• Non ci sono risultati.

16 Materials and Semi-Finished Products for Switchgear Installations

N/A
N/A
Protected

Academic year: 2021

Condividi "16 Materials and Semi-Finished Products for Switchgear Installations"

Copied!
24
0
0

Testo completo

(1)

16

811

16 Materials and Semi-Finished Products for Switchgear Installations

16.1 Iron and steel 16.1.1 Structural steel, general

The material specifications for structural steels to EN 10 029 apply to carbon steels and low-alloy steels: these are used in the hot-worked condition, and to a lesser extent after normalizing, for reasons of tensile strength and yield strength. The specifications are also valid for forgings, section steel, strip, and heavy and medium plates made from these steels.

Weldability is better with low-carbon steels having less than 0.22% C. Weldability is best with steels of grade 3, e.g. S235 (St 37-3 JR), and poorest with steels of grade 1.

Killed steels are to be preferred to rimmed steel, especially if segregation zones might be encountered when welding.

Identification codes for structural steels are contained in EN 10027. This also shows the chemical composition and method of melting or casting.

Die ABB AG übernimmt keinerlei Verantwortung für eventuelle Fehler oder Unvollständigkeiten in diesem Dokument.

Vervielfältigung - auch von Teilen - ist ohne vorherige schriftliche Zustimmung durch die ABB AG verboten.

Copyright © 2007 by ABB AG, Mannheim

(2)

16.1.2 Dimensions and weights of steel bars and tubes Table 16-1 Angle steel (L-bars) EN 10056-1

a) Isoceles

Symbol Weight Section

L modules

a× s Zx = Zy

mm kg/m cm3

20× 3 0.88 0.28

25× 3 1.12 0.45

25× 4 1.45 0.59

30× 3 1.36 0.65

30× 4 1.78 0.85

35× 4 2.09 1.18

40× 4 2.42 1.55

40× 5 2.97 1.91

45× 4.5 3.06 2.20

50× 4 3.06 2.46

50× 5 3.77 3.05

50× 6 4.47 3.61

60× 5 4.57 4.45

60× 6 5.42 5.29

60× 8 7.09 6.89

65× 7 6.83 7.18

70× 6 6.38 7.27

70× 7 7.38 8.41

75× 6 6.85 8.41

75× 8 8.99 11.0

80× 8 9.63 12.6

80× 10 11.9 15.4

90× 7 9.61 14.1

90× 8 10.9 16.1

90× 9 12.2 17.9

90× 10 13.4 19.8

100× 8 12.2 19.9

100× 10 15.0 24.6

100× 12 17.8 29.1

120× 10 18.2 36.0

120× 12 21.6 42.7

130× 12 23.6 50.4

150× 10 23.0 56.9

150× 12 27.3 34.8

150× 15 33.8 83.5

160× 15 36.2 95.6

180× 16 43.5 130

180× 18 48.6 145

200× 16 48.5 162

200× 18 54.3 181

200× 20 59.9 199

200× 24 71.1 235

b) Scalene

Symbol Weight Section

L modules

a× s Zx = Zy

mm kg/m cm3

30× 20 × 3 1.12 0.62 0.29 30× 20 × 4 1.46 0.81 0.38 40× 20 × 4 1.77 1.42 0.39 40× 25 × 4 1.93 1.47 0.62 45× 30 × 4 2.25 1.91 0.91 50× 30 × 5 2.96 2.86 1.11 60× 30 × 5 3.36 4.07 1.14 60× 40 × 5 3.76 4.25 2.02 60× 40 × 6 4.46 5.03 2.38 65× 50 × 5 4.35 5.14 3.19 70× 50 × 6 5.41 7.01 3.78 75× 50 × 6 5.65 8.01 3.81 75× 50 × 8 7.39 10.4 4.95 80× 40 × 6 5.41 8.73 2.44 80× 40 × 8 7.07 11.4 3.16 80× 60 × 7 7.36 10.7 6.34 100× 50 × 6 6.84 13.08 3.89 100× 50 × 8 8.97 18.2 5.08 100× 65 × 7 8.77 16.6 7.53 100× 65 × 8 9.94 18.9 8.54 100× 55 × 10 12.3 23.2 10.5 100× 75 × 8 10.6 19.3 11.4 100× 75 × 10 13.0 23.8 14.0 100× 75 × 12 15.4 28.0 16.5 120× 80 × 8 12.2 27.6 13.2 120× 80 × 10 15.0 34.1 16.2 120× 80 × 12 17.8 40.4 19.1 125× 75 × 8 12.2 29.6 11.6 125× 75 × 10 15.0 36.5 14.3 125× 75 × 12 17.8 43.2 16.9 135× 65 × 8 12.2 33.4 8.75 135× 65 × 10 15.0 41.3 10.8 150× 75 × 9 15.4 46.7 13.1 150× 75 × 10 17.0 51.6 14.5 150× 75 × 12 20.2 61.3 17.1 150× 75 × 15 24.8 75.2 21.0 150× 90 × 10 18.2 53.3 21.0 150× 90 × 12 21.6 63.3 24.8 150× 90 × 15 26.6 77.7 30.4 150×100 × 10 19.0 54.2 25.9 150×100 × 12 22.5 64.4 30.7 200×100 × 10 23.0 93.2 26.3 200×100 × 12 27.3 111 31.3 200×100 × 15 33.75 137 38.5

(3)

16

Symbol Dimensions in mm Weight Section modules

for bending axis x – x y – y

Wx Wy

l h b s t kg/m cm3 cm3

180 180 42 3.9 5.9 5.94 19.5 3.00

100 100 50 4.5 6.8 8.34 34.2 4.88

120 120 58 5.1 7.7 11.1 54.7 7.41

140 140 66 5.7 8.6 14.3 81.9 10.7

160 160 74 6.3 9.5 17.9 117 14.8

180 180 82 6.9 10.4 21.9 161 19.8

200 200 90 7.5 11.3 26.2 214 26

220 220 98 8.1 12.2 31.1 278 33.1

240 240 106 8.7 13.1 36.2 354 41.7

260 260 113 9.4 14.1 41.9 442 51

280 280 119 10.1 15.2 47.9 542 61.2

300 300 125 10.8 16.2 54.2 653 72.2

320 320 131 11.5 17.3 61 782 84.7

340 340 137 12.2 18.3 68 923 98.4

360 360 143 13 19.5 76.1 1 090 114

380 380 149 13.7 20.5 84 1 260 131

400 400 155 14.4 21.6 92.4 1 460 149

450 450 170 16.2 24.3 115 2040 203

500 500 185 18 27 141 2750 268

550 550 200 19 30 166 3610 349

Tabelle 16-2

Small-I-beams, serie I, DIN 1025 part 1

Information: international standard W  Z.

(4)

Symbol Dimensions in mm Weight Section modules for bending axis x – x y – y

Wx Wy

l PB I h b s t r1 kg/m cm3 cm3

100 100 100 6 10 12 20.4 89.9 33.5

120 120 120 6.5 11 12 26.7 144 52.9

140 140 140 7 12 12 33.7 216 78.5

160 160 160 8 13 15 42.6 311 111

180 180 180 8.5 14 15 51.2 426 151

200 200 200 9 15 18 61.3 570 200

220 220 220 9.5 16 18 71.5 736 258

240 240 240 10 17 21 83.2 938 327

260 260 260 10 17.5 24 93.0 1 150 395

280 280 280 10.5 18 24 103 1 380 471

300 300 300 11 19 27 117 1 680 571

320 320 300 11.5 20.5 27 127 1 930 616

340 340 300 12 21.5 27 134 2 160 646

360 360 300 12.5 22.5 27 142 2 400 676

400 400 300 13.5 24 27 155 2 880 721

450 450 300 14 26 27 171 3 550 781

500 500 300 14.5 28 27 187 4 290 842

550 550 300 15 29 27 199 4 970 872

600 600 300 15.5 30 27 212 5 700 902

650 650 300 16 31 27 225 6 480 932

700 700 300 17 32 27 241 7 340 963

800 800 300 17.5 33 30 262 8 980 994

900 900 300 18.5 35 30 291 10 980 1 050

1000 1000 300 19 36 30 314 12 890 1 090

Table 16-3

Wide flange I-beams with parallel flanges, serie I PB = HE - B DIN 1025 Part 2

(5)

16

Symbol Dimensions in mm Weight Section modules

for bending axis x – x y – y

Wx Wy

l PB I h b s t r1 kg/m cm3 cm3

100 96 100 5 8 12 16.7 72.8 26.8

120 114 120 5 8 12 19.9 106 38.5

140 133 140 5.5 8.5 12 24.7 155 55.6

160 152 160 6 9 15 30.4 220 76.9

180 171 180 6 9.5 15 35.5 294 103

200 190 200 6.5 10 18 42.3 389 134

220 210 220 7 11 18 50.5 515 178

240 230 240 7.5 12 21 60.3 675 231

260 250 260 7.5 12.5 24 68.2 836 282

280 270 280 8 13 24 76.4 1010 340

300 290 300 8.5 14 27 88.3 1260 421

320 310 300 9 15.5 27 97.6 1480 466

340 330 300 9.5 16.5 27 105 1680 496

360 350 300 10 17.5 27 112 1890 526

400 390 300 11 19 27 125 2310 571

450 440 300 11.5 21 27 140 2900 631

500 490 300 12 23 27 155 3550 691

550 540 300 12.5 24 27 166 4150 721

600 590 300 13 25 27 178 4790 751

650 640 300 13.5 26 27 190 5470 782

700 690 300 14.5 27 27 204 6240 812

800 790 300 15 28 30 224 7680 843

900 890 300 16 30 30 252 9480 903

1000 990 300 16.5 31 30 272 11190 934

Tabelle 16-4

Wide flange I-beams light design, serie I PBI = HE - A DIN 1025 part 3

(6)

Symbol Dimensions in mm Weight Section modules for bending axis x – x y – y

Wx Wy

i PBv h b s t r1 kg/m cm3 cm3

100 120 106 12 20 12 41.8 190 75.3

120 140 126 12.5 21 12 52.1 288 112

140 160 146 13 22 12 63.2 411 157

160 180 166 14 23 15 76.2 566 212

180 200 186 14.5 24 15 88.9 748 277

200 220 206 15 25 18 103 967 354

220 240 226 15.5 26 18 117 1220 444

240 270 248 18 32 21 157 1800 657

260 290 268 18 32.5 24 172 2160 780

280 310 288 18.5 33 24 189 2550 914

300 340 310 21 39 27 238 3480 1250

320 359 309 21 40 27 245 3800 1280

340 377 309 21 40 27 248 4050 1280

360 395 308 21 40 27 250 4300 1270

400 432 307 21 40 27 256 4820 1260

450 478 307 21 40 27 263 5500 1260

500 524 306 21 40 27 270 6180 1250

550 572 306 21 40 27 278 6920 1250

600 620 305 21 40 27 285 7660 1240

650 668 305 21 40 27 293 8430 1240

700 716 304 21 40 27 301 9200 1240

800 814 303 21 40 30 317 10870 1230

900 910 302 21 40 30 333 12540 1220

1000 1008 302 21 40 30 349 14330 1220

Table 16-5

Wide flange I-beams reinforced design, serie I PBv = HE - M DIN 1025 part 4

(7)

16

Symbol Dimensions in mm Weight Section modules

for bending axis x – x y – y

Wx Wy

l PE h b s t r1 kg/m cm3 cm3

80 80 46 3.8 5.2 5 6.00 20.0 3.69

100 100 55 4.1 5.7 7 8.10 34.2 5.79

120 120 64 4.4 6.3 7 10.4 53.0 8.65

140 140 73 4.7 6.9 7 12.9 77.3 12.3

160 160 82 5.0 7.4 9 15.8 109 16.7

180 180 91 5.3 8.0 9 18.8 146 22.2

200 200 100 5.6 8.5 12 22.4 194 28.5

220 220 110 5.9 9.2 12 26.2 252 37.3

240 240 120 6.2 9.8 15 30.7 324 47.3

270 270 135 6.6 10.2 15 36.1 429 62.2

300 300 150 7.1 10.7 15 42.2 557 80.5

330 330 160 7.5 11.5 18 49.1 713 98.5

360 360 170 8.0 12.7 18 57.1 904 123

400 400 180 8.6 13.5 21 66.3 1160 146

450 450 190 9.4 14.6 21 77.6 1500 176

500 500 200 10.2 16.0 21 90.7 1930 214

550 550 210 11.1 17.2 24 106 2440 254

600 600 220 12.0 19.0 24 122 3070 308

Table 16-6

Medium wide flange I-beams, serie I PE DIN 1025 Part 5

(8)

Table 16-7

steel channel, DIN 1026-1

Symbol Dimensions in mm Weight for bending axis1)

x – x y – y

Wx Jx Wy Jy

U h b s t kg/m cm3 cm4 cm3 cm4

1130 ×15 30 15 4 4.5 1.74 1.69 2.53 0.39 0.38

30 30 33 5 7 4.27 4.26 6.39 2.68 5.33

1140 ×20 40 20 5 5.5 2.87 3.79 7.58 0.86 1.14

40 40 35 5 7 4.87 7.05 14.1 3.08 6.68

1150 ×25 50 25 5 6 3.86 6.73 16.8 1.48 2.49

50 50 38 5 7 5.59 10.6 26.4 3.75 9.12

60 60 30 6 6 5.07 10.5 31.6 2.16 4.51

65 65 42 5.5 7.5 7.09 17.7 57.5 5.07 14.1

80 80 45 6 8 8.64 26.5 106 6.36 19.4

100 100 50 6 8.5 10.6 41.2 206 8.49 29.3

120 120 55 7 9 13.4 60.7 364 11.1 43.2

140 140 60 7 10 16.0 86.4 605 14.8 62.7

160 160 65 7.5 10.5 18.8 116 925 18.3 85.3

180 180 70 8 11 22.0 150 1350 22.4 114

200 200 75 8.5 11.5 25.3 191 1910 27.0 148

220 220 80 9 12.5 29.4 245 2690 33.6 197

240 240 85 9.5 13 33.2 300 3600 39.6 248

260 260 90 10 14 37.9 371 4820 47.7 317

280 280 95 10 15 41.8 448 6280 57.2 399

300 300 100 10 16 46.2 535 8030 67.8 495

320 320 100 14 17.5 59.5 679 10870 80.6 597

350 350 100 14 16 60.6 734 12840 75.0 570

380 380 102 13.5 16 63.1 829 15760 78.7 615

400 400 110 14 18 71.8 1020 20350 102 846

1)J moment of inertia W section modules

(9)

16

Table 16-8

Dimensions and weight in kg/m (7,85 kg/dm3) for flat steel DIN 59200

Weights are not in standards.

Table 16-9

Dimensions of steel conduits, pluggable, EN 50086 Thickness s in mm

Width 5 6 8 10 12 15 20 25 30 40 50 60 80

b mm

160 6.28 7.54 10.0 12.6 15.1 18.8 25.1 31.4 37.7 50.2 62.8 75.4 100 180 7.07 8.48 11.3 14.1 17.0 21.2 28.3 35.3 42.4 56.5 70.7 84.8 113 200 7.85 9.42 12.6 15.7 18.8 23.6 31.4 39.3 47.1 62.8 78.5 94.2 126 220 8.64 10.4 13.8 17.3 20.7 25.9 34.5 43.2 51.8 69.1 86.4 104 138 240 9.42 11.3 15.1 18.8 22.6 28.3 37.7 47.1 56.5 75.4 94.2 113 151 250 9.81 11.8 15.7 19.6 23.6 29.4 39.3 49.1 58.9 78.5 98.1 118 157 260 10.2 12.2 16.3 20.4 24.4 30.6 40.8 51.0 61.2 81.6 102 122 163 280 11.0 13.2 17.6 22.0 26.4 33.0 44.0 54.9 65.9 87.9 110 132 176 300 11.8 14.1 18.8 23.6 28.3 35.3 47.1 58.9 70.7 94.2 118 141 188 320 12.6 15.1 20.1 25.1 30.1 37.7 50.2 62.8 75.4 100 126 151 201 340 13.3 16.0 21.4 26.7 32.0 40.0 53.4 66.7 80.1 107 133 160 214 350 13.7 16.5 22.0 27.5 33.0 41.2 55.0 68.7 82.4 110 137 165 220 360 14.1 17.0 22.6 28.3 33.9 42.4 56.5 70.6 84.8 113 141 170 226 380 14.9 17.9 23.9 29.8 35.8 44.7 59.7 74.6 89.5 119 149 179 239 400 15.7 18.8 25.1 31.4 37.7 47.1 62.8 78.5 94.2 126 157 188 251 450 17.7 21.2 28.3 35.3 42.4 53.0 70.7 88.4 106 141 177 212 283 500 19.6 23.6 31.4 39.3 47.2 59.0 78.7 98.3 118 157 196 236 314 550 21.6 25.9 34.5 43.2 51.8 64.8 86.4 108 130 173 216 259 345 600 23.6 28.3 37.7 47.1 56.5 70.7 94.2 118 141 188 236 283 377 650 25.5 30.6 40.8 51.0 61.2 76.5 102 128 153 204 255 306 408 700 27.5 33.0 44.0 55.0 65.9 82.4 110 137 165 220 275 330 440 750 29.4 35.3 47.1 58.9 70.7 88.3 118 147 177 236 294 353 471 800 31.4 37.7 50.2 62.8 75.4 94.2 126 157 188 251 314 377 502 900 35.3 42.4 56.5 70.7 84.8 106 141 177 212 283 353 424 565 1000 39.2 47.1 62.8 78.5 94.2 118 157 196 236 314 392 471 628 1100 43.2 51.8 69.1 86.4 104 130 173 216 259 345 432 518 691 1200 47.1 56.5 75.4 94.2 113 141 188 235 283 377 471 565 754

Size 16 20 25 32 40 50 63

Outer Ø mm 16.0 20.0 25.0 32.0 40.0 50.0 63.0

Inner Ø mm 13.3 17.3 22.1 29.0 37.0 47.0 59.9

Min insertion mm 16 20 25 30 32 42 50

(10)

16.1.3 Stresses in steel components

The permissible stresses in steel components for transmission towers and structures for outdoor switchgear installations are laid down in DIN VDE 0210. Values for different kinds of stress, such as tensile, shear, compressive and bearing stresses are specified for the steel sections are given.

Remarks:

Structural steels to EN 10 025, screws and bolts to DIN 267. Permissible weld stresses for welded towers are given in DIN 18800, Part 1.

According to VDE 0210, structural steels of grade S 235 JR (St 37-2) and above may be used for overhead power lines.

16.2 Non-ferrous metals

16.2.1 Copper for electrical engineering

Various unalloyed grades of copper are used as conductor materials: oxidized, oxygen-free and oxygen-free deoxidized copper materials.

The most frequently used oxidized copper grades Cu-ETP and Cu-FRHC contain up to 0.04% oxygen, and in the soft condition have a conductivity of at least 58 MS/m, a tensile strength of 200 MPa and are suitable for cold forming. Hydrogen embrittlement can occur during heat treatment, soldering and welding unless an inert gas atmosphere (MIG, TIG) is used.

Oxygen-free copper Cu-OF (obtained from copper cathodes of maximum purity) is totally free of oxygen, also has a conductivity of at least 58 MS/m, is free of vaporizable elements and thus suitable for use in vacuum interrupters and in superconductor technology. Oxygen-free deoxidized (with phosphorus) copper is only suitable for that application in special grades (free of vaporizable elements).

Standards for semi-finished products in copper and copper alloys (with small amounts of additives) for use in electrical engineering

EN 13599:2002-07 to EN 13605:2002-10 for sheet, tubes, bars, sections and wires Product designations

Description Relevant Material designation Condition Nominal dimensions EN standard Material no. designation in mm

Sheet EN 13601 Cu-ETP R290 6.0 x 600 x 2000

Sheet EN 13601 CW004A R290 6.0 x 600 x 2000

(11)

16

16.2.2 Brass and bronze

As brass and bronze are predominantly structural materials in electrical engineering, the stipulations for copper and copper alloys apply here for general use.

Material designations

Example 1 Designation to ISO 1190-1:1982-11: CuZn28 or Material no. to EN 1412:1995-12: CW504L Brass with 28% Zn for spring parts in plug connectors.

Example 2 Designation to ISO 1190-1:1982-11: CuSn6 or Material no. to EN 1412:1995-12: CW452K Tin bronze with 6% Sn for sheets, bars, sections and wires.

See section 13.1.1 for special properties of conductor materials.

16.2.3 Aluminium for electrical engineering

Aluminium is used in electrical engineering both as a structural material, e.g. for enclosures, guides and force transmission components, and as a conductor material – and in that application both as a wrought alloy (wires and semi-finished products) and as a cast alloy (die cast cage rotors). Pure aluminium alloys (99.5% Al), alloys of the AlMgSi group and aluminium-zirconium alloys (TAL) are mainly used as conductors. Ultra-pure aluminium (99.99% and above) is used for special purposes (capacitor foil, semiconductor and low temperature technology).

The electrical conductivity and mechanical strength of aluminium alloys are determined by the alloy components, by mechanical forming and by heat treatment.

As a rule, these two properties are found to change inversely to each other.

Material designations

Example 1 Designation to ISO 1190-1:1982-11: Cu-ETP or Material no. to EN 1412:1995-12: CW004A (formerly E-Cu58, E-Cu57; old designation: E-Cu)

Preferred conductor material in switchgear, contains oxygen.

Example 2 Designation to ISO 1190-1:1982-11: Cu-OF or Material no. to EN 1412:1995-12: CW008A (formally OF-Cu; old designation: OFHC)

For vacuum interrupter manufacture, oxygen-free.

Condition designations (Examples from EN 1173:1995-12)

M - As manufactured, without specified requirements for mechanical properties D - Drawn, without specified requirements for mechanical properties H... - Condition described with minimum value for hardness (Vickers or Brinell) R... - Condition described with minimum value for tensile strength in MPa (N/mm2) See section 13.1.1 for special properties of conductor materials.

(12)

Standards for semi-finished products in aluminium and aluminium alloys for use in electrical engineering

EN 14121:2003-08 for strips, sheets and plates EN 40501-2:1985-06 for tubes

EN 40501-3:1985-06 for bars and sections EN 1715-1/-2:1997-11 for cast wire rods in EAl

Product designations

Description Relevant Material designation Condition Nominal dimensions EN standard Material no. designation in mm

Sheet EN 14121 EN AW-1350A - F 6.0 x 600 x 2000 Sheet EN 14121 EN AW-EAl 99.5(A) - F 6.0 x 600 x 2000

Material designations

Example 1 Numerical designation to EN 573 (1:1994-12): EN AW-1350A or Alphanumerical designation to EN 573-2 (1994-12),

Standard: EN AW–1350A [EAl 99.5(A)]

Exception: EN AW-EAl 99.5(A)

(formerly E-Al), mainly used as electrical conductors.

Example 2 Numerical designation to EN 573-1 (1994-12): EN AW-6101B or Alphanumerical designation to EN 573-2 (1994-12),

Standard: EN AW-6101B [EAl MgSi(B)]

Exception: EN AW-EAl MgSi(B)

(formerly E-AlMgSi0,5), material for conductor bars of high tensile strength.

The prefix „E” before „Al” fundamentally identifies aluminium grades for electrical engineering. In the alphanumerical designation, the main alloy components follow the

„Al”. Appended figures indicate the purity of the aluminium and the percentage of the components.

Condition designation (to EN 515:1993-12)

F - As manufactured, without specified requirements for mechanical properties O... - annealed ) Each of the following figures is a code

H... - strain hardened ) for details of the treatment and condition.

T... - heat treated ) They are not indicators of mechanical properties. See the relevant standards for semi-finished products for those data.

See section 13.1.1 for special properties of conductor materials.

(13)

16

16.3Insulating materials 16.3.1Solid insulating materials Table 16-10 Abbreviations and properties of solid insulating materials Abbrevia-MaterialBulkBendingTensileImpactElasticityLinearThermalLimitingTrackingElectricVolumeDielectricProduct label tiondensitystrengthstrengthstrengthmodulusthermalconductivitytempera-resistancestrenghtresistivityconstant expansionture ISO 1183ISO 178ISO 527ISO 180ISO 187ISODINISO 306IECIECIECIEC 11359526126011260243-26009360250 ρσbσzanEα1λ°CComparativeEdρDεr(50 Hz) kg/dm3MPaMPakJ/m2MPa10–4/KW/(m · K)figurekV/mmΩ· cm Insulating materials for cables and conductors PVC-Ppolyvinyl chloride1.31 1501– 20.216060010 – 2510153.5 – 7.5Astralon, Mipolam, non-rigidTrovidur PVC-Upolyvinyl chloride rigid1.3810050302 5001.00.219060030 – 4010153.3 – 4Vestolit, Vinoflex, ˇˇˇˇˇˇˇˇˇˇˇˇ DC-Fix, Pegulan, Hostalit Fibres: PW, Rhovyl, Thermovyl PEhigh-pressure0.91718012without1 1001.80.31806004010172.25Lupolen H, Vestolen, polyethyleneruptureTrolen low-pressure0.9618025without1 4002.00.51956004510172.3Hostalen, Marlex polyethyleneruptureFoils: Baulen, Hellaflex Fibres: Polytrene, Trofil XLPEcross-linkedwithout2.5130600>4510172.4Cable insulation (XLPE) (VPE)polyethylenerupture (continued)

(14)

(continued) eviations and properties of solid insulating materials MaterialBulkBendingTensileImpactElasticityLinearThermalLimitingTrackingElectricVolumeDielectricProduct label densitystrengthstrengthstrengthmodulusthermalconductivitytempera-resistancestrenghtresistivityconstant expansionture ISO 1183ISO 178ISO 527ISO 180ISO 187ISODINISO 306IECIECIECIEC 11359526126011260243-26009360250 ρσbσzanEα1λ°CComparativeEdρDεr(50 Hz) kg/dm3MPaMPakJ/m2MPa10–4/KW/(m · K)figurekV/mmΩ· cm Insulating materials for foils, semi-finished products, struct. comp.(thermoplastics, mouldings) polycarbonate1.27565without12 2000.60.21302752510153.0Lexan, Makrolon (PC 300)rupture polytetrafluorethylene2.21920without14 0000.60.2425060035>10182.0Teflon, Hostaflon TE, ruptureFluon polystyrene1.051002212 0000.80.1460-90375-50>10162.5Polystyrol, Styroflex, 475Novodur,Trolitul, Styron, Vestyron Foils: Trolit, Elektroiso. foam polystyrene0.02–0.3-2.50.3-5.5Styropor 0.06 polyethylene1.3811754without12 8000.60.21202503010173.5Foils: Hostaphan, Mylar terephthalateruptureFibres: Diolen, Dacron phenolic formaldehyde 1.4–1.950–6020–2520–12016 000–0.15–0.30.7–0.3100-150125-5–20108–10114–15Albertit, Bakelite, resins16 000175Formica, Pertinax PF-Hgw 20721.6–1.82001005014 0000.2–0.40.313025-15020–2510115with woven glass silk VDE 0334 melamine resins1.540–8015–303.5–2516 000–0.1–0.50.3–0.7100–14060010–30108–10126–10Albamit,Chemoplast, 13 000sopal, Ultrapas, Bakelite MF-Hgw 22721.8–2.02701205014 0000.1–0.20.313060020–2510107.0Woven glass silk to (in sheet)VDE 0334 melamine phenolic 1.670-8013066 000–0.15–0.30.351206003010106.0–15.0Aminoplast, Phenoplast resins8 000Moulding compound

(15)

16

(continued) Table 16-10 (continued) Abbreviations and properties of solid insulating materials Abbrevia-MaterialBulkBendingTensileImpactElasticityLinearThermalLimitingTrackingElectricVolumeDielectricProduct label tiondensitystrengthstrengthstrengthmodulusthermalconductivitytempera-resistancestrenghtresistivityconstant expansionture ISO 1183ISO 178ISO 527ISO 180ISO 187ISODINISO 306IECIECIECIEC 11359526126011260243-26009360250 ρσbσzanEα1λ°CComparativeEdρDεr(50 Hz) kg/dm3MPaMPakJ/m2MPa10–4/KW/(m · K)figurekV/mmΩ· cm Insulating materials for structural components (thermoplastics) PA 66polyamide A1.1350-70without12 0000.7-1.00.21206002510144-8Ultramid A, 120ruptureDurethan A, Zytel PA 66polyamide A1.352701905010 0000.15-0.2130550301012Ultramid A, with fibreglass0.2Durethan A, Zytel PA 6polyamide B1.1460without1 5000.7-1.00.211060020-501012-3.0-Ultramid B, rupture10157.0Durethan B, Zytel PA 6polyamide B1.382501806510 0000.2-0.30.21205503010123.0-Ultramid B, with fibreglass7.0Durethan B, Zytel GFNPPO-reinforced1.211516 500180Noryl GFNZ halogenfree PBTpolybutylene-1.390without12 5000.80.214060022-3010163.8Vestadur, Pocan, terephthalateruptureCrastin PBTpolybutyleneterephtha-1.422101405610 0000.30.315025028-3410154.5Vestadur, Pocan, late with fibreglassCrastin PURpolyurethane (linear)1.2125–7065without12 2000.60.21302202010153.0 rupture ABSacrylic butadiene styrene1.06without12 4000.80.28057522>10153.3Novodur, Terluran (continued)

(16)

(continued) eviations and properties of solid insulating materials MaterialBulkBendingTensileImpactElasticityLinearThermalLimitingTrackingElectricVolumeDielectricProduct label densitystrengthstrengthstrengthmodulusthermalconductivitytempera-resistancestrenghtresistivityconstant expansionture ISO 1183ISO 178ISO 527ISO 180ISO 187ISODINISO 306IECIECIECIEC 11359526126011260243-26009360250 ρσbσzanEα1λ°CComparativeEdρDεr(50 Hz) kg/dm3MPaMPakJ/m2MPa10–4/KW/(m · K)figurekV/mmΩ· cm Cast resin mouldings (duroplastics) epoxy resins1.6–1.870–8017510–6814 0000.30.61256003010154.2Araldite 60 % powder- (with 60–70 % filler)ed quartz, Resodip EP-Hgw 2372.21.7–1.935022010018 0000.1–0.20.31551804010124.0EP + woven glass silk (flame resistant)to VDE 0334 unsaturated polyester1.6–1.840–6010–400.3110-6002510154.5–7.5Supraplast resins (with 60-70 %130 filler) UP-Hgw 24721.6–1.820010010010 0000.15–0.30.3130500-25–3010125.0Glass mat to VDE 0334 (in sheet)600 polyurethane resin1.6-1.812070-10010-10010 0000.40.81106003010154,3Baygal, Baymidur with 60-70% filler

(17)

16

Table 16-10 (continued) Abbreviations and properties of solid insulating materials Abbrevia-MaterialBulkBendingTensileImpactElasticityLinearThermalLimitingTrackingElectricVolumeDielectricProduct label tiondensitystrengthstrengthstrengthmodulusthermalconductivitytempera-resistancestrenghtresistivityconstant expansionture ISO 1183ISO 178ISO 527ISO 180ISO 187ISODINISO 306IECIECIECIEC 11359526126011260243-26009360250 ρσbσzanEα1λ°CComparativeEdρD kg/dm3MPaMPakJ/m2MPa10–4/KW/(m · K)figurekV/mmΩ· cm Ceramic insulating materials, e.g. post insulators, insulators, bushings 1)2)1) 2)3) KER110.1predominantly2.4160 1401301251.80.0381.630–351011–10126 17/120Porcelain, Hard aluminiumporcelain, Melatith, KER110.2silicate2.5100 1801601452.20.0452.330–351011–10126 17/120Karbowid 1203 KER220predominantly2.6120 12016014530.072.32010126 2.5/65Skalit magnesiumFrequenta, Calit, KER221silicate2.8140 14016014540.062.33010126 1.0/15Dettan KER 310predominantly3.5–900–300–0.06–10–60 KER 311titanium3.915008000.082040 oxide KER610sintered corundum3.4– 120183 400.0716257AD 85 Degussit KER 611Al2O33.9– 900.0836AD 99.9 furnace ceramic zirconium3.15520.04110furnace ceramic ceramic 1)Glazed 2)Unglazed 3)20 °C / 100 °C Note: The values given for mechanical properties may vary in practice, depending on how the materials are processed and the shape of the insulator.

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

} }

ε (50 Hz) r

ε tan r

δ

3 · 10

(18)

16.3.2 Liquid insulating materials

Mineral oils are predominantly used as liquid insulating materials in transformers, high voltage cables (>110 kV), capacitors, instrument transformers, oil-cooled rectifiers and switching devices. All these applications make use of the high dielectric strength (breakdown voltage) of mineral oil, which however can be greatly impaired by moisture or foreign bodies. When used in switching devices, oil also serves to influence the arcing process. In transformers, the dissipated heat in the windings is conducted away by the oil, predominantly by convection. This depends upon the kinematic viscosity being as low as possible in the entire service temperature range.

A further factor of decisive importance for the suitability of an oil is its resistance to oxidative ageing, which can lead to the formation of oil sludge, to increased viscosity, to tarnishing film on contact surfaces and to drops in dielectric properties. Resistance to ageing can be improved by adding inhibitors.

In applications with especially high dielectric field stresses, such as capacitors, cables, instrument transformers and extra-high voltage transformers, so-called „gas- proof” insulating oils are notable for their ability to bind the hydrogen which may be created by discharges in areas of very high dielectric field strength.

These versatile properties can be achieved in oil manufacture by selecting suitable crude oil, distilling, refining and mixing with additives. As the requirements are varied, there is a wide range of oils available.

Synthetic esters or silicone oil are used in place of insulating oils in transformers which are intended for particular applications (e.g. excavators or locomotives) or for particular locations (e.g. hospitals) with a view to the potential environmental effects on the one hand and the fire risk on the other hand if a fault should occur.

(19)

16

oil switchgear oil silicone ester

IEC 60296 IEC 60836 IEC 61099

Density kg/dm3at max 0.895 max. 0.970 max. 1.000

20 °C

Kin. viscosity mm2/s at max. 12 max. 3.5 40 ± 4 max. 35 40 °C

mm2/s max. 1800 max. 400 – max. 3000

at – 30 °C – 40 °C _ – 20 °C

Pour point °C max. – 40 max. – 60 max. –50 max. – 45

Thermal W/cmK ~ 0.0013 ~ 0.0015 ~ 0.0015

conductivity at 25 °C

Spez. heat J/g K ~ 1.9 ~ 1.5 ~ 2.1

coefficient of 1/K ~ 0.0008 ~ 0.001 ~ 0.001

expansion

Dielectric ~ 2.2 ~ 2.4 ~ 2.55 ~ 3.2

constant at 25 °C 25 °C 90 °C 25 °C

Dielectric loss

factor at 90 °C max. 0.500 max. 0.001 max. 0.03

Discruptive kV min. 30/70 min. 40 min. 45

discharge voltage

Flashpoint P.M. °C min. 135 min. 100 min. 240 min. 250

Flammability – Flammable Flammable Flammable

retardant retardant

Gases – Explosive Explosive Explosive

Ecological – Non biodegradable Non Non

aspects biodegradable biodegradable

(20)

16.3.3 Gaseous insulating materials

Table 16-12

Properties of air and sulphur hexafluoride (SF6)

Gas Density1) Discruptive Dielectric constant

discharge voltage

kg/m3 EdkV/ mm (50 Hz) εr(50 Hz)

Air (dry) 1.205 2.1 1.000576

Sulphur hexafluoride 6.07 6 1.002

1)at 20 °C and 1013 mbar

Curves of pressure, temperature and density for SF6gas are shown in Fig. 11-1.

The insulating and arc-quenching properties of this gas are dealt with in Sections 10.4.4 and 11.2.2.

16.4 Semi-finished products

16.4.1 Dimensions and weights of metal sheets

Table 16-13

Weight per 1 m2of sheet, in kg

Thickness Steel Aluminium Copper Brass Zinc Ribbed Profiled

s in mm sheet

treadplate

0.5 3.925 1.34 4.45 4.275 3.6 – –

0.75 5.888 2.01 6.657 6.413 5.4 – –

1 7.85 2.68 8.9 8.55 7.2 – –

1.5 11.775 4.02 13.35 12.825 10.8 – –

2 15.7 5.36 17.8 17.10 14.4 – –

2.5 19.63 6.7 22.25 21.38 18.0 – –

3 23.6 8.04 26.7 26.65 21.6 30 25

4 31.4 10.72 35.6 34.20 28.8 38 34

5 39.3 13.4 44.5 42.75 36 46 42

6 47.2 16.08 53.4 51.3 43.2 54 51

8 64.0 21.6 71.6 68.4 57.6 70 67

Normal panel size 1000 mm × 2 000 mm Switchboard sheet 1250 mm × 2 500 mm

Ribbed sheet and profiled treadplate 1250 mm × 2 500 mm

(21)

16

16.4.2 Slotted steel strip

Table 16-14

Slotted steel strip, hot-galvanized

Dimensions Slot size Weight Standard roll, in cut lengths length 3 m approx.,

mm mm kg / m m m / bundle

20× 1.5 40 × 5.5 0.187 200 60

20× 2 40× 5.5 0.245 200 60

25× 2 40× 5.5 0.326 200 60

30× 2.5 40× 5.5 0.508 150 60

20× 3 40× 6.5 0.368 120 60

25× 3 40× 6.5 0.489 120 60

30× 3 40× 6.5 0.640 120 60

30× 4 60× 8.5 0.716 100 30

40× 4 70× 8.5 1.038 180 30

50× 4 70× 8.5 1.360 180 30

Steel earthing strip, hot-galvanized, DIN 48801

Dimensions Weight Standard roll

mm kg / m m

20× 2.5 0.400 100

30× 3.5 0.840 100 (50)

30× 4.0 0.961 130

40× 5.0 1.600 150

Accessories, plastic rawl plugs

Size Plug length Hole For screws

mm mm dia. mm dia. mm

15 25 15 2.5 – 14

16 30 16 3.5 – 15

16 60 16 3.5 – 15

18 40 18 4.5 – 16

18 75 18 4.5 – 16

10 50 10 61.– 18

12 60 12 81.– 10

(22)

16.4.3 Threads for bolts and screws

Table 16-15

Bolts and screws with metric thread, DIN 7990, dimensions in mm Nuts EN 24034

Washer DIN 7989

Bolt Thickness Thickness Width angles washer Drill hole threads of head of nut across

Nominal flats pass for

dia- throught thread

meter dia. dia.

d k m s e d1 s1

max

12 8 12.2 18 19.9 24 8 14 10.2

16 10 15.9 24 26.2 30 8 18 14

20 13 19 30 33.0 37 8 22 17.5

24 15 22.3 36 39.6 44 8 26 21

30 19 26.4 46 50.6 56 8 33 26.5

Lock nuts DIN 7967 Washer for U-profile DIN 434 Washer alternative DIN 126 Spring washer DIN 128

16.4.4 Tighetening torques for hot dip galvanized hexagon screws

Guideline values for tightening torques to achieve an adequate pre-tension.

The tightening torques apply to lubricated and unlubricated screws with hot dip galvanizing.

The deviation can be up to ± 20%, depending on the supplier.

Quality M12 M16 M20 M24 M27

Nm Nm Nm Nm Nm

15.6 39 91 179 309 437

16.9 68 163 323 546 764

18.8 86 210 408 704 1013

10.9 120 293 571 985 1422

(23)

16

16.4.5 Treads for electricial engineering

Table 16-16

Cable glands with metric threads acc. EN 5026, dimensions in mm

Nominal- External Mounting Cable range1)

value thread hole

Ø Max Ø Min Ø

mm mm mm

12 M12 × 1.5 12.5 7 3

16 M16 × 1.5 16.5 10 5

20 M20 × 1.5 20.5 13 8

25 M25 × 1.5 25.5 17 11

32 M32 × 1.5 32.5 21 15

40 M40 × 1.5 40.5 28 19

50 M50 × 1.5 50.5 35 27

63 M63 × 1.5 63.5 48 35

1)Manufacturer information

(24)

Riferimenti

Documenti correlati

Electrodes and photoelectrodes are studied by means of electrochemical methods (cyclic voltammetry, Pb underpotential deposition) and by ex-situ X-ray absorption

maripaludis (I and II generation) in modified and standard 141 medium DMSZ.... OD 578 nm curves and MER histograms

This procedure introduced randomness to the sample timing in order to reduce any potential bias in the type of material fed onto the conveyor at any particular time and to prevent

Dental practitioners providing endodontic treatment sometimes are encountered with cases (wide canal and open apex due to periapical resorption or immature root) that

Anna Pontani, in the most recent, and arguably most acute examination of the issues raised in this essay, has herself noted the paucity of evidence left by the Greek visitors to

Canopy-forming macroalgae were experimentally removed, and the structure (abun- dance and distribution) of associated algal assemblages (in terms of morpho-functional groups)

The presence of electronic coupling for graphene on Cu(111) is also evidenced by a shift of the Shockley surface state of Cu(111) toward the Fermi energy (Figure 4e and

Polironiano di San Benedetto Po (Mantova), a ricordare, nel bicentenario della nascita, mio bisnonno Francesco Balloni, educatore e patriota, nato e vissuto nella