• Non ci sono risultati.

Angela V. Olinto

N/A
N/A
Protected

Academic year: 2021

Condividi "Angela V. Olinto"

Copied!
155
0
0

Testo completo

(1)

Angela V. Olinto

The University of Chicago

(2)

Voyager 1 and 2 leave the Heliosphere

Ed Stone & Voyager

The Great Voyage

1977 to now and onwards...

(3)

William H. Gerstenmaier Associate Administrator HEOMD, NASA

Precision

Exploration

(4)

The HE* Physics Journey

2013,

H

0

*Particle & Astroparticle

(5)

The (Astro)Particle Physics Journey

2013,

H

0

(6)

Journey toward Planck

(7)

Journey through the Desert toward Planck

1013 eV 14 o.o.m. 1027 eV

(8)

eV

-1

2 x 10

-5

cm

10 -9cm 10 -12cm 10 -15cm 10 -18cm 10 -21cm 10 -24cm 10 -27cm 10 -30cm 10 -33cm

(9)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

GeV TeV PeV EeV ZeV YeV XeV

eV cm

(10)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

6 x 108 cm 50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

(11)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

6 x 108 cm 50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

(12)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

6 x 108 cm 50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

Precision

Exploration

(13)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

6 x 108 cm

Precision

Exploration

LHC

Precision

(14)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

6 x 108 cm

Precision

Exploration

LHC

Exploration Precision

IceCube ν Aug er/T A

(15)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

6 x 108 cm

Precision

Exploration

LHC

Exploration Precision

IceCube ν Aug er/T A ARA/ EV A JEM -EUSO

(16)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

6 x 108 cm

Precision

Exploration

LHC

Exploration Precision

IceCube ν Aug er/T A ARA /EV A JEM -EUSO

(17)

The Most Energetic

Cosmic Particles

(18)

1937: Pierre Auger ~ 10

15

eV

Extensive Air Showers

(19)

1962 John Linsley

~ 10

20

eV event

Ultra High Energy Cosmic Rays

(20)

AAS meeting 1/5/14 Angela Olinto 20

(21)

GammaRays

Cosmic Rays

Neutrinos

~ double the energy range for Astrophysics

High Energy Particles

(22)

Proton, Helium, heavier nuclei

~1%

Gamma-ray ~ 0.1%

IceCube Neutrinos

(23)

PhysPAG 8/14/12 23 Angela Olinto 23

Solar

Influence Galactic Cosmic Rays Extragalactic Cosmic Rays

(24)

PhysPAG 8/14/12 24 Angela Olinto 24

Solar Influenc

e

Galactic Cosmic Rays Extragalactic Cosmic Rays

Ground Experiments

Space

Experiments

(25)

PhysPAG 8/14/12 25 Angela Olinto 25

Solar Influenc

e

Galactic Cosmic Rays Extragalactic Cosmic Rays

Voyager I & II

ACE/CRIS PAMELA

AMS

Satellites ISS

Space Missions Now

Super- TIGER

Balloon

(26)

PhysPAG 8/14/12 26 Angela Olinto 26

Solar Influenc

e

Galactic Cosmic Rays Extragalactic Cosmic Rays

Voyager I & II

ACE/CRIS PAMELA

AMS

Satellites ISS

ISS-CREAM

JEM-EUSO

CALET

HN X

SmEx

Space Missions Future

EVA Balloon

(27)

PhysPAG 8/14/12 27 Angela Olinto 27

Solar Influenc

e

Galactic Cosmic Rays Extragalactic Cosmic Rays NOW

Ground Experiments

(28)

ankle knee

(29)

ankle knee

(30)

ankle knee

500 TeV

10

20

eV

(31)

31

A. Watson

(32)

ankle knee

Sources?

(33)

33

Super-novae

Cosmic Rays from Super-novae Baade & Zwicky (1934)

(34)

Blasi & Amato 2012 34

Supernova Remnants

to 1017eV

Vladimir Ptuskin

(35)

π 0 decay!

Ackermann et al (Fermi Collab) ’13 arXiv:1302.3307

IC 443 & W44 Fermi & AGILE

π0 decay

(36)

ankle knee

Galactic Sources

PhysPAG 8/14/12 36

~1%

Galactic Supernova Remnants

(37)

ankle knee

Extragalactic Sources

Galactic Sources

PhysPAG 8/14/12 37

~1%

Galactic Supernova Remnants

(38)

ankle knee

Extragalactic Sources

Galactic Sources

?

(39)

Galactic – Extragalactic Transition

39

Heavy

Light

(40)

ankle knee

Extragalactic Sources

Galactic Sources

New light Component

(41)

ankle knee

ankle

Ultrahigh Energy Cosmic Rays

E > 1018 eV

= 1 EeV

(42)

ankle knee

1 km

-2

yr

-1

0.1 km

-2

century

-1

1 m

-2

yr

-1

(43)

Current Observatories of

Ultrahigh Energy Cosmic Rays

Pierre Auger Observatory

Mendoza, Argentina (19 country collaboration)

3,000 km

2

array

4 fluorescence telescopes

Telescope Array

Utah, USA (5 country

collaboration)

700 km

2

array

3 fluorescence

telescopes

(44)

Pierre Auger Observatory

~ 500 Scientists, 19 Countries

3,000 km2 water cherenkov detectors array

4 fluorescence Telescopes, Malargue, Argentina

(45)

Telescope Array

3 FD stations overlooking an array of 507 scintillator surface detectors (SD)

Area: 700 km2

Belgium Japan Korea

Russia USA

45

(46)

46

~175000 events

from 32,000 km2 sr y

A. Watson

(47)

CERN UHECR 2012 Working Group

Unified Spectrum

Dawson et al ‘13 47

Energies re-scaled ~10%

(48)

48

(49)

49

(50)

50

(51)

ankle knee

GZK

(52)

“Cosmologically Meaningful Termination”

GZK Cutoff

Greisen, Zatsepin, Kuzmin 1966

p+

cmb

 

+

 p + 

0

n +

+

Proton Horizon

~5 x 10

19

eV

(53)

Greisen-Zatsepin-Kuzmin effect

53

Kotera & AO 11

(54)

Greisen-Zatsepin-Kuzmin effect

Gpc

~100 Mpc

~10 Mpc

54

(55)
(56)

Greisen-Zatsepin-Kuzmin effect

Gpc

~100 Mpc

~10 Mpc

56

Isotropic Isotropic Anisotropic Anisotropic

(57)

Propagation of UHE protons

Berezinsky, Gazizov, Grigoriev ‘05

Modification factor

Spectrum Recovery

(58)

CERN UHECR 2012 Working Group

Unified Spectrum

Dawson et al ‘13 58

Energies re-scaled ~10%

(59)

Kotera, AO ‘11 To fit the spectrum, need:

SOURCE MODEL

+

PROPAGATION

(60)

Modern Propagation Codes

Public:

CRPropa

1.0 Armengaud et al ‘06 2.0 Kampert et al. ’12 3.0 Alvez Batista et al ’13 SimProp

Aloisio et al ’12

Private:

Allard et al ’04 Taylor ’07

Ahlers ‘10 others...

(61)

Interaction Cross Sections, z evolution Background Fields: CMB, UV/Opt/IR Primary, Secondary nuclei, nucleons, e+e-, gamma-rays, neutrinos,...

InterGal Magnetic Fields

Modern Propagation

Codes

(62)

Source Model:

•injection spectrum: E-s

•injected composition

•redshift distribution

Propagation Codes

(63)

Source Model:

•injection spectrum: E-s

•injected composition

•redshift distribution

Propagation Codes

Source redshift evolution

(64)

Source Model:

•injection spectrum: E-s

•injected composition

•redshift distribution

Propagation Codes

Spectrum

Anisotropies

Composition

Multi-messengers

(65)

Kotera, AO 2011

injection spectrum: E-s, Emax injection composition

Transition Gal/Extragal model

Source evolution: FRII, SFR, uniform

(66)

Kotera, AO 2011

(67)

UHECRs Current Status

Leading Observatories: Auger & Telescope Array agree on the shape of the spectrum Energy scale: ~10% difference

Composition?

67

(68)

68

(69)

Composition observable:

shower maximum

average and fluctuations

(70)

70

See Dembinski

(71)

71

See Dembinski

Fe

p O He

(72)

Auger

TA

Telescope Array

Auger sees change slope:

Change in Composition or interactions

TA: not confirmed yet

72

Xmax in the atmosphere

Xmax in the detector

(73)

GZK ?

(TA ICRC11)

Kotera, AO ‘11 73

(74)

GZK or E max ?

(TA ICRC11)

Kotera, AO ‘11 Fang, Kotera, AO ‘13

74

(75)

GZK vs E max

(TA ICRC11)

Kotera, AO ‘11

Fang, Kotera, AO ‘13

75

(76)

LHC white dwarf

Kotera & AO‘11

LHC

white dwarf

Hillas Plot: E max required

(77)

LHC white dwarf

Kotera & AO‘11

LHC

white dwarf

Hillas Plot: E max required

(78)

Birth of ultrafast spinning

Pulsars

(79)

Young Neutron Stars & Magnetars

Closed Line Open Lines

Blasi, Epstein & AVO ’00, Arons ‘03 M ~1 Msolar R~10km compact stars

born Fast spinning (P<< 300 ms)

– slows down due to magnetic breaking (and gravitational radiation early on) born B ~ 1012-13 G

Ω

(80)

Birth of ultrafast Pulsars

Newborn Pulsar with:

At the light cylinder:

Magnetic wind can accelerate particles up to

Spectrum too hard:

Blasi, Epstein, AVO ‘00

Maximum Energy?✔

Spectrum is hard ~ E-1

(81)

Escape from Supernova Remnant :

maximum 104.2/s

maximum 104.2/s

Fang, Kotera, AVO ‘12

softens the spectrum bet protons and iron + pulsar distribution & propagation

(82)

Fast Spinning Newborn Pulsars fit Spectrum !

Fang, Kotera, AVO ‘13

(83)

Fast Spinning Newborn Pulsars fit Spectrum & Auger Composition !

Fang, Kotera, AVO ‘13

(84)

Galactic Newborn Pulsars?

Fang, Kotera, AVO ‘13

(85)

Galactic Cosmic Rays

Amato & Blasi ‘12

fill the gap

Fang, Kotera, AVO ‘13

(86)

Multi-messenger Predictions

Fang, Kotera, Murase, AVO ‘13 86

(87)

UHECRs Current Status

Leading Observatories: Auger & Telescope Array agree on the shape of the spectrum Energy scale: ~10% difference

Composition: controversial Multi-messenger clues

87

(88)

Cosmogenic (GZK, BZ*) Neutrinos & Photons

p+

cmb

 

+

 p + 

0

 γγ  n + 

+

n  p + e

-

+ 

e

+

 

+

+ 

+

 e

+

+ 

e

+

Berezinsky & Zatsepin ‘69

(89)

Neutrino Detectors

Flux Lower Limit

Current Limits

(90)

Highest Energy Neutrino

Observatories

IceCube ANITA

ANTARES

(91)

Next Generation UHE

from Vieregg CSS13

(92)

Neutrino Detectors

Next Generation (ARA)

Flux Lower Limit

Current Limits

(93)

PhysPAG 8/14/12 93 Angela Olinto 93

Solar Influenc

e

Galactic Cosmic Rays Extragalactic Cosmic Rays

Voyager I & II

ACE/CRIS PAMELA

AMS

Satellites ISS

ISS-CREAM

JEM-EUSO

CALET

HN X

SmEx

Space Missions Future

EVA Balloon

(94)

94 APS meeting 1/14/15

P. Gorham CosmicSIG

EVA

(95)

95

P. Gorham CosmicSIG

(96)

P. Picozza

(97)

AAS meeting 1/5/14 Angela Olinto 97

P. Picozza

(98)

98

(99)

AAS meeting 1/5/14 Angela Olinto 99

(100)

23 days Super Pressure Balloon = SPB

http://www.csbf.nasa.gov/map/balloon9/flight662nt.htm

(101)

UHECRs Current Status

Leading Observatories: Auger & Telescope Array agree on the shape of the spectrum Energy scale: ~10% difference

Composition: controversial

Multi-messenger clues: not yet

Anisotropies?

101

(102)

No Galactic Plane Anisotropy

E>20 EeV Cosmic Rays are EXTRAGALACTIC

Auger Anisotropy limits: rule out Galactic protons to CNO as dominant CR component E > 1 EeV and Fe above 20 EeV

102 102

Giacinti et al ‘11

(103)

ankle knee

ankle

Ultrahigh Energy Cosmic Rays

E > 1018 eV

= 1 EeV

ankle

Extragalactic

(104)

Cosmic Magnetic Fields

Halo B?

Extra-galactic B?

B < nG

weak deflection RL = kpc Z-1 (E / EeV) (B / G)-1

RL = Mpc Z-1 (E / EeV) (B / nG)-1

kpc 10 kpc

strong deflection

Milky way B ~ G

E > 1019eV

E < 1018eV

“Known unknown”

1 EeV = 1018 eV

Galactic B deflection

<< 10o Z (40 EeV/E) anisotropic in sky

(105)

Greisen-Zatsepin-Kuzmin effect

Gpc

~100 Mpc

~10 Mpc

105

(106)

Greisen-Zatsepin-Kuzmin effect

Gpc

~100 Mpc

~10 Mpc

106

Isotropic Isotropic Anisotropic Anisotropic

(107)
(108)

108

(109)

109

Correlation has fallen from ~ 68% to ~ 28% (2007 –> 2014) compared with 21% for isotropy: about 1.4% probablity Cen A may be a source: in 13º circle around: 12 seen/1.7

A clear message from the Pierre Auger Observatory:-

We made it too small (2 per month at energy of interest)

A. Watson

(110)

Anisotropy Hints > 60 EeV

E > 5.7x 1019 eV 20o smoothing

Auger Observatory

≈ 3 σ pretrial

(111)

Telescope Array

Anisotropy Hints > 60 EeV

E > 5.7x 1019 eV 20o smoothing ≈ 5 σ pretrial

Telescope Array

Soon to be announced!

(112)

Anisotropy Hints > 60 EeV

E > 5.7x 1019 eV 20o smoothing ≈ 5 σ pretrial

Telescope Array

Auger Observatory

≈ 3 σ pretrial

overlap

(113)

Anisotropy Hints > 60 EeV

(114)

IceCube 37 Events

Phys. Rev. Lett. 113, 101101 (2014) 114

3 yr data; 30 TeV to 2 PeV

(115)

115

(116)

116

(117)

117

(118)

118

Neutrino & UHECR Coincidence

Fang, Fujii, Linden, AO ‘14

~2σ

(119)

Anisotropy Hints > 60 EeV

E > 5.7x 1019 eV 20o smoothing ≈ 5 σ pretrial

Statistically limited

Telescope Array

Auger Observatory

≈ 3 σ pretrial

overlap

(120)

Anisotropy Hints > 60 EeV

Statistically limited

A clear message from the Pierre Auger Observatory:-

We made it too small (2 per month at energy of interest)

A. Watson

(121)

121

(122)

Nadir

Fluorescence from SPACE

Tilt

122

Tilt

Nadir John Linsley

(1925-2002)

(123)

123

JEM-EUSO

Japan, USA, Korea, Mexico, Russia, Algeria

Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland, Sweden

16 Countries, 300 researchers Leading institution: RIKEN

PI: Piergiorgio Picozza

(124)

JEM-EUSO Mission

Extreme Universe Space Observatory (EUSO)

in the Japanese Experiment Module (JEM)

of the International Space Station (ISS)

(125)

125

JEM-EUSO goals

- pioneer the study of EECR from Space - increase exposure to EECR by 1 order of magnitude

- discover the nearby sources of UHECRs

(126)

126

Rear Fresnel Lens

Iris

Front Fresnel lens DAQ Electronics

Support Structure

Focal Surface Detector

Optics

Payload

Precision Fresnel lens

Housekeeping

On-board Calibration

Atmospheric Monitoring BUS System : JAXA

Ground Based Calibration

Simulation : Worldwide

Ground Support Equipment Telescope Structure

(127)

127

(128)

128

(129)

129

(130)

130

(131)

131

(132)

132

(133)

133

Full Sky Coverage

with nearly uniform exposure

http://www.nlsa.com/

Inclination: 51.6°

Height: ~400km

The ISS ORBIT

(134)

JEM-EUSO Sky Coverage

134

(135)

JEM-EUSO

135

annual exposure = 10 x Auger 6 104 km2 sr yr

(136)

ZeV neutrinos?

136

(137)

109 eV 1012 eV 1015 eV 1018 eV 1021eV 1024eV 1027eV

109 cm 1012 cm 1015 cm 1018 cm 1021 cm 1024 cm 1027 cm

GeV TeV PeV EeV ZeV YeV XeV

R

Earth

d

Earth-Moon

50pc ~ 1015 cm

Solar System

4 x 1011 cm Near Stars 1 pc = 3 1018 cm

1 AU = 1.5 x 1013 cm 1 kpc = 3 1021 cm 1Mpc = 3 1024 cm 1Gpc = 3 1021 cm

Milky Way thickness

Near Galaxies

Our Neighborhood of the Universe

6 x 108 cm

Precision

Exploration

LHC

Exploration Precision

IceCube ν Aug er/T A ARA /EV A JEM -EUSO

(138)

Super Heavy Dark Matter

138

Aloisio, Matarrese, AO ‘15

JEM-EUSO ARA

β inflaton potential

(139)

SHDM

Mass scale given by r

Lifetime given by EECRs

Aloisio, Matarrese, AO ‘15

(140)

Super Heavy Dark Matter

140

Aloisio, Matarrese, AO ‘15

(141)

141

NASA

Astrophysics Roadmap

2014

(142)

How many UHECRs > 60 EeV?

Auger + TA ~30 events/yr

JEM-EUSO

~200 events > 60 EeV/yr

Earth - surface ~ 5 10

8

km

2

~3.4 10

6

events/yr

142

(143)

Monitored Area

» few ´ 10

12

tons

JEM-EUSO: Extreme Universe Space Observatory onboard Japanese Experiment Module

~ 4 ~

JEUSO-110025-01-E-TR-ZZZ

since the mean distance to EAS and atmospheric absorption both increase. First few years of the then later to

Figure 1-2. Artistic illustration of the JEM-EUSO telescope attached to the Japanese Experiment Module of the International Space Station, under nadir (left) and tilt (right) mode of observation.

The JEM-EUSO telescope can reconstruct the incoming direction of the EECRs with accuracy better than few degrees. Its observational aperture of the ground area is a circle with 250 km radius, and its atmospheric volume above it, with a 60° FoV, is ~1 Tera-ton or more. The target volume for upward neutrino events exceeds 10 Tera-tons. The instantaneous aperture of JEM- EUSO is larger than the Pierre Auger Southern Observatory by a factor ranging from 65 to 280, depending on its observation mode (nadir or tilted, Fig.1-3).

JEM-EUSO, planned to be attached to JEM/EF of ISS, will be launched in the JFY 2016 by H2B rocket and conveyed to ISS by HTV (H-II transfer Vehicle).

Figure 1-3. Area observed by the JEM-EUSO telescope in one shot under mode.

(144)

How many UHECRs > 60 EeV?

Auger + TA ~30 events/yr

JEM-EUSO

~200 events > 60 EeV/yr

Earth - surface ~ 5 10

8

km

2

~3.4 10

6

events/yr

144

(145)
(146)

146

Extreme Energy Frontier Mysteries to be Resolved from Space!

Thanks!

(147)

Extreme Energy Frontier Mysteries to be

Resolved from Space!

Thanks!

(148)
(149)

149

(150)

150

(151)

151

(152)

152

Shower Simulation

64 pixel MAPMT

1020eV 60 deg

Detected photoelectrons are recorded every Gate Time Unit (GTU) of 2.5s continuously.

Simulated air shower image on the focal surface detector.

2x1020eV 65 deg

(153)

153

(154)

154 154

(155)

GLS

12 stations:

12 with Xe Flashlamps 6 with Steered Lasers 1 airborne System

Riferimenti

Documenti correlati

Bergamo: “Ácoma”, Università degli Studi di Bergamo, Piazza Rosate 2 – 24129 Bergamo, fax 035/2052789 Roma: “Ácoma”, Dipartimento di Studi europei, americani e

When we exclude all the QSOs with IFP ≤ 10 pMpc from our sample, assuming that they are a ffected by associated absorp- tions (option 2), the trends highlighted above further

By incorporating a metamorphic transitional buffer layer between the GaAs substrate and the high indium content active device layers, one can combine the advantages of low-cost and

The SIC BJT device has the selectively ion-implanted collector only underneath the emitter area while the FIC BJT device has the ion implanted collector over the whole base area..

However, many of the future missions require either small, low power imaging devices that can be used for landing or sample acquisition missions or they require image sensors that

a small finite number of scattering centers, as in the case of a single nanowire. Here the phase differences between different electronic paths result in aperiodic fluctuations of

Il reste à expliquer comment cet écart entre le domaine physique et le domaine moral est possible ; d’autant plus qu’il ne s’agit en aucun cas – comme Jean-Jacques ne se