• Non ci sono risultati.

Isolation of flow and nonflow correlations by two- and four-particle cumulant measurements of azimuthal harmonics in sNN=200GeV Au+Au collisions

N/A
N/A
Protected

Academic year: 2021

Condividi "Isolation of flow and nonflow correlations by two- and four-particle cumulant measurements of azimuthal harmonics in sNN=200GeV Au+Au collisions"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Isolation

of

flow

and

nonflow

correlations

by

two- and

four-particle

cumulant

measurements

of

azimuthal

harmonics

in

s

NN

=

200 GeV

Au

+

Au

collisions

STAR

Collaboration

N.M. Abdelwahab

be

,

L. Adamczyk

a

,

J.K. Adkins

w

,

G. Agakishiev

u

,

M.M. Aggarwal

ai

,

Z. Ahammed

ba

,

I. Alekseev

s

,

J. Alford

v

,

C.D. Anson

af

,

A. Aparin

u

,

D. Arkhipkin

d

,

E.C. Aschenauer

d

,

G.S. Averichev

u

,

A. Banerjee

ba

,

D.R. Beavis

d

,

R. Bellwied

aw

,

A. Bhasin

t

,

A.K. Bhati

ai

,

P. Bhattarai

av

,

J. Bielcik

m

,

J. Bielcikova

n

,

L.C. Bland

d

,

I.G. Bordyuzhin

s

,

W. Borowski

as

,

J. Bouchet

v

,

A.V. Brandin

ad

,

S.G. Brovko

f

,

S. Bültmann

ag

,

I. Bunzarov

u

,

T.P. Burton

d

,

J. Butterworth

ao

,

H. Caines

bf

,

M. Calderón de la Barca Sánchez

f

,

J.M. Campbell

af

,

D. Cebra

f

,

R. Cendejas

aj

,

M.C. Cervantes

au

,

P. Chaloupka

m

,

Z. Chang

au

,

S. Chattopadhyay

ba

,

H.F. Chen

ap

,

J.H. Chen

ar

,

L. Chen

i

,

J. Cheng

ax

,

M. Cherney

l

,

A. Chikanian

bf

,

W. Christie

d

,

M.J.M. Codrington

av

,

G. Contin

z

,

J.G. Cramer

bc

,

H.J. Crawford

e

,

X. Cui

ap

,

S. Das

p

,

A. Davila Leyva

av

,

L.C. De Silva

l

,

R.R. Debbe

d

,

T.G. Dedovich

u

,

J. Deng

aq

,

A.A. Derevschikov

ak

,

R. Derradi de Souza

h

,

B. di Ruzza

d

,

L. Didenko

d

,

C. Dilks

aj

,

F. Ding

f

,

P. Djawotho

au

,

X. Dong

z

,

J.L. Drachenberg

az

,

J.E. Draper

f

,

C.M. Du

y

,

L.E. Dunkelberger

g

,

J.C. Dunlop

d

,

L.G. Efimov

u

,

J. Engelage

e

,

K.S. Engle

ay

,

G. Eppley

ao

,

L. Eun

z

,

O. Evdokimov

j

,

O. Eyser

d

,

R. Fatemi

w

,

S. Fazio

d

,

J. Fedorisin

u

,

P. Filip

u

,

Y. Fisyak

d

,

C.E. Flores

f

,

C.A. Gagliardi

au

,

D.R. Gangadharan

af

,

D. Garand

al

,

F. Geurts

ao

,

A. Gibson

az

,

M. Girard

bb

,

S. Gliske

b

,

L. Greiner

z

,

D. Grosnick

az

,

D.S. Gunarathne

at

,

Y. Guo

ap

,

A. Gupta

t

,

S. Gupta

t

,

W. Guryn

d

,

B. Haag

f

,

A. Hamed

au

,

L-X. Han

ar

,

R. Haque

ae

,

J.W. Harris

bf

,

S. Heppelmann

aj

,

A. Hirsch

al

,

G.W. Hoffmann

av

,

D.J. Hofman

j

,

S. Horvat

bf

,

B. Huang

d

,

H.Z. Huang

g

,

X. Huang

ax

,

P. Huck

i

,

T.J. Humanic

af

,

G. Igo

g

,

W.W. Jacobs

r

,

H. Jang

x

,

E.G. Judd

e

,

S. Kabana

as

,

D. Kalinkin

s

,

K. Kang

ax

,

K. Kauder

j

,

H.W. Ke

d

,

D. Keane

v

,

A. Kechechyan

u

,

A. Kesich

f

,

Z.H. Khan

j

,

D.P. Kikola

bb

,

I. Kisel

o

,

A. Kisiel

bb

,

D.D. Koetke

az

,

T. Kollegger

o

,

J. Konzer

al

,

I. Koralt

ag

,

L.K. Kosarzewski

bb

,

L. Kotchenda

ad

,

A.F. Kraishan

at

,

P. Kravtsov

ad

,

K. Krueger

b

,

I. Kulakov

o

,

L. Kumar

ae

,

R.A. Kycia

k

,

M.A.C. Lamont

d

,

J.M. Landgraf

d

,

K.D. Landry

g

,

J. Lauret

d

,

A. Lebedev

d

,

R. Lednicky

u

,

J.H. Lee

d

,

C. Li

ap

,

W. Li

ar

,

X. Li

al

,

X. Li

at

,

Y. Li

ax

,

Z.M. Li

i

,

M.A. Lisa

af

,

F. Liu

i

,

T. Ljubicic

d

,

W.J. Llope

bd

,

M. Lomnitz

v

,

R.S. Longacre

d

,

X. Luo

i

,

G.L. Ma

ar

,

Y.G. Ma

ar

,

D.P. Mahapatra

p

,

R. Majka

bf

,

S. Margetis

v

,

C. Markert

av

,

H. Masui

z

,

H.S. Matis

z

,

D. McDonald

aw

,

T.S. McShane

l

,

N.G. Minaev

ak

,

S. Mioduszewski

au

,

B. Mohanty

ae

,

M.M. Mondal

au

,

D.A. Morozov

ak

,

M.K. Mustafa

z

,

B.K. Nandi

q

,

Md. Nasim

g

,

T.K. Nayak

ba

,

J.M. Nelson

c

,

G. Nigmatkulov

ad

,

L.V. Nogach

ak

,

S.Y. Noh

x

,

J. Novak

ac

,

S.B. Nurushev

ak

,

G. Odyniec

z

,

A. Ogawa

d

,

K. Oh

am

,

A. Ohlson

bf

,

V. Okorokov

ad

,

E.W. Oldag

av

,

D.L. Olvitt Jr.

at

,

B.S. Page

r

,

Y.X. Pan

g

,

Y. Pandit

j

,

Y. Panebratsev

u

,

*

Correspondingauthor.

E-mailaddress:l.yi@yale.edu(L. Yi). http://dx.doi.org/10.1016/j.physletb.2015.04.033

(2)

T. Pawlak

bb

,

B. Pawlik

ah

,

H. Pei

i

,

C. Perkins

e

,

P. Pile

d

,

M. Planinic

bg

,

J. Pluta

bb

,

N. Poljak

bg

,

K. Poniatowska

bb

,

J. Porter

z

,

A.M. Poskanzer

z

,

N.K. Pruthi

ai

,

M. Przybycien

a

,

J. Putschke

bd

,

H. Qiu

z

,

A. Quintero

v

,

S. Ramachandran

w

,

R. Raniwala

an

,

S. Raniwala

an

,

R.L. Ray

av

,

C.K. Riley

bf

,

H.G. Ritter

z

,

J.B. Roberts

ao

,

O.V. Rogachevskiy

u

,

J.L. Romero

f

,

J.F. Ross

l

,

A. Roy

ba

,

L. Ruan

d

,

J. Rusnak

n

,

O. Rusnakova

m

,

N.R. Sahoo

au

,

P.K. Sahu

p

,

I. Sakrejda

z

,

S. Salur

z

,

A. Sandacz

bb

,

J. Sandweiss

bf

,

E. Sangaline

f

,

A. Sarkar

q

,

J. Schambach

av

,

R.P. Scharenberg

al

,

A.M. Schmah

z

,

W.B. Schmidke

d

,

N. Schmitz

ab

,

J. Seger

l

,

P. Seyboth

ab

,

N. Shah

g

,

E. Shahaliev

u

,

P.V. Shanmuganathan

v

,

M. Shao

ap

,

B. Sharma

ai

,

W.Q. Shen

ar

,

S.S. Shi

z

,

Q.Y. Shou

ar

,

E.P. Sichtermann

z

,

M. Simko

m

,

M.J. Skoby

r

,

D. Smirnov

d

,

N. Smirnov

bf

,

D. Solanki

an

,

P. Sorensen

d

,

H.M. Spinka

b

,

B. Srivastava

al

,

T.D.S. Stanislaus

az

,

J.R. Stevens

aa

,

R. Stock

o

,

M. Strikhanov

ad

,

B. Stringfellow

al

,

M. Sumbera

n

,

X. Sun

z

,

X.M. Sun

z

,

Y. Sun

ap

,

Z. Sun

y

,

B. Surrow

at

,

D.N. Svirida

s

,

T.J.M. Symons

z

,

M.A. Szelezniak

z

,

J. Takahashi

h

,

A.H. Tang

d

,

Z. Tang

ap

,

T. Tarnowsky

ac

,

J.H. Thomas

z

,

A.R. Timmins

aw

,

D. Tlusty

n

,

M. Tokarev

u

,

S. Trentalange

g

,

R.E. Tribble

au

,

P. Tribedy

ba

,

B.A. Trzeciak

m

,

O.D. Tsai

g

,

J. Turnau

ah

,

T. Ullrich

d

,

D.G. Underwood

b

,

G. Van Buren

d

,

G. van Nieuwenhuizen

aa

,

M. Vandenbroucke

at

,

J.A. Vanfossen Jr.

v

,

R. Varma

q

,

G.M.S. Vasconcelos

h

,

A.N. Vasiliev

ak

,

R. Vertesi

n

,

F. Videbæk

d

,

Y.P. Viyogi

ba

,

S. Vokal

u

,

A. Vossen

r

,

M. Wada

av

,

F. Wang

al

,

G. Wang

g

,

H. Wang

d

,

J.S. Wang

y

,

X.L. Wang

ap

,

Y. Wang

ax

,

Y. Wang

j

,

G. Webb

d

,

J.C. Webb

d

,

G.D. Westfall

ac

,

H. Wieman

z

,

S.W. Wissink

r

,

Y.F. Wu

i

,

Z. Xiao

ax

,

W. Xie

al

,

K. Xin

ao

,

H. Xu

y

,

J. Xu

i

,

N. Xu

z

,

Q.H. Xu

aq

,

Y. Xu

ap

,

Z. Xu

d

,

W. Yan

ax

,

C. Yang

ap

,

Y. Yang

y

,

Y. Yang

i

,

Z. Ye

j

,

P. Yepes

ao

,

L. Yi

al

,

,

K. Yip

d

,

I-K. Yoo

am

,

N. Yu

i

,

H. Zbroszczyk

bb

,

W. Zha

ap

,

J.B. Zhang

i

,

J.L. Zhang

aq

,

S. Zhang

ar

,

X.P. Zhang

ax

,

Y. Zhang

ap

,

Z.P. Zhang

ap

,

F. Zhao

g

,

J. Zhao

i

,

C. Zhong

ar

,

X. Zhu

ax

,

Y.H. Zhu

ar

,

Y. Zoulkarneeva

u

,

M. Zyzak

o

aAGHUniversityofScienceandTechnology,Cracow30-059,Poland bArgonneNationalLaboratory,Argonne,IL 60439,USA

cUniversityofBirmingham,BirminghamB15 2TT,UnitedKingdom dBrookhavenNationalLaboratory,Upton,NY 11973,USA eUniversityofCalifornia,Berkeley,CA 94720,USA fUniversityofCalifornia,Davis,CA 95616,USA gUniversityofCalifornia,LosAngeles,CA 90095,USA hUniversidadeEstadualdeCampinas,SaoPaulo13131,Brazil iCentralChinaNormalUniversity(HZNU),Wuhan430079,China jUniversityofIllinoisatChicago,Chicago,IL 60607,USA kCracowUniversityofTechnology,Cracow31-155,Poland lCreightonUniversity,Omaha,NE 68178,USA

mCzechTechnicalUniversityinPrague,FNSPE,Prague, 115 19,Czech Republic nNuclearPhysicsInstituteASCR,25068ˇRež/Prague,CzechRepublic oFrankfurtInstituteforAdvancedStudiesFIAS,Frankfurt60438,Germany pInstituteofPhysics,Bhubaneswar751005,India

qIndianInstituteofTechnology,Mumbai400076,India rIndianaUniversity,Bloomington,IN 47408,USA

sAlikhanovInstituteforTheoreticalandExperimentalPhysics,Moscow 117218,Russia tUniversityofJammu,Jammu180001,India

uJointInstituteforNuclearResearch,Dubna,141 980,Russia vKentStateUniversity,Kent,OH 44242,USA

wUniversityofKentucky,Lexington,KY,40506-0055,USA x

KoreaInstituteofScienceandTechnologyInformation,Daejeon 305-701,Republic of Korea yInstituteofModernPhysics,Lanzhou730000,China

zLawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720,USA aaMassachusettsInstituteofTechnology,Cambridge,MA 02139-4307,USA abMax-Planck-InstitutfurPhysik,Munich 80805,Germany

acMichiganStateUniversity,EastLansing,MI 48824,USA adMoscowEngineeringPhysicsInstitute,Moscow115409,Russia

aeNationalInstituteofScienceEducationandResearch,Bhubaneswar751005,India afOhioStateUniversity,Columbus,OH 43210,USA

agOldDominionUniversity,Norfolk,VA 23529,USA ahInstituteofNuclearPhysicsPAN,Cracow31-342,Poland aiPanjabUniversity,Chandigarh160014,India

ajPennsylvaniaStateUniversity,UniversityPark,PA 16802,USA akInstituteofHighEnergyPhysics,Protvino142281,Russia alPurdueUniversity,WestLafayette,IN 47907,USA amPusanNationalUniversity,Pusan609735,RepublicofKorea anUniversityofRajasthan,Jaipur302004,India

aoRiceUniversity,Houston,TX 77251,USA

(3)

aqShandongUniversity,Jinan,Shandong250100,China arShanghaiInstituteofAppliedPhysics,Shanghai201800,China asSUBATECH,Nantes44307,France

atTempleUniversity,Philadelphia,PA 19122,USA auTexasA&MUniversity,CollegeStation,TX 77843,USA avUniversityofTexas,Austin,TX 78712,USA awUniversityofHouston,Houston,TX 77204,USA axTsinghuaUniversity,Beijing100084,China

ayUnitedStatesNavalAcademy,Annapolis,MD,21402,USA azValparaisoUniversity,Valparaiso,IN 46383,USA baVariableEnergyCyclotronCentre,Kolkata700064,India bbWarsawUniversityofTechnology,Warsaw00-661,Poland bcUniversityofWashington,Seattle,WA 98195,USA bdWayneStateUniversity,Detroit,MI 48201,USA

beWorldLaboratoryforCosmologyandParticlePhysics(WLCAPP),Cairo 11571,Egypt bfYaleUniversity,NewHaven,CT 06520,USA

bgUniversityofZagreb,Zagreb,HR-10002,Croatia

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received6September2014

Receivedinrevisedform24February2015 Accepted19April2015

Availableonline21April2015 Editor: V.Metag

Keywords: Heavy-ion Flow Nonflow

Adata-drivenmethodwasappliedtoAu+Aucollisionsat√sNN=200 GeV madewiththeSTAR

detec-toratRHICtoisolatepseudorapiditydistance

η

-dependentand

η

-independentcorrelationsbyusing two- andfour-particleazimuthalcumulantmeasurements.Weidentifieda

η

-independentcomponent ofthecorrelation,whichisdominatedbyanisotropicflowandflowfluctuations.Itwasalsofoundtobe independentof

η

withinthemeasuredrangeofpseudorapidity|

η

|<1.In20–30%centralAu+Au colli-sions,therelativeflowfluctuationwasfoundtobe34%±2%(stat.)±3%(sys.)forparticleswithtransverse momentum pT less than2 GeV/c.The

η

-dependentpart,attributedtononflowcorrelations,isfound

tobe5%±2%(sys.)relativetotheflowofthemeasuredsecondharmoniccumulantat|

η

|>0.7.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Heavy-ioncollisionsatultra-relativisticenergiesasproducedat theRelativisticHeavyIonCollider(RHIC)andattheLargeHadron Collider (LHC) provide means to study the Quark Gluon Plasma (QGP). In non-central collisions, the overlapregion of the collid-ingnucleiisanisotropic.Theenergydensitygradientconvertsthe initialcoordinate-spaceanisotropyintothefinalmomentum-space anisotropy, generally called anisotropic flow. As the system ex-pands,thecoordinate-spaceanisotropydiminishes.Hence, a mea-surement of flow is most sensitive to properties of the system at the early stage of the collision [1]. Through measurements of anisotropic flowandcomparisonwithhydrodynamic calculations, propertiesoftheearlystageofthecollisionmaybeextracted.One ofthe importantvariables,the ratioofthe shearviscosityto en-tropy densityof theQGP, was found to be not muchlarger than theconjecturedquantumlimitof1/4

π

[2].

Themomentum-spaceanisotropicflowcanbecharacterizedby Fouriercoefficients, vn,oftheoutgoingparticleazimuthal(φ) dis-tribution[3]: dN d

φ

1

+



n=1 2vncos n

− ψ

n

),

(1)

wheretheparticipantplaneischaracterizedbytheangle

ψ

n,given bytheinitialparticipantnucleon(orparton)configuration[4].The higherharmonicscanarisefrominitialfluctuationssuchthat

ψ

n is notnecessarilythesamefordifferentn.Because

ψ

n isnot experi-mentallyaccessible,theeventplane,constructedfromfinalparticle momenta,isusedasaproxyfortheinitial stateparticipantplane. Thedeterminationoftheanisotropicflowusesparticlecorrelations that are, however, contaminated by intrinsic particle correlations unrelatedtotheparticipantplane.Thosecorrelationsaregenerally called nonflow and are due to jet fragmentation and final state

interactions,suchasquantumstatistics,Coulombandstrong inter-actions,andresonancedecays[5].

Similarly, two- andmulti-particlecorrelationsarealsoused to measureanisotropy[6,5].Forexample,thetwo-particlecorrelation isgivenby: dN d

1

+



n=1 2Vn

{

2

}

cos n

φ,

(2)

where

is the azimuthal angle between the two particles. In theabsenceofnonflow,Eq.(2)followsfromEq.(1)withVn

{

2

}

=

vn,α vn,β (where

α

,

β

stand for the two particles). Otherwise, Vn

{

2

}

=

vn,α vn,β

+ δ

n,where

δ

n isthenonflowcontribution.Since evenasmalluncertaintyinflowcanintroducealargeerrorinthe extracted shear viscosity[7], it isimportant to separate nonflow contributionsfromflowmeasurements.

Thisarticledescribesamethodusedtoseparateflowand non-flow in adata-driven way,withminimal relianceon models. We measuretwo- andfour-particlecumulantswithdifferent pseudora-pidity(

η

)combinations.Byexploitingthesymmetryoftheaverage flowin

η

atmidrapidityinsymmetricheavy-ioncollisions,we sep-arate



η

-independentand



η

-dependentcontributions.We asso-ciatethe



η

-independentpartwithflow,whilethe



η

-dependent partisassociatedwithnonflow.Thisisbecauseflow isan event-wise many-particle azimuthal correlation,reflecting propertieson thesingle-particle level[1].Bycontrast,nonflow isafew-particle azimuthal correlation that depends on the



η

distancebetween theparticles.

(4)

2. Data analysis

2.1.Experimentdetailsanddataselection

This analysis principally relies on the STAR Time Projection Chamber (TPC) [8]. A total number of 25 million Au

+

Au colli-sionsat

sNN

=

200 GeV,collected withaminimum biastrigger in2004, were used.The eventsselected were requiredto havea primaryeventvertexwithin

|

zvtx

|

<

30 cm alongthebeamaxis (z) toensure nearly uniformdetector acceptance.The centrality def-initionwas basedon therawchargedparticlemultiplicity within

|

η

|

<

0.5 inTPC. The chargedparticle tracksused intheanalysis were required to satisfy the following conditions: the transverse momentum0.15

<

pT

<

2 GeV/c toremovehigh pT particles orig-inatingfromthejets;thedistanceofclosestapproachtotheevent vertex

|

dca

|

<

3 cm to ensurethat theparticlesare fromthe pri-mary collision vertex; the number of fit points along the track greater than 20out of45 maximum hit points, and the ratioof the numberof fit points along the track to the maximum num-berof possiblefit points largerthan 0.51forgoodprimary track reconstruction[9].Forthe particles usedinthispaper, the pseu-dorapidityregionwasrestrictedto

|

η

|

<

1.

2.2.Analysismethod

Inthisanalysis, theazimuthalanisotropyofthefinalstate par-ticles was calculated by the two- and four-particle Q-cumulant methodusingunit weightwithanon-uniformacceptance correc-tion [10]. By using the moment of the flow vector, thismethod makes multi-particle cumulant calculation faster without going overpairorahighermultiplet loop.Thenon-uniformacceptance correctionfor20–30%centralitywas0.7%forthesecondharmonic two-particlecumulant V2

{

2

}

,and0.5%forthe square rootofthe second harmonic four-particle cumulant V21/2

{

4

}

. The largest ac-ceptancecorrectionwas1.8%forV2

{

2

}

atthemostcentral,and1% forV21/2

{

4

}

atthemostperipheralcollisions.

Thetwo-particlecumulant,withoneparticleatpseudorapidity

η

α andanotherat

η

β,is[11]: V

{

2

} ≡ 

ei(φα−φβ)

 = 

v

(

η

α

)

v

(

η

β)

 + δ(

η

)

≡ 

v

(

η

α

)



v

(

η

β)

 +

σ

(

η

α

)

σ

(

η

β

)

+

σ

(

η

)

+ δ(

η

,

η

α

,

η

β

),

(3)

where



η

= |

ηβ

η

α

|

.The doublebracketsrepresenttheaverage over particlepairs and the average over events,while the single bracketsarefortheaverageovereventsonly.Theharmonic num-ber n issuppressedtolightenthenotation.Theaverageflow,



v



, whichistheanisotropy parameterwithrespectto theparticipant plane,andtheflowfluctuation,

σ

,areonlyfunctionsof

η

,because flowreflectsthepropertyonthesingle-particlelevel.Both



v



and

σ

are



η

-independent quantities. However, because of the way the two-particle cumulant is measured, i.e., by two-particle cor-relation,therecould exista



η

-dependentflow fluctuation com-ponent. For example, the event planes determined by particles atdifferent

η

’s can be different [12]. In Eq. (3),

σ

denotes this



η

-dependentpartoftheflowfluctuation.The

δ

isthe contribu-tionfromnonflow,which isgenerallya functionof



η

,butmay alsodependon

η

.Forsimplicity,wewriteitintheformof

δ(

η

)

inthediscussionbelow.

Forthefour-particlecumulant,wetaketwoparticlesat

η

α and anothertwoat

η

β.Foreasierinterpretationoftheresults,wetake

thesquarerootofthefour-particlecumulant,whichhasthesame orderin



v



asthetwo-particlecumulant(itisjustthesame ob-servableasdiscussedinthereferences[16,17]).Itisgivenby:

V12

{

4

} ≡





ei(φα+φα−φβ−φβ)



≈ 

v

(

η

α

)



v

(

η

β

)

 −

σ

(

η

α

)

σ

(

η

β

)

σ

(

η

),

(4)

wherethe approximationis thatthe flow fluctuationisrelatively smallcompared withthe average flow [13]. In V1/2

{

4

}

,the con-tributionfromthetwo-particlecorrelationsduetononfloweffects issuppressed,whilethecontributionfromthefour-particle corre-lations duetononflow effects

1/M3 (M is multiplicity)andis, therefore,negligible[14,15].The fluctuationgivesnegative contri-butiontoV1/2

{

4

}

,whilepositivetoV

{

2

}

.

The two- andfour-particle cumulantswere measured for var-ious

(

η

α

,

η

β

)

pairs and quadruplets. Fig. 1 showsthe results for

20–30%central Au

+

Au collisions.Panels (a)and(b)are the two-particlesecond andthird harmoniccumulants,V2

{

2

}(

η

α

,

η

β

)

and V3

{

2

}(

η

α

,

η

β

),

respectively. Panel (c) is the square root of the

four-particle second harmonic cumulant, V21/2

{

4

}(

η

α

,

η

α

,

η

β

,

η

β

).

We observefromFig. 1that V2

{

2

}

decreases asthegapbetween

η

α and

η

β increases. Since the trackmerging (two particles

be-ing identified as one track) affects the region

|

η

|

<

0.05, the Vn

{

2

}

and Vn

{

4

}

points along the diagonal were excluded from furtheranalysis. V3

{

2

}

followsthesametrend,butthemagnitude issmaller.V3

{

2

}

decreasesmorerapidlywith



η

thanV2

{

2

}

does. V21/2

{

4

}

isroughlyconstantandthemagnitudeissmallerthanthat of V2

{

2

}

whichisconsistent withourexpectationthat V21/2

{

4

}

is lessaffectedbythenonflowandtheflowfluctuationisnegativein V21/2

{

4

}

.

In order to extract the values of the average flow,



v



, the



η

-dependent and



η

-independentflow fluctuations,

σ

and

σ

, andthenonflowcontribution,

δ,

wefollowananalysismethod de-scribedinRef.[16].

By takingthe difference between cumulants V

{

2

}

at

(

η

α

,

η

β

)

and

(

η

α

,

ηβ

),

wehave



V

{

2

} ≡

V

{

2

}(

η

α

,

η

β

)

V

{

2

}(

η

α

,

η

β

)

V

{

2

}(

η

1

)

V

{

2

}(

η

2

)

= 

σ

+ δ,

(5) where

η

α

<

ηβ

<

0 or0

<

ηβ

<

η

α isrequired.Similarly,this dif-ferenceforV1/2

{

4

}

yields



V12

{

4

} ≡

V12

{

4

}(

η

α

,

η

β)

V12

{

4

}(

η

α

,

η

β

)

V12

{

4

}(

η

1

)

V12

{

4

}(

η

2

)

≈ −

σ

.

(6)

Here



η

1

ηβ

η

α ,



η

2

≡ −

ηβ

η

α ,



σ

=

σ

(

η

1

)

σ

(

η

2

),

and

= δ(

η

1

)

− δ(

η

2

).

Insymmetricheavy-ioncollisions,the difference of the two



η

-independent terms in Eqs. (3) and (4) iszero.Therefore thedifferencesinEqs. (5)and(6)depend only on the



η

-dependent terms: flow fluctuation



σ

and nonflow correlations

δ.

Ourgoalistoparameterizetheflowfluctuation



σ

and non-flow

δ.

The following part of this section is organized in this way:First,wediscusstheempiricalfunctionalformfor

D

(

η

)

=

σ

(

η

)

+ δ(

η

),

(7)

obtained from



V2

{

2

}

data.Second, we give the

σ

result from



V21/2

{

4

}

.UsingD and

σ

,

δ

canbedetermined.Third,wediscuss howtoobtain



v



and

σ

.

(5)

Fig. 1. Thesecond(a)andthird(b)harmonictwo-particlecumulantsfor(ηα,ηβ)pairsandthesecondharmonicfour-particlecumulantfor(ηα,ηα,ηβ,ηβ)quadrupletsfor 20–30%centralAu+Aucollisionsat√sNN=200 GeV.

Fig. 2. The(a)V2{2}and(b)V3{2}differencebetweenthepairsat(ηα,ηβ)and(ηα,ηβ).Thedashedlinesarelinearfitsforeachdatasetof1valueseparately.The solidcurvesareasinglefitofEq.(8)toalldatapointswithdifferent1.(c)TheV21/2{4}differencebetweenquadrupletsat(ηα,ηα,ηβ,ηβ)and(ηα,ηα,ηβ,ηβ).The dashedlineisalinearfittothedatapoints.Thegraybandisthesystematicerror.Thedataarefrom20–30%centralAu+Aucollisionsat√sNN=200 GeV.



V

{

2

} =

D

(

η

1

)

D

(

η

2

)

=



a exp



−

η

1 b



+

A exp



−

η

2 1 2

σ

2





a exp



−

η

2 b



+

A exp



−

η

2 2 2

σ

2



,

(9)

followsfrom Eq.(5).Here is howthis functionalformis chosen. The measured two-particle second harmonic cumulantdifference



V2

{

2

}

is shown in Fig. 2(a). The data for each



η

1 value ap-pearstobelinearin



η

2

− 

η

1exceptnear



η

1

= 

η

2asshown by dashed lines inFig. 2(a) and(b).Moreover, the magnitude of



V2

{

2

}

decreases with increasing



η

1. Linear fits indicate that theinterceptdecreasesexponentiallywithincreasing



η

1,andthe slopesareallsimilar.Sowecandescribethisbehavior mathemat-icallyas a exp





η

1 b



+

k

(

η

2

− 

η

1

).

(10)

Inordertoexpressthemeasuredtwo-particlecumulantdifference intheformof

D

(

η

1

)

D

(

η

2

)

= [

σ

(

η

1

)

+ δ(

η

1

)

] − [

σ

(

η

2

)

+ δ(

η

2

)

]

= [

σ

(

η

1

)

σ

(

η

2

)

] + [δ(

η

1

)

− δ(

η

2

)

],

(11) we make two improvements to our initial guess of the D

(

η

)

function. First, we add a termaexp(

2

b

)

that is small for all datawith



η

2 significantly largerthan



η

1.Second,becausethe lineartermisunboundedin



η

1 and



η

2,we choosetoreplace itwiththesubtractionoftwo wideGaussianterms.TheGaussian functionstendto zeroasthe exponentsbecome large,consistent withthe behavior of nonflow. The measured two-particle cumu-lant difference can then be described by Eq. (9). There are four

parameters inEq.(9), a,A

,

b,and

σ

,thatweredeterminedby fit-tingEq.(9)simultaneouslytoallmeasuredtwo-particlecumulant differencedatapointsofdifferent



η

1.Thefitresultsareshownin Fig. 2(a)asthe solid curveswith

χ

2

/ndf

1.The

χ

2

/ndf values

are about1 for all centrality classes exceptfor the most central it is about2.In the mostcentral collisions, thelargest contribu-tion to

χ

2

/ndf comes

frompairs both atacceptance edgeof the STAR TPC. The parameterizationis validwithin the fittingerrors. ThesameprocedurewasrepeatedforthethirdharmonicV3

{

2

}

as shownin Fig. 2(b).Thefitresults givethe



η

-dependentpartof the two-particlecumulantasEq.(8).Thus, theformofthe func-tion D isdata-driven.

Wethenfollowasimilarprocedureonthemeasureddifference of the square root of the four-particle cumulant, Eq. (4). We fit the



V21/2

{

4

}

=

σ

(

η

1

)

σ

(

η

2

)

byalinearfunctionk

(

η

2



η

1

),

asshown in Fig. 2(c). The slope k from the fit is

(1.1

±

0.8)

×

10−4.InFig. 2(c),eachdatapointistheaverageof



V21/2

{

4

}

forall



η

1 atsame



η

2

− 

η

1value.Withthe

σ

(

η

)

result,the contribution from nonflow,

δ,

can then also be determined from Eq.(7).

Subtracting theparameterized D ofEq.(8)fromthemeasured two-particlecumulants, V2

{

2

}

and V3

{

2

}

,yields,fromEq.(3),the



η

-independentterms



v2



≡ 

v



2

+

σ

2.Employingalso V1/2

{

4

}

from Eq.(4),the valuesof



v



and

σ

maybe individually deter-mined.

2.3. Systematicuncertainties

The systematicerrors for V

{

2

}

and V1/2

{

4

}

are estimated by varying eventandtrackquality cuts:theprimary eventvertexto

|

zvtx

|

<

25 cm; the number of fit points along the track greater than 15; the distance of closest approach to the event vertex

(6)

Fig. 3. Thedecomposedv2= v2+σ2forthesecond (a)andthird (b)harmonicsfor

(ηα,ηβ)pairs.(c): Thetwo- andfour-particlecumulants,V2{2}(solidredsquares) andV1/22 {4}(solidbluetriangles),andthedecomposedv22(solidgreendots)asafunctionofηforoneparticlewhileaveragedoverηofthepartnerparticle.Thecyan bandontopofV21/2{4}pointspresentV

1/2

2 {4}+σ .(d): V3{2}(solidredsquares)andv23(solidgreendots)asafunctionofη.Thedashedlinesarethemeanvalue averagedoverηfor20–30%centralAu+Aucollisionsat√sNN=200 GeV.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

The fitting error on the parameterized

σ

from



V1/2

{

4

}

is treatedasasystematicerror,whichis70%, since

σ

isconsistent withzeroinlessthan2-

σ

standarddeviation.Similarly,thefitting errors on the parameters used in the



η

-dependent correlation D aretreatedassystematicerrorsthatare propagatedthroughto thetotaluncertaintyonD.Inaddition,thereisasystematicerror on D thatisassociatedwiththechoice offittingfunctionshown asEq.(8),the magnitudeofwhichwas estimatedusingdifferent formsof thefitting function. Theforms tried included: an expo-nentialtermplus alinearterm, aGaussian functionplus alinear term,an exponentialfunction only,a Gaussianfunction only,and anexponentialfunctionplusatermoftheforme−12(

σ )4. The total estimated uncertainty in the second harmonic of D

(

η

)

isan average of40% based onthe differentsources eval-uated.Thissystematicerroron D alsoappliestothedecomposed flowthrough



v2



=

V

{

2

}

D.

3. Results and discussion

Fig. 3(a) and (b) shows thedecomposed flow with flow fluc-tuations



v

(

η

α

)

v

(

ηβ

)



(see Eq. (3)) for v2 and v3, respectively. The results are found to be independent of

η

for the measured pseudorapidity range

|

η

|

<

1. The observed decrease of V

{

2

}

in Fig. 1withincreasing



η

offdiagonalisduetocontributionsfrom nonflow and



η

-dependent fluctuations. Note that the analysis methoddoesnot make any assumptionabout the

η

dependence offlow; the flow can be



η

-independent but

η

-dependent. The observation that the decomposed flow and flow fluctuations are independentof

η

is,therefore,significant.

Fig. 3(c) and (d) shows the projections of



v

(

η

α

)

v

(

ηβ

)



in

Fig. 3(a) and (b) onto one

η

variable. The shaded band shows the systematic uncertainty, dominated by the systematic errors inthe subtracted D

(

η

)

term. For comparison, theprojection of the V2

{

2

}

is also shown, where the shaded band is the system-aticuncertainty.The projectionsare therespectivequantitiesasa functionof

η

ofoneparticleaveragedoverall

η

oftheother par-ticle.Theflowswith



η

-independentfluctuationaveragedover

η

are





v22

 =

6.27%

±

0.003%(stat

.)

+00..0807%(sys

.)

and





v23

 =

1.78%

±

0.008%(stat

.)

+00..0916%(sys

.)

forour pT range0.15

<

pT

<

2 GeV/c in the20–30%collisioncentralityrange.Thequoted statisticalerrors arefromthe V

{

2

}

measurements, whilethesystematicerrorsare dominatedby the parameterizationof D. Thedifference between V

{

2

}

and



v2



inFig. 3(c)isthe D

(

η

)

versus

η

ofoneparticle av-eragedoverall

η

oftheotherparticle.

Fig. 3(c) also shows the V21/2

{

4

}

projection as a function of

η

as the solid blue triangles. V21/2

{

4

}

is also independent of

η

. Thecyan bandshowsV21/2

{

4

}

+

σ

= 

v



2

σ

2,withthe system-atic uncertainty that is dominated by the fitting uncertainty in

σ

.Thedifferencebetweenthedecomposed



v2



= 

v



2

+

σ

2 and V21/2

{

4

}

+

σ

= 

v



2

σ

2istheflowfluctuation,whichisalso inde-pendentof

η

withinthemeasuredacceptance.Therelativeelliptic flowfluctuationisgivenby

σ

2



v2



=



v22

 − (

V 1 2 2

{

4

} +

σ

)



v2 2

 + (

V 1 2 2

{

4

} +

σ

)

=

34%

±

2%

(

stat

.)

±

3%

(

sys

.),

(12)

wherethesystematicerrorisdominatedbythoseinthe parame-terizationofD and

σ

.Themeasuredrelativefluctuationis consis-tentwiththatfromthePHOBOSexperiment[18]andtheprevious STARupperlimitmeasurement[19].

Often, a



η

-gap is applied to reduce nonflow contamination inflow measurements. Thenonflow D

¯

(

|

η

|)

withthe



η

-gapis calculatedas:

¯

D

(

|

η

|) =

2 |η|d



η

D

(

η

)

2

− |

η

|

.

(13)

(7)

Fig. 4. The-dependentcomponentofthetwo-particlecumulantwith-gap,D in¯ Eq.(13),ofthesecond (a)andthird (b)harmonicsisshownasafunctionof-gap

|η|>x.(x isthex-axisvalue.)Theshadedbandsaresystematicuncertainties.In(a)theestimatedσ isindicatedasthestraightline,withitsuncertaintyof±1 standard deviationasthecross-hatchedareafor20–30%centralAu+Aucollisionsat√sNN=200 GeV.

Fig. 5. Thenonflow,D¯2(soliddots),√δ2(openstars),

 ¯

D3(solidtriangles)andflow,

 v2

2/2 (opencircles),

 v2

3(opentriangles)resultsareshownasafunctionof centralitypercentileforthesecond (a)andthird (b)harmonics,respectively.Thestatisticalerrorsaresmallerthanthesymbolsizes.Thesystematicerrorsaredenotedby theverticalrectangles.

value)forthesecondandthirdharmonics,respectively.Thebands arethesystematicerrorsestimatedfromthefittingerrorsandthe differentfittingfunctionsasdescribedpreviously.Theseerrorsare correlatedbecause,forallthepoints shown,theerrors are calcu-latedfromthesameparametersinthefunction D.

Asnotedabove,D

¯

(

|

η

|)

iscomprisedoftwoparts:the contri-butionfromthe



η

-dependentflowfluctuation,

σ

,andtheterm representing the nonflow,

δ.

In Fig. 4(a), these two contributors areestimatedseparately.Thestraightlineisanestimateof

σ

.The cross-hatchedareaisitsuncertaintyof

±

1 standarddeviation.The differencebetweentheblacksolidpoints D

¯

(

|

η

|)

andthestraight line

σ

isthenonflow contribution.Forboththesecondharmonic andthe third harmonic shownin Fig. 4(a)and Fig. 4(b), respec-tively, D

¯

(

|

η

|)

decreases as the



η

-gap between two particles increases.When

|

η

|

>

0.6,D

¯

(

|

η

|)

isreducedtohalfofitsvalue when

|

η

|

>

0.

Fig. 5 shows





v2



and

D for

¯

all measured centralities for the second harmonic (a) and the third harmonic (b).

|

η

|

>

0.7 [20] is used to present the D result.

¯

The errors on





v2



and

¯

D areanti-correlated. Taking

|

η

|

>

0.7,therelativemagnitude

¯

D2

/



v22



=

5%

±

0.004%(stat

.)

±

2%(sys

.)

for20–30%centrality.Itis clearthat D

¯

2 increasesasthecollisionsbecomemoreperipheral.

The



η

-dependent nonflow contribution is mainly caused by near-side (small

φ)

correlations. These correlationsinclude jet-like correlations and resonance decays which decrease with in-creasing



η

. The



η

-independent correlation is dominated by anisotropicflow.However,thereshouldbea



η

-independent con-tribution fromnonflow,such asaway-side dijetcorrelations. This contributionshouldbesmallerthanthenear-sidenonflow contri-bution,because,inpart,someoftheaway-sidejetsareoutsidethe acceptanceand,therefore,undetected[21].

Fig. 6 shows

σ

2

/



v2



for all measured centralities. From the central to theperipheral collisions, the relative ellipticflow

fluc-Fig. 6. The relative elliptic flow fluctuation σ2/v2 centrality dependence in

sNN=200 GeV Au+Aucollisions. Thestatisticalerrors areshownbytheerror bars.Thesystematicerrorsaredenotedbytheverticalrectangles.

tuation slightly increases. The statistics are limited in the most peripheralcentralitybin.

4. Summary

We have analyzed two- and four-particle cumulantazimuthal anisotropies between pseudorapidity bins in Au

+

Au collisions

at

sNN

=

200 GeV from STAR. The



η

-dependent and the

(8)

Any comparisonwith flow data to extract the ratio ofthe shear viscositytoentropydensityandtodeterminetheinitialcondition shouldtake intoaccountnonflowcontaminationinflow measure-ment.

Acknowledgements

We thank the RHIC Operations Group and RCF at BNL, the

NERSC Center atLBNL, the KISTI Center in Korea, and the Open ScienceGridconsortiumforprovidingresourcesandsupport.This workwas supportedinpartby theOfficesofNPandHEP within theU.S. DOE Officeof Science,the U.S. NSF, CNRS/IN2P3,FAPESP CNPqofBrazil, theMinistryofEducation andScience ofthe Rus-sianFederation, NNSFC,CAS,MoSTandMoEofChina,the Korean ResearchFoundation,GAandMSMToftheCzechRepublic,FIASof Germany,DAE,DST,andCSIRofIndia,theNationalScienceCentre of Poland, National Research Foundation (NRF-2012004024), the MinistryofScience,EducationandSportsoftheRepublicof Croa-tia,andRosAtomofRussia.

References

[1]J.Y.Ollitrault,Phys.Rev.D46(1992)229.

[2]P.K.Kovtun,D.T.Son,A.O.Starinets,Phys.Rev.Lett.94(2005)111601. [3]S.Voloshin,Y.Zhang,Z.Phys.C70(1996)665.

[4]B.Alver,etal.,PHOBOSCollaboration,Phys.Rev.Lett.98(2007)242302. [5]N.Borghini,P.M.Dinh,J.Y.Ollitrault,Phys.Rev.C62(2000)034902;

N.Borghini,P.M.Dinh,J.Y.Ollitrault,Phys.Rev.C63(2001)054906; N.Borghini,P.M.Dinh,J.Y.Ollitrault,Phys.Rev.C64(2001)054901. [6]S.Wang,etal.,Phys.Rev.C44(1991)1091.

[7]H.Song,etal.,Phys.Rev.Lett.106(2011)192301.

[8]K.H. Ackermann, et al., STAR Collaboration, Nucl. Phys. A 661 (1999) 681.

[9]B.I.Abelev,etal.,STARCollaboration,Phys.Rev.C79(2009)034909. [10]A.Bilandzic,R.Snellings,S.Voloshin,Phys.Rev.C83(2011)044913. [11]A.M.Poskanzer,S.A.Voloshin,Phys.Rev.C58(1998)1671. [12]P.Bozek,W.Broniowski,J.Moreira,Phys.Rev.C83(2011)034911;

H. Petersen,V. Bhattacharya, S.A.Bass, C. Greiner,Phys. Rev.C 84 (2011) 054908;

K.Xiao,F.Liu,F.Wang,Phys.Rev.C87(2013)011901.

[13]J.-Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 80 (2009) 014904.

[14]B.I.Abelev,etal.,STARCollaboration,Phys.Rev.C77(2008)054901. [15]J.Adams,etal.,STARCollaboration,Phys.Rev.C72(2005)014904. [16]L.Xu,etal.,Phys.Rev.C86(2012)024910.

[17]L.Yi(fortheSTARCollaboration),Nucl.Phys.A904(2013)401c. [18]B.Alver,etal.,PHOBOSCollaboration,Phys.Rev.C81(2010)034915. [19]G.Agakishiev,etal.,STARCollaboration,Phys.Rev.C86(2012)014904. [20]H.Agakishiev,etal.,STARCollaboration,Phys.Rev.C89(2014)041901(R). [21]J.Adams,etal.,STARCollaboration,Phys.Rev.Lett.95(2005)152301;

Riferimenti

Documenti correlati

Our case study illustrates this point well because the graphs on the screen are produced only by a series of coordinated movements, and thus the achievement of a circle graph is in

A number of strategies that combine protein chemistry pro- cedures such as limited proteolysis, selective chemical modifications, and/or hydrogen/deuterium (H/D) exchange with

One hypothesis is that there is a turn-off below 11.5 GeV of the conditions for quark coalescence sum rule behavior, or a breakdown of the assumption that s and ¯s quarks have the

National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the

af Pennsylvania State University, University Park, Pennsylyania 16802 ag Institute of High Energy Physics, Protvino 142281, Russia ah Purdue University, West Lafayette, Indiana 47907

Compared to the hadronic cocktail shown as the dashed line in the figure, the excess yields exhibit a much weaker dependence on collision centrality, suggesting that had-

The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions

To probe the initial conditions, it is important to measure the distributions of v n and event-by-event correlations among v n val- ues in an event sample [ 14 , 15 ] as