• Non ci sono risultati.

Metric Geometry and Curvature of Domains in C

N/A
N/A
Protected

Academic year: 2021

Condividi "Metric Geometry and Curvature of Domains in C"

Copied!
1
0
0

Testo completo

(1)

Herv´e Gaussier

FOURIER INSTITUT

i f

UMR 5582 CNRS – UGA 100 rue des Math´ematiques BP 74 38402 St Martin d’H`eres (France)

[email protected]

Metric Geometry and Curvature of Domains in C

n

I. Generalities on metric spaces

I.1. The Poincar´e metric and generalizations I.2. The Hopf-Rinow Theorem for Length Spaces

Let X be a complete, locally compact, length space. Then X is a proper geodesic space.

II. Gromov hyperbolic spaces II.1. Definitions and examples

II.2. The Bonk-Schramm embedding Theorem

Isometric embedding of any Gromov hyperbolic metric space in a complete, geodesic, Gromov hyperbolic metric space.

II.3. Geodesic stability

(X , d) geodesic Gromov space, A ≥ 1, B ≥ 0. Then there exists r > 0 such that every (A, B)- quasi-geodesic γ : [a, b] → X , joining p to q, satisfies : d

Haus

(γ([a, b]), [p, q]) ≤ r.

II.4. The boundary of a Gromov hyperbolic space

- Existence of geodesic rays and geodesic lines in proper, geodesic, Gromov hyperbolic spaces - The Visibility Theorem. Given x 6= y ∈ ∂

G

X, where X is Gromov hyperbolic, proper, geodesic, there is K ⊂⊂ X such that every geodesic line joining x to y intersects K.

- Geodesic lines stability

- The Bonk-Schramm filling Theorem : construction of a Gromov hyperbolic metric space Cone(Z) whose boundary is a given bounded metric space Z. Link between Cone(∂ X ) and X when X is a Gromov hyperbolic metric space.

II.5. Gromov hyperbolicity of some complete Kobayashi hyperbolic domains in C

n

- Z.Balogh-M.Bonk’s result : If D is strongly pseudoconvex, then (D, K

D

) is Gromov hyperbolic and ∂

G

D can be identified with ∂ D.

- The Squeezing function and associated results III. Curvature of K¨ahler metrics

III.1. Definitions and links (from holomorphic sectional curvature to sectional curvature) III.2. Examples

III.3. The Yau-Ahlfors-Schwarz Lemma and application

Theorem. (M, g) complete, K¨ahler, Ric(g) ≥ −a (a ≥ 0), (N, h) Hermitian, Bisect(h) ≤ −b < 0.

If f : M → N holomorphic, then f

h ≤ (a/b)g.

III.4. Non-existence of a complete K¨ahler metric with pinched negative holomorphic bi- sectional curvature on a polydisk (Yang’s Theorem)

III.5. Bounded geometry and deformation of a complete K¨ahler metric with stable pinching

condition

Riferimenti

Documenti correlati

Il solvente è stato poi rimosso sottovuoto e il grezzo ottenuto è stato purificato mediante flash cromatografia utilizzando come miscela eluente etere di petrolio/acetato

Nella prima parte sono argomentati capitoli riguardanti la regolamentazione degli orti urbani, le funzioni (recupero e riqualifica ambientale, Horticultural therapy,

119 http://rosi.clusit.it.. 130 1) Supponiamo di compilare lo sheet “Checklist” di un’impresa Italiana, che opera nel settore bancario con quasi 1.000 dipendenti, e che dispone

From the NIHR University College London Hospitals Biomedical Research Centre (S. Balestrini, S.M.S.), Department of Clinical and Experimental Epilepsy, UCL Institute of

Corso di Dottorato di Ricerca in Ingegneria Meccanica Energetica e Gestionale Meccanica, Misure e Robotica. Tesi

PRAS 40: proline rich AKT substrate 40- prolina ricca AKT substrato 40 PROTOR 1: protein observed with rictor 1- proteina osservata con rictor 1 PTEN: phosphatase and tensin homolog