• Non ci sono risultati.

Correlation measurements between flow harmonics in Au+Au collisions at RHIC

N/A
N/A
Protected

Academic year: 2021

Condividi "Correlation measurements between flow harmonics in Au+Au collisions at RHIC"

Copied!
7
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Correlation

measurements

between

flow

harmonics

in

Au

+

Au

collisions

at

RHIC

STAR

Collaboration

J. Adam

i

,

L. Adamczyk

a

,

J.R. Adams

ad

,

J.K. Adkins

t

,

G. Agakishiev

r

,

M.M. Aggarwal

af

,

Z. Ahammed

bc

,

N.N. Ajitanand

aq

,

I. Alekseev

p

,

aa

,

D.M. Anderson

as

,

R. Aoyama

aw

,

A. Aparin

r

,

D. Arkhipkin

c

,

E.C. Aschenauer

c

,

M.U. Ashraf

av

,

F. Atetalla

s

,

A. Attri

af

,

G.S. Averichev

r

,

X. Bai

g

,

V. Bairathi

ab

,

K. Barish

ay

,

A.J. Bassill

ay

,

A. Behera

aq

,

R. Bellwied

au

,

A. Bhasin

q

,

A.K. Bhati

af

,

P. Bhattarai

at

,

J. Bielcik

j

,

J. Bielcikova

k

,

L.C. Bland

c

,

I.G. Bordyuzhin

p

,

J. Bouchet

s

,

J.D. Brandenburg

ak

,

A.V. Brandin

aa

,

D. Brown

x

,

J. Bryslawskyj

ay

,

I. Bunzarov

r

,

J. Butterworth

ak

,

H. Caines

bf

,

M. Calderón de la Barca Sánchez

e

,

J.M. Campbell

ad

,

D. Cebra

e

,

I. Chakaberia

c

,

s

,

ao

,

P. Chaloupka

j

,

F.-H. Chang

ac

,

Z. Chang

c

,

N. Chankova-Bunzarova

r

,

A. Chatterjee

bc

,

S. Chattopadhyay

bc

,

J.H. Chen

ap

,

X. Chen

v

,

X. Chen

an

,

J. Cheng

av

,

M. Cherney

i

,

W. Christie

c

,

G. Contin

w

,

H.J. Crawford

d

,

S. Das

g

,

T.G. Dedovich

r

,

I.M. Deppner

az

,

A.A. Derevschikov

ah

,

L. Didenko

c

,

C. Dilks

ag

,

X. Dong

w

,

J.L. Drachenberg

u

,

J.C. Dunlop

c

,

L.G. Efimov

r

,

N. Elsey

be

,

J. Engelage

d

,

G. Eppley

ak

,

R. Esha

f

,

S. Esumi

aw

,

O. Evdokimov

h

,

J. Ewigleben

x

,

O. Eyser

c

,

R. Fatemi

t

,

S. Fazio

c

,

P. Federic

k

,

P. Federicova

j

,

J. Fedorisin

r

,

Z. Feng

g

,

P. Filip

r

,

E. Finch

ax

,

Y. Fisyak

c

,

C.E. Flores

e

,

L. Fulek

a

,

C.A. Gagliardi

as

,

F. Geurts

ak

,

A. Gibson

bb

,

D. Grosnick

bb

,

D.S. Gunarathne

ar

,

Y. Guo

s

,

A. Gupta

q

,

W. Guryn

c

,

A.I. Hamad

s

,

A. Hamed

as

,

A. Harlenderova

j

,

J.W. Harris

bf

,

L. He

ai

,

S. Heppelmann

ag

,

S. Heppelmann

e

,

N. Herrmann

az

,

A. Hirsch

ai

,

L. Holub

j

,

S. Horvat

bf

,

X. Huang

av

,

B. Huang

h

,

S.L. Huang

aq

,

T. Huang

ac

,

H.Z. Huang

f

,

T.J. Humanic

ad

,

P. Huo

aq

,

G. Igo

f

,

W.W. Jacobs

o

,

A. Jentsch

at

,

J. Jia

c

,

aq

,

K. Jiang

an

,

S. Jowzaee

be

,

E.G. Judd

d

,

S. Kabana

s

,

D. Kalinkin

o

,

K. Kang

av

,

D. Kapukchyan

ay

,

K. Kauder

be

,

H.W. Ke

c

,

D. Keane

s

,

A. Kechechyan

r

,

D.P. Kikoła

bd

,

C. Kim

ay

,

T.A. Kinghorn

e

,

I. Kisel

l

,

A. Kisiel

bd

,

L. Kochenda

aa

,

L.K. Kosarzewski

bd

,

A.F. Kraishan

ar

,

L. Kramarik

j

,

L. Krauth

ay

,

P. Kravtsov

aa

,

K. Krueger

b

,

N. Kulathunga

au

,

S. Kumar

af

,

L. Kumar

af

,

J. Kvapil

j

,

J.H. Kwasizur

o

,

R. Lacey

aq

,

J.M. Landgraf

c

,

K.D. Landry

f

,

J. Lauret

c

,

A. Lebedev

c

,

R. Lednicky

r

,

J.H. Lee

c

,

Y. Li

av

,

W. Li

ap

,

X. Li

an

,

C. Li

an

,

J. Lidrych

j

,

T. Lin

as

,

M.A. Lisa

ad

,

Y. Liu

as

,

H. Liu

o

,

F. Liu

g

,

P. Liu

aq

,

T. Ljubicic

c

,

W.J. Llope

be

,

M. Lomnitz

w

,

R.S. Longacre

c

,

S. Luo

h

,

X. Luo

g

,

R. Ma

c

,

Y.G. Ma

ap

,

G.L. Ma

ap

,

L. Ma

m

,

N. Magdy

aq

,

R. Majka

bf

,

D. Mallick

ab

,

S. Margetis

s

,

C. Markert

at

,

H.S. Matis

w

,

O. Matonoha

j

,

D. Mayes

ay

,

J.A. Mazer

al

,

K. Meehan

e

,

J.C. Mei

ao

,

N.G. Minaev

ah

,

S. Mioduszewski

as

,

D. Mishra

ab

,

S. Mizuno

w

,

B. Mohanty

ab

,

M.M. Mondal

n

,

I. Mooney

be

,

D.A. Morozov

ah

,

M.K. Mustafa

w

,

Md. Nasim

f

,

T.K. Nayak

bc

,

J.D. Negrete

ay

,

J.M. Nelson

d

,

D.B. Nemes

bf

,

M. Nie

ap

,

G. Nigmatkulov

aa

,

T. Niida

be

,

L.V. Nogach

ah

,

T. Nonaka

aw

,

S.B. Nurushev

ah

,

G. Odyniec

w

,

A. Ogawa

c

,

K. Oh

aj

,

V.A. Okorokov

aa

,

D. Olvitt Jr.

ar

,

B.S. Page

c

,

R. Pak

c

,

Y. Panebratsev

r

,

B. Pawlik

ae

,

H. Pei

g

,

E-mailaddress:mnasim2008@gmail.com(Md. Nasim).

https://doi.org/10.1016/j.physletb.2018.05.076

(2)

C. Perkins

d

,

J. Pluta

bd

,

K. Poniatowska

bd

,

J. Porter

w

,

M. Posik

ar

,

N.K. Pruthi

af

,

M. Przybycien

a

,

J. Putschke

be

,

A. Quintero

ar

,

S.K. Radhakrishnan

w

,

S. Ramachandran

t

,

R.L. Ray

at

,

R. Reed

x

,

H.G. Ritter

w

,

J.B. Roberts

ak

,

O.V. Rogachevskiy

r

,

J.L. Romero

e

,

L. Ruan

c

,

J. Rusnak

k

,

O. Rusnakova

j

,

N.R. Sahoo

as

,

P.K. Sahu

n

,

S. Salur

al

,

J. Sandweiss

bf

,

J. Schambach

at

,

A.M. Schmah

w

,

W.B. Schmidke

c

,

N. Schmitz

y

,

B.R. Schweid

aq

,

J. Seger

i

,

M. Sergeeva

f

,

R. Seto

ay

,

P. Seyboth

y

,

N. Shah

ap

,

E. Shahaliev

r

,

P.V. Shanmuganathan

x

,

M. Shao

an

,

W.Q. Shen

ap

,

F. Shen

ao

,

Z. Shi

w

,

S.S. Shi

g

,

Q.Y. Shou

ap

,

E.P. Sichtermann

w

,

R. Sikora

a

,

M. Simko

k

,

S. Singha

s

,

D. Smirnov

c

,

N. Smirnov

bf

,

W. Solyst

o

,

P. Sorensen

c

,

H.M. Spinka

b

,

B. Srivastava

ai

,

T.D.S. Stanislaus

bb

,

D.J. Stewart

bf

,

M. Strikhanov

aa

,

B. Stringfellow

ai

,

A.A.P. Suaide

am

,

T. Sugiura

aw

,

M. Sumbera

k

,

B. Summa

ag

,

X.M. Sun

g

,

X. Sun

g

,

Y. Sun

an

,

B. Surrow

ar

,

D.N. Svirida

p

,

A.H. Tang

c

,

Z. Tang

an

,

A. Taranenko

aa

,

T. Tarnowsky

z

,

J. Thäder

w

,

J.H. Thomas

w

,

A.R. Timmins

au

,

D. Tlusty

ak

,

T. Todoroki

c

,

M. Tokarev

r

,

C.A. TomKiel

x

,

S. Trentalange

f

,

R.E. Tribble

as

,

P. Tribedy

c

,

S.K. Tripathy

n

,

B.A. Trzeciak

j

,

O.D. Tsai

f

,

B. Tu

g

,

T. Ullrich

c

,

D.G. Underwood

b

,

I. Upsal

ad

,

G. Van Buren

c

,

J. Vanek

k

,

A.N. Vasiliev

ah

,

I. Vassiliev

l

,

F. Videbæk

c

,

S. Vokal

r

,

S.A. Voloshin

be

,

A. Vossen

o

,

F. Wang

ai

,

G. Wang

f

,

Y. Wang

av

,

Y. Wang

g

,

J.C. Webb

c

,

G. Webb

c

,

L. Wen

f

,

G.D. Westfall

z

,

H. Wieman

w

,

S.W. Wissink

o

,

R. Witt

ba

,

Y. Wu

s

,

Z.G. Xiao

av

,

W. Xie

ai

,

G. Xie

h

,

Z. Xu

c

,

J. Xu

g

,

Q.H. Xu

ao

,

Y.F. Xu

ap

,

N. Xu

w

,

C. Yang

ao

,

S. Yang

c

,

Q. Yang

ao

,

Y. Yang

ac

,

Z. Ye

h

,

Z. Ye

h

,

L. Yi

bf

,

K. Yip

c

,

I.-K. Yoo

aj

,

N. Yu

g

,

H. Zbroszczyk

bd

,

W. Zha

an

,

J.B. Zhang

g

,

X.P. Zhang

av

,

S. Zhang

ap

,

Z. Zhang

ap

,

L. Zhang

g

,

J. Zhang

v

,

J. Zhang

w

,

Y. Zhang

an

,

S. Zhang

an

,

J. Zhao

ai

,

C. Zhong

ap

,

C. Zhou

ap

,

L. Zhou

an

,

Z. Zhu

ao

,

X. Zhu

av

,

M. Zyzak

l aAGHUniversityofScienceandTechnology,FPACS,Cracow30-059,Poland

bArgonneNationalLaboratory,Argonne,IL 60439 cBrookhavenNationalLaboratory,Upton,NY 11973 dUniversityofCalifornia,Berkeley,CA 94720 eUniversityofCalifornia,Davis,CA 95616 fUniversityofCalifornia,LosAngeles,CA 90095 gCentralChinaNormalUniversity,Wuhan,Hubei430079 hUniversityofIllinoisatChicago,Chicago,IL 60607 iCreightonUniversity,Omaha,NE 68178

jCzechTechnicalUniversityinPrague,FNSPE,Prague,11519,CzechRepublic kNuclearPhysicsInstituteASCR,Prague25068,CzechRepublic

lFrankfurtInstituteforAdvancedStudiesFIAS,Frankfurt60438,Germany mFudanUniversity,Shanghai,200433

nInstituteofPhysics,Bhubaneswar751005,India oIndianaUniversity,Bloomington,IN 47408

pAlikhanovInstituteforTheoreticalandExperimentalPhysics,Moscow117218,Russia qUniversityofJammu,Jammu180001,India

rJointInstituteforNuclearResearch,Dubna,141980,Russia sKentStateUniversity,Kent,OH 44242

tUniversityofKentucky,Lexington,KY 40506-0055 uLamarUniversity,PhysicsDepartment,Beaumont,TX 77710

vInstituteofModernPhysics,ChineseAcademyofSciences,Lanzhou,Gansu730000 wLawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720

xLehighUniversity,Bethlehem,PA 18015

yMax-Planck-InstitutfurPhysik,Munich80805,Germany zMichiganStateUniversity,EastLansing,MI 48824

aaNationalResearchNuclearUniversityMEPhI,Moscow115409,Russia abNationalInstituteofScienceEducationandResearch,HBNI,Jatni752050,India acNationalChengKungUniversity,Tainan70101

adOhioStateUniversity,Columbus,OH 43210

aeInstituteofNuclearPhysicsPAN,Cracow31-342,Poland afPanjabUniversity,Chandigarh160014,India

agPennsylvaniaStateUniversity,UniversityPark,PA 16802 ahInstituteofHighEnergyPhysics,Protvino142281,Russia aiPurdueUniversity,WestLafayette,IN 47907

ajPusanNationalUniversity,Pusan46241,RepublicofKorea akRiceUniversity,Houston,TX 77251

alRutgersUniversity,Piscataway,NJ 08854

amUniversidadedeSaoPaulo,SaoPaulo,05314-970,Brazil anUniversityofScienceandTechnologyofChina,Hefei,Anhui 230026 aoShandongUniversity,Jinan,Shandong250100

apShanghaiInstituteofAppliedPhysics,ChineseAcademyofSciences,Shanghai201800 aqStateUniversityofNewYork,StonyBrook,NY 11794

(3)

auUniversityofHouston,Houston,TX 77204 avTsinghuaUniversity,Beijing100084

awUniversityofTsukuba,Tsukuba,Ibaraki305-8571,Japan axSouthernConnecticutStateUniversity,NewHaven,CT 06515 ayUniversityofCalifornia,Riverside,CA 92521

azUniversityofHeidelberg,Heidelberg,69120,Germany baUnitedStatesNavalAcademy,Annapolis,MD 21402 bbValparaisoUniversity,Valparaiso,IN 46383

bcVariableEnergyCyclotronCentre,Kolkata700064,India bdWarsawUniversityofTechnology,Warsaw00-661,Poland beWayneStateUniversity,Detroit,MI 48201

bfYaleUniversity,NewHaven,CT 06520

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received11March2018

Receivedinrevisedform30April2018 Accepted25May2018

Availableonline31May2018 Editor:M.Doser

Keywords: Collectivity Correlation Shearviscosity

Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particlesare widely usedtoquantifytheanisotropyinparticleemissioninhigh-energyheavy-ioncollisions.Thesymmetric cumulants,SC(m,n),areusedtomeasurethecorrelationsbetweendifferentordersofflowharmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium intheoretical models.In thisLetter, wepresent the firstmeasurements of the four-particle symmetriccumulantsinAu+Aucollisionsat√sN N=39 and200 GeVfromdatacollectedbytheSTAR experimentatRHIC.Weobservethatv2andv3areanti-correlatedinallcentralityintervalswithsimilar correlationstrengthsfrom39 GeVAu+Auto2.76 TeVPb+Pb(measuredbytheALICEexperiment).The

v2–v4 correlation seemsto be stronger at39 GeV thanathigher collisionenergies. The initial-stage anti-correlationsbetweensecondand thirdordereccentricitiesaresufficienttodescribethemeasured correlations between v2 and v3. The best description of v2–v4 correlations at √sN N =200 GeV is obtainedwithinclusionofthesystem’snonlinearresponsetoinitialeccentricitiesaccompaniedbythe viscous effect with

η

/s>0.08. Theoretical calculations usingdifferent initial conditions,equations of state and viscous coefficients need to be further exploredto extract

η

/s of the medium created at RHIC.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

High-energyheavy-ion collisions at the Relativistic Heavy Ion Collider(RHIC) andthe LargeHadron Collider(LHC) are believed tohavecreatedaQCDmediumatextremelyhighenergydensities. Thepropertiesofthismediumareunderpersistentinvestigations. Anextensivelystudiedsubjectis“flow”,the collectiveanisotropic expansionofthemedium. Flow originatesfromtheinitial spatial anisotropy(and/orfluctuationsintheposition)ofthecolliding nu-cleons,anddevelopsduetothestronginteractionamongparticles produced in the collision [1–6]. The anisotropy in the momen-tumspaceisquantifiedbytheFouriercoefficientsoftheazimuthal emissiondistributionofproducedparticleswithrespecttothenth ordereventplane [7,8]:

dN d

ϕ

1

+



n=1 2vncos [n

(

ϕ

− 

n

)

]

,

(1) where

ϕ

is the azimuthal particle emission angle and



n isnth orderevent plane angle. These vn are the single-particle Fourier coefficientsthat can bederived withoutthe determinationofthe eventplane whichis discussedlater on.The flow harmonics, vn, quantifythe nth orderanisotropy of particles of interest,and its magnitudeimprints the initial anisotropy [1], the expansion dy-namics [9,10] and the equation of state of the medium [2,11]. Variouseffortshavebeenmadetounderstandthemeasured flow harmonics and extract the transport properties of the medium, butdifferentmodels needa differentvalueof

η

/

s (viscosityover

entropy density) to describe the same experimental

measure-ments [12,13].Forexample,the NeXSPheRIOmodelwith

η

/

s

=

0 (describedinRef. [12]) explainsall vn in all centralities whereas

the MUSIC model (described in Ref. [13]) indicates that a vis-cousmediumwith

η

/

s

0

.

08 isneededtoexplainthevn datain Au

+

Aucollisions at

sN N

=

200 GeV. Thissuggests that besides the choice for

η

/

s, other transport properties, equation of state, andtheinitialstate alsoaffectsthesecalculationsandusingonly vn datait isdifficulttohavecontrol ontheseparameters. There-fore,moreinputsfromexperimentalobservablesarewarrantedto furtherconstraintheoreticalmodels.

Toprobe theinitial conditions,itisimportant tomeasure the distributionsof vn andevent-by-eventcorrelationsamong vn val-uesinaneventsample [14,15] astheevent-by-eventcorrelations between different orders of flow harmonics are theorized to be sensitive to the transport properties of the medium [16,17]. Re-cently, the four-particlesymmetric cumulants [18–22] have been proposed to unravel the initial-stage phenomena and the later-stagemediumproperties.Thesefour-particlesymmetriccumulants SC

(

m

,

n

)

aredefinedas [18] SC

(

m

,

n

)

≡ 

cos

(

m

ϕ

1

+

n

ϕ

2

m

ϕ

3

n

ϕ

4

)



c

= 

cos

(

m

ϕ

1

+

n

ϕ

2

m

ϕ

3

n

ϕ

4

)



− 

cos

[

m

(

ϕ

1

ϕ

2

)

] 

cos

[

n

(

ϕ

1

ϕ

2

)

]

=



v2mv2n





v2m

 

vn2



.

(2)

(4)

betweenv2

n and v2m;inotherwords, v2n beinglargerthan



vn2



in aneventenhances(suppresses)theprobability ofv2m beinglarger than



v2

m



inthatsame event.The SC

(

m

,

n

)

observablesfocuson the correlationsbetweendifferent orders offlow harmonics, and facilitatethe quantitative comparison betweenexperimental data and model calculations. A normalized symmetric cumulant will facilitateaquantitativecomparisonbetweendifferentcollision en-ergiesor betweendataandmodel calculationsasthe magnitude ofsymmetriccumulantdependsonmagnitudeofflowharmonics. Thenormalizedsymmetriccumulant, N SC

(

m

,

n

)

,isdefinedas N SC

(

m

,

n

)

=



v

2

nv2m

 − 

v2n



vm2





vn2



vm2



.

(3)

The ALICE collaboration has recently measured SC

(

2

,

3

)

and SC

(

2

,

4

)

inPb

+

Pbcollisions at

sN N

=

2

.

76 TeV, andfoundthat thecentrality dependenceof SC

(

2

,

4

)

cannot be capturedby hy-drodynamics modelcalculationswitha constant

η

/

s [19].In this Letter,wepresentthefirstmeasurementsofsymmetriccumulants in Au

+

Au collisions at

sN N

=

39 and200 GeV. Due to limited statistics, resultsfromAu

+

Aucollisions at

sN N

=

62

.

4 GeV are notpresentedinthisletter.Section2discussesexperimentdetails andthe analysis method,and Section 3 describesthe results for SC

(

2

,

3

)

andSC

(

2

,

4

)

asfunctions ofcentralityandcomparesthem withavailablemodelpredictions.ThesummaryisinSection4.

2. Experiment and analysis

ThedatausedinthismeasurementwerecollectedfromAu

+

Au collisions bythe STAR [23] intheyears 2010(39 GeV)and2011 (200 GeV). We analyzed 1

.

1

×

108 and 4

×

108 minimum-bias Au

+

Au eventsat

sN N

=

39 and 200 GeV,respectively. The col-lisioncentralitydeterminationwas validatedby comparingMonte CarloGlaubercalculationstothecharged-hadronmultiplicity mea-suredwiththetimeprojection chamber(TPC)within a pseudora-piditywindowof

|

η

|

<

0

.

5.Thedetailedprocedurestoobtainthe simulated multiplicity are similar to that described in Ref. [24]. Events were required to have collision vertex positions (in the radialdirection)within2 cmofthebeamaxistoreduce contribu-tionsfrombeam-pipe(ataradiusof4 cm)interactions,andwithin alimiteddistancefromthecenterofthedetectoralongthebeam direction(

±

40 cm forthe 39 GeV data set and

±

30 cm forthe 200 GeVdataset).Chargedparticlesusedinthisanalysiswere re-constructedbytheSTARTPCwith

|

η

|

<

1

.

0.Thedistanceofclosest approach(DCA)ofatracktotheprimaryvertexwasrequiredtobe lessthan 3 cm.Wealsorequiredthenumberoffitpoints (nhits) used to reconstruct a track to be greater than 15 and the ratio ofthe numberof fitpoints tomaximum possiblehits (nhits/hit-max)tobe greaterthan0.52.Inaddition weappliedatransverse momentumcut(0

.

2

<

pT

<

2 GeV

/

c)tothechargedtracksto min-imizenonfloweffectse.g.low andhighpT cutsusedtominimize resonanceandjetcontribution,respectively.Thesedefaultcut set-tingswerelatervariedforasystematicanalysis.

Thetwo- andfour-particlecorrelationsinEq. (2) canbe evalu-atedintermsofflowvectors [25].Theflowvector(orQvector)for nth harmonicisdefinedas Qn,p



kM=1w

p ke

inϕk,where M isthe

multiplicityofanevent.Theweights(wk

=

weffwϕ )wereapplied tocorrectforthe pT-dependentefficiency(weff

=

eff(1pT)) andfor imperfectionsinthedetectoracceptance(wϕ ).Theevent-by-event vn2 and v2nvm2 in Eq. (2) were calculated with the multi-particle Q -cumulantmethod [18,25]: v2n

= 

cos

[

n

(

ϕ

1

ϕ

2

)

] =

N



2



n,n D



2



n,n (4) and vn2v2m

= 

cos

(

m

ϕ

1

+

n

ϕ

2

m

ϕ

3

n

ϕ

4

)



=

N



4



n,m,n,m D



4



n,m,n,m

,

(5) where N



2



n,n

=

Qn,1Qn,1

Q0,2

,

(6) D



2



n1,n2

=

N



2



0,0

=

Q 2 0,1

Q0,2

,

(7) N



4



n,m,n,m

=

Qn,1Qm,1Qn,1Qm,1

Qn+m,2Qn,1Qm,1

Qm,1Q0,2Qm,1

Qn,1Qmn,2Qm,1

+

2Qm,3Qm,1

Qm,1Qn,1Qnm,2

+

Qmn,2Qnm,2

Qn,1Qn,1Q0,2

+

Q0,2Q0,2

+

2Qn,1Qn,3

Qn,1Qm,1Qnm,2

+

Qn+m,2Qnm,2

+

2Qm,1Qm,3

+

2Qn,1Qn,3

6Q0,4

,

(8) D



4



n,m,n,m

=

N



4



0,0,0,0

=

Q04,1

6Q02,1Q0,2

+

3Q02,2

+

8Q0,1Q0,3

6Q0,4 (9) and Qn,p

=

Qn,p

.

(10)

TheweightsofM

(

M

1

)

andM

(

M

1

)(

M

2

)(

M

3

)

wereused to average the 2-particle and 4-particle correlations over events (secondaverageinEq. (2)).

The values of v2

n in the denominator of Eq. (3) are obtained with the 2-particle correlations with a pseudorapidity gap of

|

η

|

>

1

.

0 betweenthetwoparticlestosuppressfew-particle non-flowcorrelations [20].Theexpressionofv2

nintermsofflowvector withapseudorapiditygapcanbewrittenas

vn2

=

Q A n,1

.

QnB,∗1 MA

.

MB

.

(11)

Here QnA,1 andQnB,1 aretheflowvectorsfromsub-events A andB, with MA and MB the corresponding multiplicities.Although, the eta-gapsuppressesfew-particlenonflowcontributions(mainlydue toshortrangecorrelation),nonflowduetolongrangecorrelations mightaffectthemagnitudeofmeasurednormalized SC

(

m

,

n

)

.

Reference [26] showsthat ifN SC

(

m

,

n

)

ismeasuredina wide centralityrange,wherethemultiplicitysignificantlyfluctuates,the measurementsofthesymmetriccumulantswillbebiasedbysuch fluctuations. This isknown asthe centrality-bin-width(CBW) ef-fect. Accordingly, in thisanalysis, the symmetric cumulantswere measured in small multiplicity windows (bin size equal to one) and then combined into 10% centrality bins to reduce statistical uncertainties. Notethatwehavechecked,usingtheAMPTmodel, themagnitudeof N SC

(

m

,

n

)

remainsunchangedifweuseimpact parameterbinsinsteadofmultiplicity.

The main systematic uncertainties came from 1) event and track selection cuts, and 2) corrections for the non-uniform az-imuthal acceptanceandefficiency.Twomethodswere adoptedto correct for the azimuthal dependence of the tracking efficiency:

(5)

Fig. 1. (Coloronline.) SC(2,4)× NpartandSC(2,3)× NpartasfunctionsofNpart inAu+Aucollisionsat√sN N=39 and200 GeV.HIJINGmodelresultsareshown

onlyfor200 GeV.Verticalslinesarestatisticaluncertaintiesandsystematicerrors areshownwithcapsymbols.

the re-centering correction was applied as a function of multi-plicity.Both the

ϕ

-weighting andthere-centering methods were appliedseparatelyforeachrunperiodofdatatakingand central-ityinterval. The difference between the two correction methods wasincludedinthesystematicuncertainty.Toestimatesystematic uncertaintyduetovariationoftracksandeventselectioncuts,we havevaried DCA,nhits, nhits/hitmax andVz values from default cutvalue.Thetotalsystematicuncertaintywasobtainedbyadding uncertaintiesfromdifferentsourcesinquadrature.Maximum con-tribution(

8–12%)tothesystematicuncertaintycomesfromthe correctionfornon-uniformazimuthalacceptanceandefficiency.

3. Results

Fig.1presentsthesymmetriccumulantsSC

(

2

,

3

)

andSC

(

2

,

4

)

multiplied by the average number of participating nucleons,



Npart, asfunctionsofcentrality (represented by



Npart [24]) at midrapidity (

|

η

|

<

1

.

0) for charged hadrons in Au

+

Au collisions at

sN N

=

39 and 200 GeV. Systematic errors are shown with cap symbols. Due to limitedstatistics at 39 GeV, the SC

(

2

,

4

)

is measured in two wide centrality bins, 0–20% and 20–40%. Pos-itive values of SC

(

2

,

4

)

are observed for all centrality intervals atbothcollision energies, suggestiveof acorrelation between v2 and v4. On the other hand, the negative values of SC

(

2

,

3

)

re-vealtheanti-correlationbetweenv2andv3.Themagnitudeofthe SC

(

2

,

3

)

× 

Npartand SC

(

2

,

4

)

× 

Npartincreasesfromcentralto mid-peripheraleventsandthenagaindecreasesforveryperipheral events.ThisisalsotrueforSC

(

2

,

3

)

andSC

(

2

,

4

)

(notshown).An inherentfeatureofthesymmetriccumulantisthesuppressionof nonflow effects thanks to the use of the four-particle cumulant, wherenonflowrefers toazimuthal correlationsnotrelatedtothe reactionplane orientation,arising fromresonances, jets,quantum statistics,andso on. Fig.1 alsoshowsHIJING model calculations of SC

(

2

,

3

)

and SC

(

2

,

4

)

in Au

+

Aucollisions at

sN N

=

200 GeV [27,28].ComparisontotheHIJINGmodel,whichincludesonly non-flowphysics,suggeststhatnonfloweffectscannotexplainthedata ofnon-zerosymmetriccumulants.

Anisotropicflowisgeneratedbytheinitialgeometricanisotropy

coupled with a collective expansion of the produced medium.

There is an intense interest in understanding the origin of the initial-stage fluctuations and how these fluctuations manifest

Fig. 2. (Coloronline.) N SC(2,4)and N SC(2,3)asfunctionsofNpartinAu+Au collisions at √sN N=200 GeV. The normalized symmetriccumulants of spatial

eccentricities,N SC(m,n)ε,usingthe Glaubermodel,arealsoshown. N SC(m,n)v

representnormalizedsymmetriccumulantsofflowcoefficientsusingequation (3).

themselves in correlations betweenmeasured particles. The nor-malized symmetric cumulantsevaluated inthe coordinate space, N SC

(

m

,

n

)

ε

= (



ε

2 n

ε

m2





ε

2 n

 

ε

2 m



)/(



ε

2 n

 

ε

2 m



)

,inAu

+

Aucollisionsat

sN N

=

200 GeV (usingtheMonteCarloGlauber model [26])are showninFig.2 andcompared withN SC

(

m

,

n

)

v measured inthe momentumspace [7].Ifonlyeccentricitydrivesvn,thenweexpect N SC

(

m

,

n

)

v

=

N SC

(

m

,

n

)

ε . Fig. 2 demonstrates that the initial-stage anti-correlation between the 2nd (

ε

2) and 3rd (

ε

3) order eccentricityismainlyresponsiblefortheobservedanti-correlation between v2 and v3. However, the correlation between

ε

2 and

ε

4 under-predicts the observed correlation between v2 and v4. ThedifferencebetweenN SC

(

2

,

4

)

vandN SC

(

2

,

4

)

ε increasesfrom centraltoperipheralcollisions.Theanisotropicflow v4 hasa con-tributionnotonlyfromthelinearresponseofthesystemto

ε

4,but alsohasacontributionproportionalto

ε

2

2.Therefore,theincreased difference between N SC

(

2

,

4

)

v and N SC

(

2

,

4

)

ε from central to peripheral collisions is presumably because

ε

2 has an increased contributioninv4 inmore-peripheralcollisions.Thisisconsistent withthe observation reportedby the ATLAS [29] and ALICE [19] experimentsinPb

+

Pbcollisionsat

sN N

=

2

.

76 TeV.Therelative contributionof

ε

2 inv4,ascomparedtothatof

ε

4 wassuggested todependontheviscouspropertiesofthemedium [30].Therefore, N SC

(

2

,

4

)

providesaprobeintothemediumproperties.

(6)

Fig. 3. (Coloronline.) N SC(2,4)and N SC(2,3)asfunctionsofaverageNpartin Au+Aucollisionsat√sN N=39 and200 GeV.ALICEresultsfor2.76TeVPb+Pb [19]

arealsoshownforcomparison.Verticallinesarestatisticaluncertainties.Systematic errorsareshownwithcapsymbols.TheCBWcorrectedresultsarelabeledby “Nar-rowMult.Bins”andCBWuncorrectedresultsarelabeledby“WideMult.Bins”.

Fig. 4. (Color online.) N SC(2,4) and N SC(2,3) as functions ofaverage Npart inAu+Au collisions at √sN N=200 GeV, with hydrodynamics [26] and AMPT

model [21] predictionsforcomparison.AllresultsareCBWcorrected.

faircomparison. ThereisaslightdifferenceinN SC

(

2

,

4

)

between results with and without the CBW correction; however, this ef-fectislargerinN SC

(

2

,

3

)

.TheuncorrectedvaluesofN SC

(

2

,

3

)

or N SC

(

2

,

4

)

at200 GeVand 2.76TeVare very closeto each other forallcentralityintervals.

WecompareinFig.4our measurementswithavailable model predictions [21,26] for N SC

(

2

,

3

)

and N SC

(

2

,

4

)

in Au

+

Au colli-sions at 200 GeV. The AMPT calculations [21] are shown for a partonicmediumwith

η

/

s

=

0

.

18 (i.e.,3 mbparton–parton inter-actioncross-section). In the AMPT model,

η

/

s in partonicmatter is estimated with the assumption that the partonic matter only consists of massless u and d quarks [31]. AMPT model calcula-tions with

η

/

s

=

0

.

18 are in agreementwith the vn magnitudes in peripheral collisions, but it over-predicts the vn data for the most-central collisions [21]. The N SC

(

2

,

3

)

and N SC

(

2

,

4

)

from dataare reasonablywell described by the AMPT model,however

an increasing deviation between data and AMPT model calcula-tionisobservedfor N SC

(

2

,

4

)

atperipheralcollisions.Predictions from an ideal hydrodynamics model (NexSPheRIO) [26] are also showninFig.4.TheidealhydrodynamicsmodelwithNexSPheRIO initial conditions is able to explain the anti-correlation between v2 andv3 withintheoreticaluncertainties,butunder-predictsthe correlation between v2 and v4. TheNexSPheRIOmodeldescribes the magnitudes of all flow harmonics (v2, v3 and v4) up to pT

2.0 GeV/c within 10%, measured in all centrality intervals at the top RHIC energy [26]. The failure of the ideal hydrody-namics model for the v2–v4 correlation supports the idea that the symmetric cumulants provide additional constraints to theo-retical models.Liketheidealhydrodynamicsmodel,aviscous hy-drodynamicsmodel(MCKLNinitialconditionandwith

η

/

s

=

0

.

08) roughlyexplainstheN SC

(

2

,

3

)

dataandunder-predictsN SC

(

2

,

4

)

forperipheralcollisions.However,thepredictionfromtheviscous hydrodynamicsmodelforN SC

(

2

,

4

)

isclosertodatathantheideal hydrodynamicsmodel.Notethat,allpresentedmodels(hydroand transport)under-predict N SC

(

2

,

4

)

. Thismaybe improvedby re-visitingmodel ingredientssuch astheaverage initialstate, initial statefluctuations, energydeposition“smearing”,equationofstate, the appearance of other forms of transport, etc. Hence, a sound conclusionrequiresfurtherinvestigationalongthatline.

4. Conclusions

We have presented the first measurements of the

charge-inclusive four-particle symmetric cumulants as functionsof cen-trality at midrapidity in Au

+

Au collisions at

sN N

=

39 and 200 GeV.Thenewdataprovideadditionalconstraintsontheinitial conditionsandthetransportpropertiesintheoreticalmodels. Anti-correlationhasbeenobservedbetweenevent-by-eventfluctuations of v2 and v3,whiletheevent-by-event fluctuationsof v2 and v4 are found to be correlated. The initial-stage anti-correlation be-tween

ε

2 and

ε

3 appearstodescribetheobservedanti-correlation between v2 and v3,which seems tosupport theidea ofthe lin-earitybetween

ε

n andvn[7].However,theinitial-stagecorrelation alone is not sufficient to describe the measured correlation be-tween v2 and v4: the nonlinear hydrodynamic response of the mediumhastobeincludedtoreproducethedata.Thev2–v4 cor-relationseemstobedifferentbetween200 GeVand39 GeV,which could be attributedto the corresponding difference in theinitial conditionsand/orthetransportpropertiesofthemedium.Wehave comparedtheSTARmeasurementswithanumberofavailable the-oretical modelcalculations.All themodelsexplain thesymmetric cumulant between v2 and v3; however, none of them are able to describe the v2–v4 correlation forall centralities (though the hydrodynamics model(

η

/

s

=

0) could successfullyreproduce the individual flow harmonics). A viscoushydrodynamicsmodelwith

η

/

s

=

0

.

08 outperformstheidealhydrodynamicsmodelin explain-ing thedata, butstill seems tounder-predict N SC

(

2

,

4

)

,whereas theAMPTcalculationswith

η

/

s

=

0

.

18 areevenclosertothe mea-surement. A detailedcomparisonofthepresenteddatato models withdifferent equation ofstates,initial conditions,and transport coefficients is needed to determine these coefficients quantita-tively.

Acknowledgements

We thank the RHIC Operations Group and RCF at BNL, the

NERSC Center at LBNL, and the Open Science Grid consortium

(7)

ScienceFoundationofChina,ChineseAcademyofScience,the Min-istryofScienceandTechnologyofChinaandtheChineseMinistry ofEducation,the NationalResearch Foundation ofKorea, GAand

MSMT of the Czech Republic, Departmentof Atomic Energy and

DepartmentofScienceandTechnologyoftheGovernmentofIndia; theNationalScienceCentre ofPoland, NationalResearch Founda-tion,theMinistryofScience,EducationandSportsoftheRepublic ofCroatia,ROSATOM ofRussiaandGermanBundesministeriumfur Bildung,Wissenschaft,ForschungandTechnologie(BMBF)andthe HelmholtzAssociation.

References

[1]J.-Y.Ollitrault,Phys.Rev.D46(1992)229.

[2]D.Teaney,J.Lauret,E.V.Shuryak,Phys.Rev.Lett.86(2001)4783. [3]R.S.Bhalerao,J.-P.Blaizot,N.Borghini,etal.,Phys.Lett.B627(2005)49. [4]R.S.Bhalerao,J.-Y.Ollitrault,Phys.Lett.B641(2006)260.

[5]C.Adler,etal.,STARCollaboration,Phys.Rev.Lett.87(2001)182301. [6]R.Snellings,NewJ.Phys.13(2011)055008.

[7]B.Alver,G.Roland,Phys.Rev.C81(2010)054905,Erratum:Phys.Rev.C82 (2010)039903.

[8]A.M.Poskanzer,S.A.Voloshin,Phys.Rev.C58(1998)1671. [9]H.Sorge,Phys.Rev.Lett.78(1997)2309.

[10]P.F.Kolb,P.Huovinen,U.Heinz,etal.,Phys.Lett.B500(2001)232.

[11]U.Heinz,J.Phys.Conf.Ser.50(2006)230.

[12]F.G.Gardim,F.Grassi,M.Luzum,etal.,Phys.Rev.Lett.109(2012)202302. [13]B.Schenke,S.Jeon,C.Gale,Phys.Rev.C85(2012)024901.

[14]M.Miller,R.Snellings,arXiv:nucl-ex/0312008.

[15]B.Alver,etal.,PHOBOSCollaboration,Phys.Rev.Lett.98(2007)242302. [16]G.Aad,etal.,ATLASCollaboration,Phys.Rev.C90(2014)024905. [17]X.Zhu,Y.Zhou,H.Xu,etal.,Phys.Rev.C95(2017)044902.

[18]A.Bilandzic,C.H.Christensen,K. Gulbrandsen,etal.,Phys. Rev.C89(2014) 064904.

[19]J.Adam,etal.,ALICECollaboration,Phys.Rev.Lett.117(2016)182301. [20]Y.Zhou,K.Xiao,Z.Feng,etal.,Phys.Rev.C93(2016)034909. [21]M.Nasim,Phys.Rev.C95(2017)034905.

[22]A.M.Sirunyan,etal.,CMSCollaboration,Phys.Rev.Lett.120(2018)092301. [23]K.H. Ackermann, et al., STAR Collaboration, Nucl. Instrum. Methods A 499

(2003)624.

[24]B.I.Abelev,etal.,STARCollaboration,Phys.Rev.C81(2010)024911. [25]A.Bilandzic,R.Snellings,S.Voloshin,Phys.Rev.C83(2011)044913. [26]F.G. Gardim,F.Grassi,M.Luzum,etal.,Phys.Rev.C95(2017)034901,and

privatecommunication.

[27]M.Gyulassy,X.N.Wang,Comput.Phys.Commun.83(1994)307. [28]X.N.Wang,M.Gyulassy,Phys.Rev.D44(1991)3501.

[29]G.Aad,etal.,ATLASCollaboration,Phys.Rev.C92(2015)034903. [30]D.Teaney,L.Yan,Phys.Rev.C86(2012)044908.

Riferimenti

Documenti correlati

3 Ficarra V, Zecchini S, Novara G et al: Short-term outcome after high intensity focused ultrasound in the treatment of patients with high-risk prostate cancer. BJU Int 98:

The aim of this article is to provide a comprehensive picture of the current available possibilities to contrast sharka disease and to implement the resistance in peach, focusing

The difference of the raw associated yield (i.e. no ZYAM subtraction) in high-activity events minus the jetlike correlated yield (i.e. with ZYAM subtrac- tion) in low-activity events

National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Sciences, the

Since even a small uncertainty in flow can introduce a large error in the extracted shear viscosity [7] , it is important to separate nonflow contributions from flow measurements..

(STAR Collaboration), Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Alver