120, 12334–12341.

[97] Ishii, Y.; Terao, T.; Hayashi, S. J. Chem. Phys. 1997, 107, 2760.

[98] Case, D. A. J. Biomol. NMR 1999, 15, 95–102.

[99] Wittebort, R. J.; Olenjniczak, E. T.; Griffin, R. G. J. Chem. Phys. 1987, 86, 5411–5420.

[100] Usha, M. G.; Peticolas, W. L.; Wittebort, R. J. Biochemistry 1991, 30, 3955–3962.

[101] Crockford, C.; Geen, H.; Titman, J. J. Chem. Phys. Lett. 2001, 344, 367–373.

[102] Shao, L.; Titman, J. J. Prog. Nucl. Magn. Reson. Spect. 2007, 51, 103–137.

[103] Casabianca, L. B.; de Dios, A. C. J. Chem. Phys. 2008, 128, 052201.

[104] Fischbach, I.; Spiess, H. W.; Saalw¨achter, K.; Goward, G. R. J. Phys. Chem. B 2004, 108, 18500–18508.

[105] Hallock, K. J.; Lee, D. K.; Ramamoorthy, A. J. Chem. Phys. 2000, 113, 11187–11193.

[106] Naito, A.; Fukutani, A.; Uitdehaag, M.; Tuzi, S.; Saitˆo, H. J. Mol. Struct. 1998, 441, 231–241.

[107] Wittebort, R. J.; Olejniczak, E. T.; Griffin, R. G. J. Chem. Phys. 1987, 86, 5411.

[108] Goossens, D.; Heerdegen, A.; Welberry, T.; Beasley, A. Int. J. Pharm. 2007, 343, 59–68.

[109] Shankland, N.; Wilson, C. C.; Florence, A. J.; Cox, P. J. Acta Cryst. 1997, C 53, 951–954.

[110] Zhou, D. H.; Rienstra, C. M. Angew. Chem. Int. Ed. 2008, 47, 7328 – 7331.

(12)

178 BIBLIOGRAPHY

[111] Frisch, M. J. et al. Gaussian 09 Revision A.1, Gaussian Inc. Wallingford CT 2009.

[112] Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.

[113] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

[114] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.

[115] Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664–675.

[116] Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029–5036.

[117] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.

[118] Hameka, H. F. Rev. Mod. Phys. 1962, 34, 87–101.

[119] Ditchfield, R. Mol. Phys. 1974, 27, 789–807.

[120] Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251–8260.

[121] Harper, J. K.; Mulgrew, a. E.; Li, J. Y.; Barich, D. H.; Strobel, G. a.; Grant, D. M. J. Am.

Chem. Soc. 2001, 123, 9837–42.

[122] Barich, D. H.; Orendt, A. M.; Pugmire, R. J.; Grant, D. M. J. Phys. Chem. A 2000, 104, 8290–8295.

[123] Wolniak, M.; Wawer, I. Solid State Nucl. Magn. Res. 2008, 34, 44–51.

[124] Orendt, A. M.; Facelli, J. C.; Bai, S.; Rai, A.; Gossett, M.; Scott, L. T.; Boerio-Goates, J.;

Pugmire, R. J.; Grant, D. M. J. Phys. Chem. A 2000, 104, 149–155.

[125] Orendt, A. M.; Sethi, N. K.; Facelli, J. C.; Horton, W. J.; Pugmire, R. J.; Grant, D. M. J.

Am. Chem. Soc. 1992, 114, 2832–2836.

[126] Sefzik, T. H.; Turco, D.; Iuliucci, R. J.; Facelli, J. C. J. Phys. Chem. A 2005, 109, 1180–7.

[127] Nakai, T.; Ashida, J.; Terao, T. Mol. Phys. 1989, 67, 839–847.

[128] Brown, S. P.; Schnell, I.; Brand, J. D.; M¨ullen, K.; Spiess, H. W. J. Am. Chem. Soc. 1999, 121, 6712–6718.

[129] Ochsenfeld, C.; Brown, S. P.; Schnell, I.; Gauss, J.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 2597–606.

[130] Ma, Z.; Halling, M. D.; Solum, M. S.; Harper, J. K.; Orendt, A. M.; Facelli, J. C.; Pug- mire, R. J.; Grant, D. M.; Amick, A. W.; Scott, L. T. J. Phys. Chem. A 2007, 111, 2020–7.

(13)

BIBLIOGRAPHY 179

[131] Gowda, C. M.; Vasconcelos, F.; Schwartz, E.; van Eck, E. R. H.; Marsman, M.; Cornelis- sen, J. J. L. M.; Rowan, A. E.; de Wijs, G. a.; Kentgens, A. P. M. PCCP 2011, 13, 13082–95.

[132] Samoson, A.; Tuherm, T.; Gan, Z. Solid State Nucl. Magn. Res. 2001, 20, 130–6.

[133] Zorin, V. E.; Brown, S. P.; Hodgkinson, P. J. Chem. Phys. 2006, 125, 144508.

[134] Vinogradov, E.; Madhu, P. K.; Vega, S. Chem. Phys. Lett. 1999, 314, 443–450.

[135] Madhu, P. K.; Zhao, X.; Levitt, M. H. Chem. Phys. Lett. 2001, 346, 142–148.

[136] Paul, S.; Thakur, R. S.; Madhu, P. Chem. Phys. Lett. 2008, 456, 253–256.

[137] Hodgkinson, P. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed.; Academic Press, 2011, Vol. 72, pp 185 – 223.

[138] Pickard, C.; Mauri, F. Phys. Rev. B 2001, 63, 1–13.

[139] Yates, J.; Pickard, C.; Mauri, F. Phys. Rev. B 2007, 76, 1–11.

[140] Yates, J. R.; Dobbins, S. E.; Pickard, C. J.; Mauri, F.; Ghi, P. Y.; Harris, R. K. PCCP 2005, 7, 1402.

[141] Schmidt, J.; Hoffmann, a.; Spiess, H. W.; Sebastiani, D. J. Phys. Chem. B 2006, 110, 23204–10.

[142] Uldry, A.-C.; Griffin, J. M.; Yates, J. R.; P´erez-Torralba, M.; Mar´ıa, M. D. S.; Web- ber, A. L.; Beaumont, M. L. L.; Samoson, A.; Claramunt, R. M.; Pickard, C. J.;

Brown, S. P. J. Am. Chem. Soc. 2008, 130, 945–54.

[143] Webber, A. L.; Emsley, L.; Claramunt, R. M.; Brown, S. P. J. Phys. Chem. A 2010, 114, 10435–42.

[144] Bradley, J. P.; Velaga, S. P.; Antzutkin, O. N.; Brown, S. P. Cryst. Growth Des. 2011, 11, 3463–3471.

[145] Ravikumar, K.; Rajan, S. S.; Pattabhi, V.; Gabe, E. J. Acta Crystallogr. C 1985, 41, 280–282.

[146] Kim, Y. B.; Park, I. Y.; Lah, W. R. Arch. Pharm. Res. 1990, 13, 166–173.

[147] Kim, Y.-s.; VanDerveer, D.; Rousseau, R. W.; Wilkinson, A. P. Acta Crystallogr. E 2004, 60, m419–m420.

[148] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. Zeitschrift f¨ur Kristallographie 2005, 220, 567–570.

[149] Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.

(14)

180 BIBLIOGRAPHY

[150] Vanderbilt, D. Applied optics 1986, 25, 4228.

[151] Bradley, J. P.; Tripon, C.; Filip, C.; Brown, S. P. PCCP 2009, 11, 6941–52.

[152] Pickard, C. J.; Salager, E.; Pintacuda, G.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2007, 129, 8932–3.

[153] Salager, E.; Day, G. M.; Stein, R. S.; Pickard, C. J.; Elena, B.; Emsley, L. J. Am. Chem.

Soc. 2010, 132, 2564–6.

[154] Harris, R. K.; Hodgkinson, P.; Zorin, V.; Dumez, J.-N.; Elena-Herrmann, B.; Emsley, L.;

Salager, E.; Stein, R. S. Magnetic resonance in chemistry : MRC 2010, 48 Suppl 1, S103–

12.

Riferimenti

Documenti correlati

10.30 Tavola rotonda: Cosa cambia nella pratica clinica. Conducono:

In ottemperanza alla normativa ECM ed al principio di trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo

• LBA7_PR - BRIM8: a randomized, double-blind, placebo-controlled study of adjuvant vemurafenib in patients (pts) with completely resected, BRAFV600+ melanoma at high risk

 ADJUVANT THERAPY with CHECKPOINT INHIBITORS (CA209-238 trial) AND TARGET THERAPY (BRIM8 and COMBI-AD trials)?. ….the

LBA31 STAMPEDE: Abi or Doc – directly randomised data -No difference in OSS, SSE for ADT+Abi vs ADT+Doc. - Different mechanism of action , side effect profile, treatment duration

• The addition of panitumumab to FOLFOXIRI resulted in high response rates in left and right sided as well as BRAF mutated mCRC. • PFS was in the expected range, however, there was

Goldenring, from the medical point of view the concept of “Human being” is defined by the existence of a human brain with the necessary activity, as the brain is the only unique

its critics, this drive is bound to have dramatic repercussions on  the  status  of  the  patient  and  the  quality  of  psychiatric  treatment.  The