• Non ci sono risultati.

The Companion Dog as a Unique Translational Model for Aging

N/A
N/A
Protected

Academic year: 2021

Condividi "The Companion Dog as a Unique Translational Model for Aging"

Copied!
13
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Seminars

in

Cell

&

Developmental

Biology

jo u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

The

companion

dog

as

a

unique

translational

model

for

aging

Andrea

Mazzatenta

a,b,∗

,

Augusto

Carluccio

a

,

Domenico

Robbe

a

,

Camillo

Di

Giulio

b

,

Alessandro

Cellerino

c

aFacoltàdiMedicinaVeterinaria,UniversitàdegliStudidiTeramo,Teramo,Italy

bSezionediFisiologiaeFisiopatologia,DipartimentodiNeuroscienze,ImagingeScienzeCliniche,‘G.d’Annunzio’UniversitàdiChieti–Pescara,Chieti,Italy cScuolaNormaleSuperiore,Pisa,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received13April2017

Receivedinrevisedform6August2017 Accepted7August2017

Availableonline11August2017

Keywords: Agingdog Dogpathology Doggenetics Dogbreeding Doginterventions Evolutionarytheoryofaging Calorierestriction IGF-1

Rapamycin Alzheimer’sdisease

a

b

s

t

r

a

c

t

Thedogisauniquespeciesduetoitswidevariationamongbreedsintermsofsize,morphology,behaviour andlifespan,coupledwithageneticstructurethatfacilitatesthedissectionofthegeneticarchitecture thatcontrolsthesetraits.Dogsandhumansco-evolvedandsharerecentevolutionaryselectionprocesses, suchasadaptationtodigeststarch-richdiets.Manydiseasesofthedoghaveahumancounterpart,and notablyAlzheimer’sdisease,whichisotherwisedifficulttomodelinotherorganisms.Unlikelaboratory animals,companiondogssharethehumanenvironmentandlifestyle,areexposedtothesamepollutants, andarefacedwithpathogensandinfections.Dogsrepresentedaveryusefulmodeltounderstandthe relationshipbetweensize,insulin-likegrowthfactor-1geneticvariationandlifespan,andhavebeen usedtotesttheeffectsofdietaryrestrictionandimmunotherapyforAlzheimer’sdisease.Veryrecently, rapamycinwastestedincompaniondogsoutsidethelaboratory,andthisapproachwherecitizensare involvedinresearchaimedatthebenefitofdogwelfaremightbecomeagamechangeringeroscience.

©2017ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...142

2. Thecomparativeapproachtoaging...142

3. Animalmodelsofagingandtheplaceofdogs...142

4. Naturalhistoryofcanids...143

5. Naturalhistoryofthedomesticdog ... 143

6. Artificialselectionandthedogasageneticmodelofdiseases...144

7. Dogdiseasesandgeriatrics...145

7.1. Cardiacdisease...145

7.2. Dogrespiratorydisease...145

7.3. Dogobesityandendocrinediseases...145

7.4. Dogimmuno-senescence...145

7.5. Dogcancers...145

7.6. Dogkidneydisease ... 146

7.7. Dogneutering...146

7.8. Dogneurodegenerativediseases...146

7.9. Dogbehaviouralaging...147

7.10. Mappingdiseasesinthedoggenome...147

8. Effectsofsizeondoglongevity ... 147

∗ Correspondingauthorat:AndreaMazzatentaFacoltàdiMedicinaVeterinaria UniversitàdegliStudidiTeramoPianod’Accio,Teramo,Italy.

E-mailaddress:amazzatenta@yahoo.com(A.Mazzatenta).

http://dx.doi.org/10.1016/j.semcdb.2017.08.024

(2)

9. Interventionsindogs...148 10. Conclusions ... 149 References...149

1. Introduction

Agingispartof acontinuous ontogeneticprocessfrom con-ceptiontodeaththatincludesgrowthandmaturation.Aginghas evolvedastheconsequence ofprimary selection forother life-historytraits,andrepresentsaprimeexampleofhowevolutionary changesarenotdirectedtowardswhatappearsanobvious individ-ualgoal;i.e.thepreservationoftheindividualitself[1].

Anumberofcommoncellular/molecularhallmarksofagingin mammalswereidentifiedrecently:epigeneticalterations,genomic instability,stem-cellexhaustion,telomereattrition,mitochondrial dysfunction,cellularsenescence,lossofproteostasis,andaltered intercellularcommunication[2].Inaddition,anumberoftheories havebeenproposedtoexplaintheevolutionofaging(seeReichard, thisissue,foranupdatedreview)andthereiscontroversyoverits underlyingmechanismsandtherespectiverolesofstochastic accu-mulationofmoleculardamage,asopposedtoquasi-programmed systemhyperfunction.Thesequestionsarerelevanttounderstand therelationshipsbetweenagingandincreaseddiseaserisk[3,4], andtounderstandthebiologicalmechanismslinkedto success-fulaginginaselectedpopulationofextremephenotypes,suchas centenarians[5].

Thediversityofindividuallifetrajectoriesgivesrisetoanother importantaspectexemplifiedbytheagingofthehumanolfactory system.Thisisnotacontinuousmechanism,butshowsmultiple discretephenotypes(termedjuvenile,mature,elder)wheretheir frequencieschangeinthedifferentagegroups.However,the‘elder’ olfactoryphenotypecanbedetectedinasubsetofyoungsubjects, whichindicatesearlyimpairmentofthesystemlongbeforeonsetof degenerativeprocesses,thusdemonstratingearlyfunctional senes-cencethatmighthaveanimpactonagingdecadeslater[6].

Aging,astheage-dependentincreaseinmortality(often expo-nential), is caused by such senescence processes [7,8]. In this meaning,senescenceisrelatedtothedeteriorationofphysiological functions(whichisoftenlinear)andcandevelopatdifferentpaces relativetothemaximumlifespan[8].Individualsexposedtorisk factors,suchasdrugconsumption,canacceleratethesenescence oftheirphysiologicalsystem(e.g.,theirchemoreceptionsystem), whichconsequentlyaffectsaging[9].Thus,agingrepresentsthe biologicalmechanism,whilesenescencerepresentsitssubjective physiologicalexpression.

Theaimofthepresentreviewistopresentthepotentialofthe dogasamodelorganismforagingstudies.

2. Thecomparativeapproachtoaging

Within metazoans, there is at least a 10,000-fold range in lifespans,fromthelongest-livedspecies,suchasaninvertebrate spongeintheorderofmillennia(maximumreported,15,000years), throughtheoceanquahogintheorderofcenturies(507years,see Blierinthisissue)andtheGreenlandshark(390years),and fur-therreducedforothersealife,suchasthebowheadwhale(211 years),rockfish (205years) and seaurchin (200 years)[10,11], (seealsoDammann,thisissue).Lifespanshowsastrongpositive correlationwith body size and insight into thegenetic control ofagingcanbegainedfromcomparativestudiesacrossspecies wherethelongevityquotientisanalysed(i.e.,theresidualsofthe regression lifespanvs. body size)[12]. Theavailability of com-prehensivedatabasesmakesitpossibletoprobetherelationships betweenagingand a variety ofother life-historytraits[13,14].

Thesedatabasesandtheiranalysisbecomeextremelyrelevantin lightoftheincreasingavailabilityofhigh-throughputtechnologies thatallowgenome-wideanalysisofgeneexpressionandpositive selectioninalargenumberofdiversespecies[e.g.15–20].

3. Animalmodelsofagingandtheplaceofdogs

Giventhelargediversificationofanimallifespans,therecan benosinglemodel species foraging. For practicalreasons,the vastmajorityofstudiesonaginganimalsareperformedin nema-todes(seePires,inthisissue).Invertebratemodels,however,have someintrinsic biological limitations:theiranatomical organisa-tionisfundamentallydifferentfromthatofmammals;theylack adaptiveimmunityandbones;theyhavelimitedstemcell pop-ulations;andtheylacksomegenesthat arehighlyrelevant for humanaging.Amongthese,forexample,therearetheApolipo pro-teinE(APOE)geneandtheINK4locus(codingforthecyclinkinase inhibitorsCDKN2AandCDKN2B)thatingenome-widestudiesare associatedwithhighreproducibilitytoexceptionallongevityand age-relateddiseases[21,22].Inadditiontotheseverygeneral con-siderations,whenthefocusofananalysisisonage-relateddiseases andinatranslationalperspective,thesizeandthephysiological andbehaviouraltraitsofthedifferentspeciesbecomehighly rele-vant.Primatesrepresentanidealmodelforhuman,althoughaging studiesin primatesareexorbitantly and generallyprohibitively expensiveandlastfordecades[23].

Thepresent-day companiondog representsaunique animal modelthatmightprovideaparadigmshiftfromlaboratoryresearch to‘citizenscience’.Thebiologyofthedomesticdoghasanumber ofuniqueaspectsthatareofrelevanceforagingstudies:

(i)Duetoselectivebreeding,therearealmost20-foldvariationsin bodysizeandovertwo-folddifferencesinagingrates[24,25]. (ii)Therearemanystrain-specificgeneticdiseasesthatbecame fixed,whilethedoggenomehasbeensequenced[26,27]and thehighlevelofinbreedingfacilitatesthemappingofcomplex traits(e.g.,[28]).

(iii)Thereisvastknowledgeofdogdiseasesandmanynon-invasive proceduresareavailabletoassesshealthandfunction, accom-paniedbythevastdevelopmentofdrugs.

(iv)Thedogshowsspecificadaptationsforcommunicationwith humansandrepresentsauniquemodelforhuman-likesocial skills[29,30],andthegeneticbasisofthisbehaviourisstarting tobedefined[31].

(v)Thedogandhumanco-evolvedandsharerecentevolutionary selectionprocesses,suchasadaptationstodigestionof starch-richdiets,andthereareclearsignsofconvergentevolutionin thehumananddoggenome[32,33].

(vi)Unlikelaboratoryanimals,companiondogssharethehuman environmentandlifestyle,areexposedtothesamepollutants, andarefacedwithpathogensandinfections[34].

Mostimportantly,therearemanymillionsofcompaniondogs intheworld,with80millionalone intheUSA(estimateofthe AmericanVeterinaryMedicineAssociationfor2012).The increas-ingqualityofveterinarycareleadstoanincreaseintheelderlydog populationthatwillshowincreasingsenescencemechanismand consequentprevalenceofage-associateddiseasesthatneed treat-ment.Thiscanleadtoacompleteparadigmshiftintranslational research,whereinsteadofinducingdiseasesinlaboratoryanimals,

(3)

dogpatientsinneedoftreatmentcanberecruitedandtheengaged citizenscanbecomeinvolvedinresearchthataimsatimproving thewelfareofthecompaniondog,andinsodoing,providesvery importantinputforthedevelopmentofhumantherapies.

4. Naturalhistoryofcanids

Beforefocussingondogs,anoverviewofthe‘wilddogs’family, theCanidaetaxon,is necessary[35,36].Threedistinct phyloge-neticgroupscanbeidentifiedbymolecularanalysis:(i)thefox-like canids;(ii)thewolf-likecanids;and(iii)theSouthAmericancanids thatembracegenusesPseudolopex,Lycolopex,Atelocynus, Chryso-cyonandSpeothos.Additionally,thegreyfox(genus,Urocyon),the bat-earedfox(genus,Otocyon),andtheraccoondog(genus, Nyc-tereutes)havenocloselivingrelativesanddefineprobablydistinct evolutionarylineages[37,38].Inlookingatthegeneticaspectsof extantcanids(35species),thesephylogeneticrelationshipsimply thattheyevolvedfromacommonancestor.Althoughtheyhave adiversechromosomecomplement,whichrangesfrom36to78 chromosomes,allofthemoriginatethroughsimplechromosome rearrangementsfromacommonancestralkaryotype[39].Here, severalimportantsimilaritiesareshared;e.g.,shortinterspersed nuclearelementinheritance[40,41]andrapidlyevolvinggenes, suchasolfactoryreceptors,immune-relatedgenes,and reproduc-tiveproteins[e.g.,42].

Thecontemporarycanidsarethemostwidespreadfamilyof extantCarnivora,with at leastone species present in all envi-ronments and on each continent, except for Antarctica. Their distributionscanalsobehighlyrestricted,withafoxpopulation restrictedtoDarwin’sIsland [43],andsomeunusualsubspecies occurringonseparateislands,suchastheislandfoxesormednyi arcticfoxes(Alopexlagopussemenovi) [44,45].Conversely,other Canidaespan several continents,suchas the red fox, which is dispersedoveraround70millionkm2 [46].Canidaerangefrom omnivores tostrict carnivores, through those with frugivorous orinsectivorousdiets,andtheyoccupyalmostallhabitats,from desertstoicefields,frommountainstoswampsorgrasslands,and fromrainforeststothe‘urbanjungle’[47].Theirhomerangesvary fromassmallasthe0.5km2 oftheislandfox[48],toaslargeas 2000km2forAfricanwilddogs[49].

Geographicalvariabilityinbodysizecanbeexplainedtosome degreebydifferencesinavailabilityoffoodforsomesmallCanidae, likethefennecfox,whichisusuallyassociatedwitharidandpoor habitats,andcanweightaslittleas1kg.Conversely,largeCanidae suchastheEthiopianwolfandtheAfricanwilddog,canweigh 50–60kg,and areoften associated withhabitats whereprey is abundant.Withameanadultbodyweightof9.72±7.7(SD)kg, thisincludestherangefrom1.25kgofVulpeszerdato26.63kgof Canislupus[50].

However,themaned wolf (Chrysocyonbrachyurus), which is unusualforalargeCanidaeintermsofitssocialorganisation,roams theSouthAmericansavannasandfeedslargelyonrodentsandfruit [51],wherebyGeffenetal.[52]suggestedthatitslowfood avail-abilityprobablyconstrainsboththefamilygroupandthelittersize. Themeanlittersizeis4.8±1.7(SD),witharangeof2.2ofVulpes zerdato9.0ofVulpeslagopus.Themeanageatsexualmaturity is391.1±140.0(SD)days,witharangefrom274.0daysofCanis latransto730.0daysofChrysocyonbrachyurusdays.Themean ges-tationageis59.9±5.9(SD)days,witharangefrom51.0daysof Vulpeszerdato72.0daysofLycaon pictus[50].44Themeanfor longevityonrecordis16.6±2.5(SD)years,witharangefrom12.7 yearsofCerdocyonthousto21.8yearsofCanislatrans,excludingthe domesticdog,althoughVulpesmacrotishasreportedamaximum longevityof7.5years[50].

These ecoethological and zoogeographical information are importanttohighlightthatCanidaeiscomposedofthemost vari-abletaxaassemblyascomparedtoothersystematicmammalian groups.Canidaemightrepresentaconstitutivegeneral‘prototype’ that cancolonise almostallecological nichesdue totheirhigh potentialforadaptability.Inparticular,amongcanids,wolfswere widespread in all of theenvironments that were colonisedby humans.

5. Naturalhistoryofthedomesticdog

Likeitstaxon,the‘domesticdog’livesinandsharesall envi-ronments with humans, and likehumans, these show regional adaptations related to climate and environmental conditions [53–55].These dogsshowanextraordinary levelof phenotypic variationintheirskeletalstructure,includingtheiroverallsize,leg length,andbodywidth,andvariantsofskullshape,withthe max-imumagereportedof24years[50].However,thereareanecdotal reportsofextremelongevityforAustraliancattledogs,whichreach upto30years,althoughthesewerenotconfirmedbyasurveythat reported13.41±2.36years[56].Thelargestdogbreedsarealmost twoordersofmagnitudeheavierthanthesmallestbreeds.There arerangesbetweenbreedsofatleastthree-foldinageatmaturity, five-foldinlittersize,andmorethantwo-foldinlongevity[57–59]. Theaccumulatingarchaeological,culturalandgeneticevidence emphasisesthatwolfdomesticationcannotbeunderstoodoutside ofthecontextofhumancivilisation.Thegeographicandtemporal originsofdogsremainedcontroversialforalongtime,and sub-sequentroundsofmorein-depthgeneticanalyseshavesuggested eitheranAsianoraEuropeanorigin[60–62].Thelatestanalysis thatincludedthesequencingofancientdogDNAandthecomplete genomeofalateNeolithicdog,revealedadeepsplitseparating modern EastAsianand WesternEurasian dogs.Combined with analysisofmitochondrialDNA,thesedatasuggestthatdogsmight have beendomesticatedindependently in Easternand Western Eurasiafromdistinctwolfpopulations.EastEurasiandogswere thenpossiblytransportedtoEuropewithpeople,wherethey par-tiallyreplacedEuropeanPalaeolithicdogs.Wolvesthatapproached humancommunitiesthusunderwentinitialunintentional selec-tionfor decreased flight behaviourandincreased sociability,as thetrademarksoftamenessandsuitabilityforsocialisationwith humans.Remarkably,inexperimentalbreedingofsilverfoxes,this behaviouralselection is sufficientto induce,and there are sev-eral typicalmorphological traits of domestic dogs that suggest widespreadpleiotropyofdomestication-relatedgenes[63].Such selection for a singlebehavioural traitliketameness generated manifoldphenotypicchanges,probablythroughgenesthatgovern developmentalprocesses[64],andthesehaveprovidedthegrist forthemilloffurtheriterationsofselection.

Therelationship of ancestralman withdogswasone of co-evolution, where dogsbredrandomlyand adultswere selected basedontheirutility.Theseculturaldevelopmentsprovidedthe milieufortheinterwovenprocessesofartificialselectionand cul-turalacclimatisationthatresultedinthebiologicalchangesthatled, stepbystep,tothedogsoftoday[65].Thesearetheresultof domes-ticationthat wasbased ontheselection of naturalbehavioural traitsthat wereadvantageousforhumanends,suchashunting andsearching,herdingandguarding[66].Thisresulted,inturn,in veryclearpatternsofparallelevolution,wherebreedsselectedfor aspecifictaskevolvedsimilarphenotypesingeographically dis-tantregions.Thisismanifest,forexample,intheherd-guardian typeofdog,whichincentralItalyisrepresentedbythe“Mastino Abruzzese”(Fig.1A).Thesedogswereanecessarycomponentof theerraticpastoralismforthepreventionofwolfpredation,and musthavebeenpresentthroughoutEurasia.Thesearenowlimited

(4)

Fig.1. Examplesofnaturalbreedingofdogs(A)Livestockguardiandog‘MastinoAbruzzese’fromthemountainsofAbruzzo,Italy(B)Molossian-typedog‘CaneCorso’from ruralenvironmentinSouthernItaly(photoswithpermissionfromA.Mazzatenta&A.Scalisi).

torelictpopulations(forfurtherdiscussion,see[67]).Thenthere arethemolossian-likedogsthatwereselectedfortheirgripping abilityinthehuntoflargegame,fortheirresilientbehaviour,and fortheirmanagementofbulls,pigsandgoats.Theseareembodied intheItalian‘CaneCorso’(Fig.1B),andsimilarphenotypeswere originallywidespreadinEurope(e.g.,‘PerrodePresa’inSpain, ‘Bul-lenbeisser’inGermany,‘Mastiffs’in Britain,among others),and werewell-documentedinpaintingsoftheXVIIIcentury.

However,thegeneticbasisofwidevariationsindogbehavioural characteristicsisscarcelyunderstood,mainlybecauseofthelackof specificassays[68].Interestingly,startingin1959,DmitryBelyaev selectively bred foxesfor over 50 years, in terms of the short-estflightdistancetowardshumans,attheInstituteforCytology andGenetics in Novosibirsk,Russia.[for reviews,see63,69–71]. Thisexperimentwasasuccessanditrapidlyresultedinastrain oftamefoxes, compared totheunselected strainthatis highly aggressivetowardshumans.Thisallowedgeneticcomparisonsto bemadebetweendomesticatedfoxes,aggressivefoxes,F1hybrids, and theirbackcrosses[69,70]. Theseexperiments revealed that behaviouralselectionhaswidespreadpleiotropiceffectsthatcan resultinpigmentationandmorphologicalchangesthataretypical ofdomesticatedmammals,withcurrentstudiesaimedat identify-ingthemolecularchangesassociatedwithdomestication[72].

Toidentifygenome-widetranscriptionalcorrelatesof domes-tication,theexpressionpatternsof7762genesinthreedifferent regionsofthebrainsofdomesticdogs,greywolves,andcoyotes were investigated [73]. The gene expression in the hypothala-musof domestic dogs was different from that in grey wolves andcoyotes,whereaspatternsof geneexpressioninthe amyg-dalaandfrontalcortexwerelessdifferentiated[73].Theseresults suggest that behaviouralselection in dogsmight have affected endocrinological-autonomic responses, while not affecting the emotional,memoriesassociatedwithemotions,polysensory con-vergence,voluntarymovement, and higher cognitivefunctions. Fascinatingly,domesticationappearstohavehad greatereffects ontheregionsof thebrainthat regulatehomeostasis,and con-sequentlysenescence and aging, and lesson regionsrelated to emotionsandrelatedbehaviourstypicaloftheirancestors.

6. Artificialselectionandthedogasageneticmodelof diseases

In just thepast few hundred years, intensiveselection and breedingofdogsforkeydesirabletraitshasresultedinthe devel-opment of what we regard today as the major characteristics

of recognized breeds. When considered as a species, the level ofgeneticvariationsampledacrossalldogbreedstoday is per-hapsasextensiveasforthehumanpopulation[26].Inindividual purebreeds,however,thelevelofgeneticdiversityisnow vari-ablyrestricted[27],withextremevaluesofhomozygosityinsome breeds.Theprocessofbreedformationoverjustthepasttwoto threecenturieshasbeenestimatedtohaveresultedinaseven-fold greaterreductioningeneticdiversitythandidthethousandsof yearsofearlydomestication[74].

The‘aggressive’ dogbreedingpractices carriedout sincethe 1930shavefixedtraitsinso-calledbreedstandardsthatare charac-terisedbyhighdegreesofinbreedingandexacerbatewhatinitially were minor morphological differences among breeds. This has resultedinawidelevelofdiversityindogs,withanoverallFST of0.28amongbreeds,whichisabouttwicethatinhumans[75,76]. Thishasproducedgeneticdriftandledtoincreasedratesof breed-specificinheriteddiseasesthatarealsocommoninhumans,such ascancers,heartdisease,rheumatoidarthritis,autoimmune dis-orders,deafnessandblindness[26,65].Asaconsequence,theage patternsofdogmortalityarenotonlydependentonsize,butare alsoaffectedby,andstronglyrelatedto,thebreed,andassuch,are termed‘breedeffects’or‘geneticgroupeffects’[77,78].

In an effort to create a perfect companion, dog breeders embarkedonan‘experiment’,tofaithfullyrear,select,breedand adaptmillionsofpedigreedogs,generationaftergeneration,with genetically based proclivities and susceptibilities that are still awaitinggenomicinterrogation[27].Thisiscompoundedfurther bytheuseof‘popularsires’andthegenepooldeclineduringthe twentieth century.As many ofthe keyphenotypes are charac-teristicoftheparticularbreed,theirpresenceinthebreedwere positivelyselectedfor,whichresultedinhighfrequenciesofthe genes that cause these specific phenotypes. With suchintense selection,itisperhapsnotsurprisingthattherearenowover sev-eralhundredinheriteddiseasesrecognizedindogs.Akeyfeatureof thesediseasesisthattheyappearonthebackgroundoflowgenetic variability.Indeed,manydiseaseshavesimpleinheritancepatterns (forarecentreview,see[79]).Particularlyforcancers,thegenetic backgroundofsomepure-breddogsmightpredisposethebreed toahigherriskforspecificcancers,orcancersingeneral.Itisthis increasedriskofcancerinpure-breddogsthatmightbeleveraged toacceleratetheprocessofcancergenediscoveryfroma compar-ativeperspective(forarecentreview,see[80]).Alsointhecaseof complexdiseases,thehighinbreedingofpure-breddogsfacilitates mappingwithrespecttohumans(thiswaspartoftheoriginal moti-vationforsequencingthedoggenome,see[75,81]).Inthecontext

(5)

ofaging,itshouldbenoted,forexample,thatsizevariationindogs hasbeenassociatedtothevariationsinthegenesinthe insulin-likegrowthfactor(IGF)-1signallingpathway[82],whichisakey regulatorofaging[83].

7. Dogdiseasesandgeriatrics

Aswellastumours,mostofthecommondogdiseasesare sim-ilartothoseofhumans,mainlyintermsofage-relateddiseasesin theorgansandsystemsthataremostaffectedbyhumanaging: the brain, kidney and cardiovascular system. Indeed, although road traffic accidents are high on the list, the most common causesofdeathfordogsare:neoplastic,cardiac,renal/urinary, gas-trointestinal/anorexic/weightloss,diabetesmellitus,respiratory, musculoskeletal,neurological,dermatological,reproductive,and behaviouraldisorders,someofwhicharereportedascongenital, whichdefinesthemasgeneticallyinherited[77,84].

Interestingly,whileveterinaryhealthcareoverrecentdecades has significantly increased our knowledge of geriatric dogs, inverselydog lifespanhasdecreased.Indeed, theageat which clinicalveterinarianscurrentlyconsiderdogstorequire‘geriatric care’rangesfrom6yearsto9yearsinthelargebreeds,to9years to13yearsinthesmallerbreeds[85].Thisassociationbetween smallbodysizeandlongerlifespanwithinaspecieshasalsobeen reportedfor mice[86] andhumans, and anecdotallyfor horses [19,87],andwillbetreatedindetailinSection8(seealso[88–91]). 7.1. Cardiacdisease

Inthecontextofcardiacdisease,dogscanprovideapowerful modelforunderstandingwhetherdiseaseisacauseand/or con-sequenceofaging.Forexample,degenerativevalvediseaseisthe mostrepresentedheartdiseaseindogs,anditrepresentsa signifi-cantriskfactor[92].Interestingly,itisgenerallyacceptedthatolder smalldogsaremorecommonlyaffectedbydegenerativevalve dis-easethanyoungerlargedogs,andinheritancestudieshaverevealed increasedriskofclinicalsignsamongmaledogs[93].Inastudy basedonly onpost-mortem examinations,it wasreportedthat 34.4%of404dogsshoweddegenerativevalvedisease,which cor-relatedwithage[94].Also,outof40companiondogsover6years ofagethatrangedfromGreatDanestostandardPoodlesand cross-breeds,11ofthese(meanweight,28.8kg)showedundiagnosed cardiacdisease,asrevealedbyechocardiography,althoughthiswas notrelatedtodogsize[95].Severalotherstudieshavefocusedon individualhigh-riskdogbreeds,suchasthecavalierKingCharles Spaniels[96]andDachshunds[93].

7.2. Dogrespiratorydisease

Anextensivebodyofliteraturedescribesthecaninepulmonary anatomyandphysiology, includingthelungmechanics, ventila-tion,coughreflex,immunobiology,inflammation,pharmacology andcentralneuronalcontrolmechanisms.Thecaninerespiratory systemsharesmanysimilaritieswiththatofhumans,anddogshave beenusedasmodelsforchronicinflammatorydiseases,suchas inducedasthmaandchronicobstructivepulmonarydisease,which developsfromchronicbronchitisandemphysema,againresulting indecreasedlifespan[97].

7.3. Dogobesityandendocrinediseases

Therearedifferencesregardingbodycomposition acrossdog breeds[98].However,dogobesityisthemostcommondisorder thatleadstomorbidity,andtherangeofdisorderswithwhichdog obesityhasbeenassociatedincludediabetesmellitus, cardiovascu-larandmusculoskeletaldisease,degenerativedisorders,decreased

immuno-competence,andshortenedlifespan.Theseareagainnot relatedtodogsize,butinsteadpromotedbyotherhumanfactors, likewealth[99].Thus,restrictionofcaloricintakemightextendthe caninelifespan[100].

AsinglenucleotidepolymorphismhaplotypeofIGF-1is com-montosmalldog breeds,whilerare inlargebreeds[101].Dog serumandurinemetabolomeprofilesreflecttheirintestinal micro-biotaandrenalpathology[102].Avarietyofassociatedendocrine disorderscanspontaneouslyaffectdogs,likediabetes,growth hor-monedysfunction,andhypercortisolism.Caninediabetesiscaused byeitherautoimmunedestructionoftheirpancreatic␤-cellsor excesslevelsofcounter-regulatoryhormones.Pituitarydwarfism indogsiscausedbyautosomalrecessivecombinedpituitary hor-monedeficiency,whichis oftenobservedinGermanshepherds inparticular [103].Middle-agedtoolddogscommonlydevelop Cushing’s disease,throughoverproductionofglucocorticoidsby theadrenalcortexTheassociatedmanifestationsareverysimilar toclinicalobservationsinhumans,includingchangesintheskin, weightgain,abdominalobesity,fatigue,muscleatrophy, hyperten-sionandrenaldysfunction[103,104].

7.4. Dogimmuno-senescence

Theimmune-senescencecharacteristicsofolderdogsareshared withelderlypeople.Olddogsshownimpairmentofcell-mediated immune functions, suchas reduced blood CD4+ Tcells, imbal-anceinTh1versusTh2functionalactivity,elevationoftheCD8+ subsets,andreductionintheCD4:CD8ratio.Furthermore,blood lymphocyte responsestostimulation bymitogens decrease the delayed cutaneous type hypersensitivity response. Conversely, there is relative preservation of the ability to mount humoral immuneresponses.Serumandsalivaryimmunoglobulin(Ig)A pro-ductionincreases,andIgGconcentrationsremainunalteredwith age.Elderly animals generallyhave persistingvaccine antibody titresatprotectivelevels,andrespondtoboostervaccinationswith titreelevation. Olderdogsshowprimary humoralresponses to novelantigens,butthemagnitudeofthesecanbelowerrelativeto thetitresofyoungeranimals.Therehavebeenfewinvestigations intothephenomenonof‘inflammageing’indogs,astheeffectsof cumulativeantigenicexposureandonsetoflatelifeinflammatory disease[105].

7.5. Dogcancers

Dogs spontaneously develop thesame types ofcancers that humansdo,andtheyareofteneventreatedwiththesame thera-peuticstrategies[106].Severaldogbreedsareknowntohaveahigh incidenceandelevatedriskofspecificcancersubtypes,sometimes evenmorethanonesubtype.Additionally,centuriesofselective breedingof dogsconfers theopportunity toexamine polymor-phismsthatarespecifictoparticularbreedsthathaveexaggerated incidences of particular cancersubtypes [107]. Finally, because dogscohabitatewiththeirhumanowners,theyarebothexposed tothesame environmentalfactors,which mightpotentiate the developmentofcancers[108].Genomicanalysisofcaninetumours hasrevealedsharedfeatures withhumans, whichhasprovided importantinsightintothegeneticbasisoftumourdevelopment [109–111].

Table1givesalistofthehigh-riskbreed-specificdiseasesthat havearisenduetotherestrictedgeneticvariationproducedby con-sanguinityandinbreeding.Thisoffersanexceptionalopportunity toexaminetheinteractions betweengeneticsand environment in the aetiologies of various forms of cancer; and the shorter lifespanofdogsfacilitatestimelyandefficientevaluationofnew approachestocancerdiagnosis,treatmentandprevention.Awide varietyofcancersarebeingstudiedindogs,whichincludesoft

(6)

tis-Table1

Cancersassociatedwithspecificdogbreeds(modifiedfromDobson[111]).

Cancer Subtype Dogbreed

Lymphoma(unspecified) OldEnglishSheepdog,Boxer,Pointer,GoldenRetriever,Rottweiler,StBernard,ScottishTerrier,Bulldog

B-celllymphoma IrishWolfhound,SiberianHusky,ShihTzu,AiredaleTerrier,CavalierKingCharlesSpaniel,YorkshireTerrier T-celllymphoma Boxer,CockerSpaniel,BassetHound

Osteosarcoma Largeandgiantbreeds,suchasIrishWolfhound,ScottishDeerhound,GreatDane,BMD,Mastiff,StBernard,

IrishSetter,GoldenRetriever,Rottweiler,DobermannPinscher,Greyhound

Softtissuetumours Largerdogs,suchasBoxer,BMD,AiredaleTerrier,GreatDane,StBernard,BassetHound,GoldenRetriever—all

withtwiceasmanyasthegeneralcaninepopulation

Hemangiosarcoma GermanShepherd,BMD,GoldenRetriever,Flat-coatedRetriever,PortugueseWaterDog,LabradorRetriever,

Boxer,SkyeTerrier,AustralianShepherd

hs/Malignanthistiocytosis BMD,Flat-coatedRetriever,Rottweiler,GoldenRetriever

Mastcelltumours Boxer,Pug,LabradorRetriever,GoldenRetriever,Vizsla

Meningiomas Mesocephalic(medium)anddolichocephalic(long)-nosedbreeds;e.g.,Labrador,GoldenRetriever,Collies

Gliomas (including

glioblastoma multiforme)

Brachiochephalic(short-nosed)breeds,includingBoxers,BulldogsandTerriers

Testicularseminoma NorwegianElkhound

Nasalcavitycarcinoma GoldenRetriever,Beagle,BostonTerrier,RoughCollie,BelgianShepherd,UCScottishTerrier,Beagle,West

HighlandWhiteTerrier,ShetlandSheepdog,AmericanEskimodog,standardSchnauzer

Lowerurinarytractcarcinoma AiredaleTerrier,Beagle

Squamouscellcarcinoma(digit) STPO,giantSchnauzer

Melanoma Oralmelanoma Poodles

Cutaneousmelanoma Schnauzers,BeauceShepherds

suesarcomas,mammarycarcinomas,primaryandsecondarylung

carcinomas,malignant melanomas,and cancersof theprostate,

bladder,intestine,brainandmouth,andmanyothers[112].Among

allofthese,doglymphomasandcanineosteosarcomaareof par-ticularinterestintermsoftheirfrequencyandpathophysiology, respectively.Indogs(mainlyboxersand goldenretrievers),and humans,largeB-cellnon-Hodgkin’s lymphomais themost fre-quent[106,112].Canineosteosarcomaaffectslargebreedssuchas GreatDanes,Wolfhounds,andRottweilers,wherethisisgenerally confinedtothelongbones,andhassimilarmetastaticratesand destinationsasseenforhumans.Inosteosarcoma,thep53tumour suppressorpathway,thec-Met proto-oncogene,the chemokine interleukin-8,and several suchmediators are involved in both species [106,107,112]. Furthermore, a constitutional ‘germline’ DNAforcancerpredispositiongenesindogswithcancerhasbeen described,which includesBRCA1/BRCA2[113,114], whichleads tohereditarybreastandovariancancersyndromeinhumans,as wellas TP53 germline mutationsin dogs[115], which lead to Li–Fraumenisyndromeinhumans,withmultipledifferentcancers. Theapproachofusingsinglenucleotidepolymorphismsand/or copynumbervariations,andgenome-wideassociationstudieshas beenassociatedwithdiseaseriskinspecificdogbreeds(for exten-sivereviews,see[80,116]).Geneticanalysisofcaninetumourshas revealedcommon features withhumans,along withimportant informationabouttheirdevelopment.Thustheconsanguinityand inbreedinginthepracticeofhumansocietyfordogbreedinghas unwittinglycreatedahigh-riskmodelforbreed-specificdiseases [80].Thelimitedgeneticvariationinpure-breddogsthatis associ-atedwiththeshorterlifespanofdogsfacilitatestimelyandefficient evaluationofnewapproachestocancerdiagnosis,treatmentand prevention.

7.6. Dogkidneydisease

Promisinggenetherapiesforhereditarynephropathy,agroupof fatalinheriteddiseases,andAlportsyndrome,aformofhereditary nephropathyinhumanscausedbydefectsintheglomerular base-mentmembrane[117,118],havebeenidentifiedindogs.Theonly treatmentscurrentlyavailableforAlportsyndromearedialysisand renaltransplantation.Naturallyoccurringhereditarynephropathy hasbeenidentified inseveralcaninefamilies (Samoyed,English CockerSpaniel,BullTerrier),anddiseaseprogressionissimilarto

humans[108].Indeed,anadenoviralvectorcontainingthecanine cDNAofaCOL4A5mutation(whichrepresentof85%ofAlport syn-dromecases,and is necessary forcorrect glomerular basement membraneformationinthekidney)wasinjectedintothesmooth muscleofthebladderinaffectedSamoyeddogs.Fiveweeksafter injection,expressionofbothCOL4A5andarelatedgene,COL4A6, wasshowninthebasementmembranessurroundingtheinjection site,whichindicatedthesewereexpressingfunctionalgenes[119]. 7.7. Dogneutering

Otherinterestingassociationswithcaninelifespanincludethe ‘desexing’,orneutering,ofdogs,whichmightalsoaffectnormal aging and promote senescence and increased risk of cognitive impairment[77,120,121].Also,increasedtelomerelength corre-lateswithmortalityin bothdogsand humans,suchthat when telomeresreachacriticallyshortlength,aDNAdamagesignalis initiatedthatinducescellsenescence[122,123].Telomerelength islargelyinheritedfromtheparents,andthislengthincreaseswith theageofthesperm,suchthathumanoffspringconceivedbyolder fathershavelongertelomeresthanthoseconceived byyounger fathers,atabout22bplongerforeachyearolderthefatherisat conception[124,125].Ifthesameistruefordogs,asissuggested bytheirsimilartelomerebiology,abreedingprogrammecouldbe activatedtopositivelyaffecttheirlifespan.

7.8. Dogneurodegenerativediseases

Geriatricdogsdevelopcognitiveimpairmentandcentral ner-vous systempathologies that mimic thechanges that occurin humanneurodegenerative diseases,suchasAlzheimer’sdisease [126,127].Caninecognitivedysfunction,or‘caninedementia’,is aneurobehaviouralsyndromeinageddogsthatischaracterisedby deficitsinlearning,memoryandspatialawareness,andchanges insocial interactions and sleepingpatterns[128]. Likehumans, ageddogssufferfromcognitiveimpairmentthatappearsto resem-ble Alzheimer’s disease,where this is apparently characterised bydepositionofsignificantamounts ofamyloid␤protein(A␤) anddevelopmentofdiffuseplaquesthatcorrelatewithcognitive decline.Unlikehumans,however,dogswithcognitiveimpairment donotappeartodevelopneurofibrillarytangles.Thisappearstobe becausetheamino-acidsequenceoftheA␤peptideisidenticalin

(7)

dogsandhumans,whilethisisnotthecasefortheTauamino-acid sequence.Therapeuticstrategiesthatincludeantioxidantdietsand behaviouralenrichmenthavebeenshowntoimproveAlzheimer’s diseasepathologyindogs,andatthesametime,anti-inflammatory drugs,statins,andimmunisationagainstA␤peptidehavealsobeen pursuedinageddogs[126,127].

7.9. Dogbehaviouralaging

Therehavebeenfewstudiesintotheeffectsofdogbreedson behavioural aging [129]. Many studied behaviours have shown nobreedeffects,includingformixedbreeds.Alongevityanalysis askedwhetherasinglebehaviourofshort-livedorlarge-sizeddogs showedanyincreasedseverityorlevelofdeteriorationcompared withlong-livedorsmall-sizeddogs.Inaddition,thedecreased ‘pro-portionofdogsthatdrink1Lwater/day’inlong-liveddogsislikely toreflectabodymassrelationship,ratherthananaging relation-ship[129].

However,theassociationbetweendogsizeandlongevitydoes followpredictionsforarthritisindogs,withlarge-sized,short-lived dogsshowinghigherprevalence.Incontrast,blindnesshadalower prevalenceinlargeversusmedium-sizedandsmall-sizeddogs,in linewithProschowskyetal.[130],whoreportedthatthe preva-lenceofear,eye,andskeletaldiseasessignificantlydiffersbetween breeds.

Beyondoxidativestress,thereareprobablyalsoalarge num-berofothercontributingfactorstotheoverallagingprocess,as thehyperfunctiontheorysuggests,althoughthesemightnotaffect cognitivefunction[3,4,129].Severallongevityandsizedifferences incaninebehavioural aginghave beenshown, notallof which areinthesamedirection.Hence,thereisconflictingevidenceas towhetherlarge-sized,short-liveddogsshowincreasedratesof aging. Iflarge-sized, short-lived dogsare ‘physiologicallyolder’ thansmall-sized,long-liveddogsofthesamechronologicalage, thentheyshouldshowgeneralincreasedprevalenceofage-related diseasesandincreasedrateofbehaviouralsignsofcognitive dete-rioration.Instead,cognitivedeteriorationindicatorsappeartobe moreprevalentforsmall-sized dogs,asisblindness,whichis a stronglyage-relateddisease[129].

7.10. Mappingdiseasesinthedoggenome

One benefit ofusing dogs is thestructure of theirgenome; e.g.,linkagedisequilibrium,orthedeviationinthefrequencyof haplotypesinapopulationfromthefrequencyexpectedifthe alle-lesatdifferentlociareassociated atrandom,isgreaterindogs thanhumans[26,131].Furthermore,theaveragelinkagewithin dogbreedsisintherangeofmegabases[131],whereaslinkagein humansub-populationscanbemeasuredinkilobases[132],which meanthathaplotypesaremuchlongerindogs.Although differ-entbreedsvaryintermsoftheirlinkagedisequilibriumdepending onthehistoryofthebreedandphenomenasuchasfounderand bottleneckeffects[133],theoverallhigherlinkagedisequilibrium indogsimpliesthatfewerthan30,000single-nucleotide polymor-phismsmightbenecessaryforgenome-wideassociationstudies, whichisanorderofmagnitudesmallerthanthecoverageneeded forhumangenome-wideassociationstudies[131,134,135].

In addition, many haplotypes are sharedacross dog breeds, which appear to have resulted from the genetic bottleneck of domestication[26,133].Geneticinvestigationsinhumansonrare polymorphismsmighthavesignificant,populationspecific,effects onphenotypes[136,137].Thus,raregeneticvariationwithinbreeds might have important effects on phenotypes of interest [138]. Anotherbenefit of usingcanine model is that 277of the over 573dog-documented diseases resemble humandiseases [139]. Models of inheritance in dogs have allowed the isolation and

Fig.2.Relationshipbetweenbodysizeandlifespanforseveralfamiliesofmammals. Reproducedwithpermissionfrom[15].

identification of thecausal genes for diversebiomedical disor-ders[25,108,133,140–144].Twodatabasesforinheriteddisorders in dogs are an important resource for research on inherited diseases in dogs: OMIA [139] and Inherited Diseases in Dogs [145,146].ItisestablishedthatMendelianinheriteddiseasescan leadtoneuropathologiesandbehaviouralabnormalities,while sin-glegenemutationscanleadtoataxia,seizures,cerebellarcortical degradation,encephalopathies,andotherneurologicaldisorders [147–149]. Furthermore,singlegenemutationsshowhigh pen-etrance[150],which reflects effects onbehaviour.Through the analysisofdogpedigrees,searchesforcausalgenescanbefocused andinformresearchontherelevanthumandisorders.

Anadditional benefitof usingdogs istheirgreat variability, wherebyeachbreedrepresentsageneticallyisolatedpopulation withauniquesetofmorphologicalandbehaviouralcharacteristics [68,133,135,140–144,151–153].Varianceindogbehaviouris anal-ogoustothatobservedinthenormalhumanpopulation[154].Dogs showdifferencesintemperament,compulsivedisorders,anxiety, socialbehaviour,‘sociability’or‘confidence’,aggression,andmore [forreviewssee154–157].Dogshaveconditionsthatcanbe inves-tigatedthatmightbeanalogoustohumanpsychiatricconditions, suchascaninecompulsivedisorder,whichmightbeanalogousto humanobsessive-compulsivedisorder[155,158].

8. Effectsofsizeondoglongevity

Across animal species, body size is robustly correlated with lifespan[11,159,160].Inmammals,thelifespan-sizerelationship followsapowerlaw,withanexponentofaround+0.25(Fig.2). Remarkably,dailyenergyexpenditurenormalisedpermassis neg-ativelycorrelatedtobodysize,withanexponentofaround−0.25, whichleadstothesuggestionthatwhole-lifeenergyexpenditureis constant[161].Unlikeotherspecies,therelationshipbetweenbody sizeandlongevitycanbestudiedinthedog,asdifferentbreedsspan almosttwoordersofmagnitudeinbodyweight.Adultbodysizein dogsisinverselyrelatedtolongevity[162–164](Fig.3),andsmall bodysizeisassociatedtogeneticvariantsthatlowertheactivityof theIGF-1signallingpathway[165].ReductioninIGF-1signallingis indeedknowntocauselifeextensionthroughstudiesfrom nema-todewormstomice,andreducedIGF-1signallingwasobserved inasubsetofhumancentenarians[forarecentreview,see166]. PlasmaIGF-1concentrationsinnormaldogsisafunctionofbody size:in CockerSpanielsthisis 36±27 (SEM)ng/mL,inBeagles, 87±33ng/mL,inKeeshonds,117±34ng/mL,andinGerman Shep-herds,280±23ng/mL.However,themeanIGF-1levelinagroupof dogsthatincludedarangeofbothsmallandlargedogswith patho-logicallyhighgrowthhormonelevelswas700±90ng/mL,suchas inacromegalyandgrowth-hormone-relateddiabetes[167].IGF-1 signallingisrelatedtocarotidbodyfunction,andaspecificeffect ofagingonthecarotid-bodychemoreceptorsisaccompaniedby impairmentofventilatoryandarousalresponsestohypoxia[168]. Indeed,carotid-bodychemoreceptorsprimarilycontributetothe

(8)

Fig.3. Lifespannegativelyscales,−0.096scalingpowerfortheaveragelifespanacross90breedsofdogs,withadultbodymassinmale(A)andfemaledogs(B).Eachpoint representsonebreed.Thescalingpowerswereobtainedbyregressingthelogarithmicallytransformeddata.Reproducedwithpermissionfrom[172].

eupneicdrivetobreatheundernormoxia,aswellassending nor-maltonicsensoryinputtomedullaryrespiratorycontrollers,such asmodulatoryeffectsoncentralchemoreceptorresponsivenessto CO2[169].Therelationshipbetweencarotid-bodyactivitypatterns andIGF-1mightthereforebeindicativeoflifespanvariabilityin dogs.

Anumberofstudieshavetriedtotakeadvantageofthe lifes-pan/sizecorrelationindogstoidentifycellular[170]andmetabolic [91]correlatesforsize-relateddifferencesinlongevity.Recently,a metabolicmodelwasdevelopedtoresolvethisparadox.Thismodel isbasedonthewell-knowndisposablesomatheoryofaging[171], anditpositsthatlifespanisdeterminedbythetrade-offinenergy allocationbetweentheprocessesofgrowthandrepair.Byfitting bodymassatbirthandenergyrequiredtoattainadultbodysize,it wasshownthatlargebreedsinvestdisproportionatelymoreenergy ingrowthwithrespecttosmallbreeds,becauseoftheirsmaller rel-ativesizeatbirth,andthereforetheyhavelessenergyavailablefor repair,whichresultsinshorterlifespans[172].

Shorterlifespansoflargerdogsmightberelatedtofour pos-sibleeffects:(i) higherearlymortality; (ii)fragility (i.e.,higher baselinemortality);(iii)earlieronsetofsenescence(i.e.,thetime whenaccelerationofmortalitystarts);or(iv)fasteraging(i.e.,the rateofaccelerationofage-dependentmortality).Thesefour com-ponentscanbedissectedouttoacertainextentbydemographic analysis,tofitdifferenthazardmodelstodogs.Senescenceonset doesnotappeartobeacceleratedinlargedogs,whilefragilityis a littlehigher inlargedogs; however,thedriving forcebehind thenegativecorrelationbetweensizeandlifespanisapparentlya strongpositiverelationshipbetweensizeandagingrates;i.e.,large dogsagefaster[163].Interestingly,reducedratesofdemographic aginghavebeenreportedingrowth-hormone-deficientmice,as amodeloflongevity[173].Thissuggeststhatgeneticvariantsin IGF-1/growthhormonearemajordeterminantsoflifespanindogs, whichqualifiesdogsasamodelforunderstandingtheroleofthe somatotropicaxisinaginginanecologicallyrelevantcontext.

Largedogsalsotakelongertoreachphysicalandbehavioural maturity,andatthesametime,dogsthatreachsimilaradultsizes mightwelldifferintheirgrowthpatterns,whichisimportantin theevolutionoflife-historystrategies[174–176].Acomplication thatshouldbetakenintoaccountis inbreeding.Indeed,thelife spanofpure-breddogsislowercomparedwithmixedbreeddogs, acrossallweightcategories,whichsuggeststhatartificialbreeding ofdogsovertimefor specificphenotypeshasreducedtheirlife expectancy.However,itisnotclearwhetherthiseffectisdueto increaseddiseaseriskordifferencesinagingrates[177].

9. Interventionsindogs

Dogshavebeenusedintherecentpastassubjectsfor inter-ventionstudiesintwomaincontextsthatarehighlyrelevantfor aging and aging-associateddiseases. The first of theseis calo-rie restriction. Given the pattern of parallel evolution of the digestive physiology in man and dogs [32,33], the results of dietarymanipulationsindogshaveaparticularlyhightranslational value.Reductionofcalorieintakewithoutmalnutritionisa well-establishedprotocoltoprolongthelifespanoflaboratoryrodents, andtodelaytheonsetofalargenumberofage-associated con-ditions.Laterstudiesshowed,however,thatresponsestocalorie restrictiondependonthegeneticbackground,whichintroduces a confounding effect in rodent studies [178]. Whether calorie restrictionswouldelicitthesameeffectsinlargermammals,and ultimately humans, hasremained unansweredfor a long time, and is partially still a matterof speculation. In themid-1980s, a calorie restriction experiment in dogswas launched roughly incoincidencewiththelaunchofprimatecalorierestriction tri-alsthatarepartiallystillongoing.Thisstudydemonstratedthat 25%foodrestrictioninducedasignificantlifespanextension, cou-pledwithimprovementsinglucosehomeostasis [179,180].This studyshowedforthefirsttimethatcalorierestrictioncan pro-long thelifespan ofa mammalianspecies, thesize and diet of whichismorecomparabletohumans,andalsoshowedthe poten-tialof longitudinalobservationsin dogs.A majordrawback for thestudywasthatitwasbasedonLabradorretrievers,whichis a breedknowntobehighly pronetoobesity, asof allthedog breedsforwhichdatahavebeenreported,Labradorretrievershave thegreatestdocumentedprevalenceofobesity[181,182].Thisis partially because theycarry a loss-of-function mutation in the Propiomelanocortine(POMC)gene,which codesfor an anorexi-genicpeptidethatisakeycomponentofthecoreappetitecontrol pathway[183].Itisthereforeofgreatimportancetorepeat sim-ilar experimentsin otherbreeds or in mongrels. However,the linkbetweenweightandmortalityit isnotlinear;inparticular, therelationshipbetweenall-causemortalityandbodymassindex definesaU-shapedcurve,whichindicatesthatextremeleanness aswellasobesitytendstobeassociatedwithincreasedmortality [184].

Furthermore,anumberofotherdietarymanipulationsthatare morefeasible ina translationalcontexthave recentlyemerged, suchasalternatefasting(e.g.,twonon-consecutivefastingdays perweek),periodicfasting(e.g.,afew consecutivedaysof fast-ingeveryfew months), andtheuseof fasting-mimickingdiets.

(9)

Thesemanipulationshavehadremarkableeffectsinanimal mod-els[185–189].Thesetypesofdietarymanipulationsarecurrently theobjectsofhumanclinicalexperiments[190].Basedonthese data,itislikelythatownersofdogsfrombreedsatriskof devel-opingobesityorathighoncologicalriskcanbeenrolledintrials aimedattestingtheeffectsofthesedietarymanipulationsondog health.Bysodoing,highlyrelevantinformationcanbegatheredon thepossiblelong-termeffectsofthesemanipulationsinhumans. Theinterpretationofobesityassociatedwithcaptivity,andfordogs andhumanswiththemodernlifestyle,isaproblemthataffects theinterpretationoftheresultsfromcalorierestriction interven-tion,becausethesedentarinessimposedbythecloseconfinement ofthecaptivitymightalsocontributetoahigherpercentofbody fatbecauseenergyexpendituremightnotbecorrectlybalanced withfoodconsumption.Forinstance,inmonkeys,inadditionto low energy expenditure,these animals arehoused individually andinverysmallcages(0.66m3involume,[191]),andsocial iso-lationmightoverstimulatefoodconsumptionasacompensatory mechanism ofthereward limbicsystem,due tolife conditions thatcanunderstandablycarryintelligentanimalstoward depres-sion.Indeed,thebaselineorcontrolsituationsmighthavedramatic effectsontheoutcomesofcalorierestriction,asexemplifiedby thedifferentoutcomesoftwocalorierestrictionexperiments per-formedinprimates[192].

Thesecondfieldwheredogshavebeenusedinthepastrelates toage-relatedcognitivedysfunction.Alzheimer’sdiseaseis partic-ularlydifficulttomodelinrodents,becauserodentsdonotshow naturalaccumulationofamyloidplaques.Dogsareparticularly rel-evantsubjectsfor age-relatedcognitivedecline as theyshowa numberofsimilaritiestohumancognitivedecline,whichincludes tasksthatrelyontheprefrontalcortex[193]andonage-dependent accumulationofamyloidplaques[194].Interventionstudieshave includedtheuseofadietrichinabroadspectrumofantioxidants andmitochondrialco-factors,whichreducedneuropathologyand improvedcognitionovera33-monthtreatmentperiod[195],and theuseofatorvastin,astatinthatisusedforloweringcholesterol [196].Dogsbecamehighlyrelevantinstudiesoftheeffectsof vac-cinationagainstA␤peptidesasimmunotherapyfor Alzheimer’s disease,withtherationalebehindthisapproachbeingthat anti-bodiesagainstA␤mightremoveplaques.Anearlystudyreported rapidimprovementsincognitivedysfunctionwithimmunotherapy [197].Importantly,thisstudyincludedprivatelyowned compan-iondogs,andnotonlylaboratorybeagles.Alaterstudywithbeagles showedthatvaccinationagainstA␤effectivelyreducedplaquesin theprefrontalcortex[198].Thisparallelswhathasbeenobservedin humanclinicaltrials,whereimmunotherapycanreducetheplaque burden[199,200].Immunotherapyindogsdidnotimprove cog-nition,althoughitpreventedfurtherdecline.This,again,reflects whathasbeenobservedinhumanclinicaltrials,withlackof recov-ery and reduced rate of decay afterimmunotherapy [201,202]. Theseresultshighlightthetranslationvalueofthedogmodelfor Alzheimer’sdisease.

Afield where companion dogshave recentlybecomehighly relevant is the testing of ‘anti-aging’ drugs, and in particular rapamycin.Alargebodyofliteraturehasshownthat administra-tionofrapamycinlateinlifecanreproduciblyprolongthelifespan andcanimproveanumberofage-relatedphenotypes[203–211]. Asseenmanyyearsagointhecaseofcalorierestriction,a press-ingquestionistowhatextentrapamycincanimproveage-related conditionsinlargemammals.Aprojectwastherefore launched totesttheeffectsofrapamycinincompaniondogs,andthefirst reportoftheshort-termeffectswasrecentlypublished[212].This projectmightrepresentthefirstofagame-changingapproachin gerosciences.

10. Conclusions

Purebreddogshavebeenintenselyselectedforspecific mor-phological,physiologicalandbehaviouraltraits.Thiswaslargely achieved by the extensive use of founder dogsthat expressed thedesiredtraits,whichinadvertently(i.e.,throughabottleneck) also increasedthefrequency of deleterious allelecombinations [213,214].Recessiveanddominantdefectswithincomplete pene-tranceorlate-onsetandcomplexinheriteddiseasesarenumerous indogs.Thus,geneticmaltreatmentoccurred,andnowadays breed-ing practices have raisedconcerns about thehealth status and wellbeingofpure-breddogs[215].Theinheritedcaninedisorders discussedabove,andalsopathologicalconditions,areequally com-moninhumansasindogs,andtheclinicalsignsindogsoftenmimic thehumandiseasesclosely[108].Furthermore,dogsandhumans shareroughlythesamegenerepertoire[26,216].Doggenesthatcan beidentifiedasdeleteriousgivenovelinsightsintodisease patho-genesisandtherapeuticopportunitiesinsimilarhumandiseases [217].Dogs offermany ofthesame advantages ofother small-animalmodels; e.g.,therearehomogeneouspopulationswithin each ofthehundredsofpurebreedsandpedigreesthat canbe establishedeasilyandin arapidfashion.Companiondogshave characteristicsthat areuniqueamong domesticatedanimals,as theyreceiveexceptionalmedicalcare,theyhaveaccesstophysical activityandgenerallytochallenges,andtheygenerallycohabitate withtheirhumanowners[141].Themostimportantadvantageof thedogmodelisthatnaturallydiseasedanimalsfromthepet popu-lationcanbeenrolled,totheadvantageofthepetsandtheirowners, thereby eliminatingtheneed fortheestablishment ofcolonies, reducing costs,and resolvingsensitiveissues onanimal experi-mentation[108].Furthermore,asthesedogslive withhumans, theyareexposed tothedomesticenvironment thatincludesall of the human pollutants and pathogens, which is qualitatively differentcomparedtoclassiclaboratoryresearchanimals(for con-siderationofcaptivitydetentionsee[184]).Thus,whenmodelling thecausesandpathogenesis ofhumanhereditarydiseases, any environment–geneinteractionsarelikelytobebetterstudiedin ananimalthatisexposedtothehumanenvironment.Petclinical trialsdatebacktothemid-1970s,whenvetstestedlymphoma vac-cinesonhouseholddogs,andtherearesignsthatclinicaltrialswith domesticdogscanbefullytranslational.In2013,forexample,the USFoodandDrugAdministrationaccelerateditsapprovalofadrug calledibrutinibforlymphomainhumansafteritshowedpromise incaninetrials[218].

Finally,translationalresearchindogbreedscanonlybepossible onbothethicalandpracticalgroundsifithasahighchanceof pro-vidingrealimprovementstothehealthylifespanofthecompanion dogs.Alargenumberofpeopleworldwideconsume‘anti-aging’ dietaryadditives,anditislikelythatanequallylargenumberof peopleprivatelytest−atleastforshortperiods−‘anti-aging’diets, andsimilarlythereisalargemarketfordietarysupplementsfor dogs.Itshouldthereforebepossibletomotivatedogholdersto participateincanineaginginterventiontrialsbymeansofmore opencommunicationand inthecontextof well-definedethical rules.Ofparticularinterestare‘ancient’dogbreeds,notselectedfor extrememorphologicalphenotypes,withresidualgenetic diver-sity,andmightbetakenintoaccountforagingstudies.Thus,there isalsotheneedfortheirpreservationtomaintainancestralgenetic variability.

References

[1]M.Ackermann,L.Chao,C.T.Bergstrom,M.Doebeli,Ontheevolutionary originofaging,AgingCell6(2)(2007)235–244.

[2]C.Lopez-Otin,M.A.Blasco,L.Partridge,M.Serrano,G.Kroemer,The hallmarksofaging,Cell153(2013)1194–1217.

(10)

[4]M.V.Blagosklonny,AnsweringtheultimatequestionWhatistheProximal CauseofAging?Aging4(2012)861–877.

[5]A.Mazzatenta,M.Pokorski,C.DiGiulio,Realtimeanalysisofvolatile organiccompounds(VOCs)incentenarians,Respir.Physiol.Neurobiol.209 (2015)47–51.

[6]A.Mazzatenta,A.Cellerino,N.Origlia,D.Barloscio,F.Sartucci,C.DiGiulio,L. Domenici,Olfactoryphenotypicexpressionunveilshumanaging, Oncotarget7(2016)19193–19200.

[7]C.E.Finch,Updateonslowagingandnegligiblesenescence−amini-review, Gerontology55(3)(2009)307–313.

[8]C.Turbill,T.Ruf,Senescenceismoreimportantinthenaturallivesoflong thanshort-livedmammals,PLoSOne5(2010)e12019.

[9]A.Mazzatenta,G.D.Marconi,S.Zara,A.Cataldi,A.Porzionato,C.DiGiulio,In thecarotidbody,galaninisasignalforneurogenesisinyoung,andfor neurodegenerationintheoldandindrug-addictedsubjects,Front.Physiol. 5(2014)427.

[10]S.N.Austad,Anexperimentalparadigmforthestudyofslowlyaging organisms,Exp.Gerontol.36(2001)599–605.

[11]S.N.Austad,Cats,rats,andbats:thecomparativebiologyofaginginthe21st century,Integr.Comp.Biol.50(2010)783–792.

[12]S.N.Austad,K.E.Fischer,Mammalianaging,metabolism,andecology: evidencefromthebatsandmarsupials,J.Gerontol.46(1991)B47–B53.

[13]E.S.Deevey,Lifetablesfornaturalpopulationsofanimals,Quart.Rev.Biol22 (1947)283–314.

[14]J.P.deMagalhães,J.Costa,Adatabaseofvertebratelongevityrecordsand theirrelationtootherlife-historytraits,J.Evol.Biol.22(2009)1770–1774.

[15]A.A.Fushan,A.A.Turanov,S.G.Lee,E.B.Kim,A.V.Lobanov,S.H.Yim,R. Buffenstein,S.R.Lee,K.T.Chang,H.Rhee,J.S.Kim,K.S.Yang,V.N.Gladyshev, Geneexpressiondefinesnaturalchangesinmammalianlifespan,AgingCell 14(2015)352–365.

[16]E.B.Kim,X.Fang,A.A.Fushan,Z.Huang,A.V.Lobanov,L.Han,S.M.Marino,X. Sun,A.A.Turanov,P.Yang,S.H.Yim,X.Zhao,M.V.Kasaikina,N.Stoletzki,C. Peng,P.Polak,Z.Xiong,A.Kiezun,Y.Zhu,Y.Chen,G.V.Kryukov,Q.Zhang,L. Peshkin,L.Yang,R.T.Bronson,R.Buffenstein,B.Wang,C.Han,Q.Li,L.Chen, W.Zhao,S.R.Sunyaev,T.J.Park,G.Zhang,J.Wang,V.N.Gladyshev,Genome sequencingrevealsinsightsintophysiologyandlongevityofthenakedmole rat,Nature479(2011)223–227.

[17]M.Keane,J.Semeiks,A.E.Webb,Y.I.Li,V.Quesada,T.Craig,L.B.Madsen,S. vanDam,D.Brawand,P.I.Marques,P.Michalak,L.Kang,J.Bhak,H.S.Yim, N.V.Grishin,N.H.Nielsen,M.P.Heide-Jørgensen,E.M.Oziolor,C.W.Matson, G.M.Church,G.W.Stuart,J.C.Patton,J.C.George,R.Suydam,K.Larsen,C. López-Otín,M.J.O’Connell,J.W.Bickham,B.Thomsen,J.P.deMagalhães, Insightsintotheevolutionoflongevityfromthebowheadwhalegenome, CellRep.10(2015)112–122.

[18]I.Seim,X.Fang,Z.Xiong,A.V.Lobanov,Z.Huang,S.Ma,Y.Feng,A.A. Turanov,Y.Zhu,T.L.Lenz,M.V.Gerashchenko,D.Fan,S.HeeYim,X.Yao,D. Jordan,Y.Xiong,Y.Ma,A.N.Lyapunov,G.Chen,O.I.Kulakova,Y.Sun,S.G. Lee,R.T.Bronson,A.A.Moskalev,S.R.Sunyaev,G.Zhang,A.Krogh,J.Wang, V.N.Gladyshev,Genomeanalysisrevealsinsightsintophysiologyand longevityoftheBrandt’sbatMyotisbrandtii,Nat.Commun.4(2013)221.

[19]T.T.Samaras,H.Elrick,L.H.Storms,Isheightrelatedtolongevity,LifeSci.72 (2003)1781–1802.

[20]C.D.Rollo,Growthnegativelyimpactsthelifespanofmammals,Evol.Dev.4 (2002)55–61.

[21]K.Fortney,E.Dobriban,P.Garagnani,C.Pirazzini,D.Monti,D.Mari,G. Atzmon,N.Barzilai,C.Franceschi,A.B.Owen,S.K.Kim,Genome-widescan informedbyage-Relateddiseaseidentifieslociforexceptionalhuman longevity,PLoSGenet.11(2015)e1005728.

[22]W.R.Jeck,A.P.Siebold,N.E.Sharpless,Review:ameta-analysisofGWASand age-associateddiseases,AgingCell11(2012)727–731.

[23]J.A.Mattison,R.J.Colman,T.M.Beasley,D.B.Allison,J.W.Kemnitz,G.S.Roth, D.K.Ingram,R.Weindruch,R.deCabo,R.M.Anderson,Caloricrestriction improveshealthandsurvivalofrhesusmonkeys,Nat.Commun.8(2017) 1406.

[24]S.N.Austad,Diverseagingratesinmetazoans:targetsforfunctional genomics,Mech.AgeingDev.126(2005)43–49.

[25]A.R.Boyko,Thedomesticdog:man’sbestfriendinthegenomicera,Gen. Biol.12(2011)216–226.

[26]K.Lindblad-Toh,C.M.Wade,T.S.Mikkelsen,E.K.Karlsson,D.B.Jaffe,M. Kamal,M.Clamp,J.L.Chang,etal.,Genomesequence,comparativeanalysis andhaplotypestructureofthedomesticdog,Nature438(2005)803–819.

[27]B.M.Vonholdt,J.P.Pollinger,K.E.Lohmueller,E.Han,H.G.Parker,P. Quignon,J.D.Degenhardt,A.R.Boyko,D.A.Earl,A.Auton,A.Reynolds,K. Bryc,A.Brisbin,J.C.Knowles,D.S.Mosher,T.C.Spady,A.Elkahloun,E.Geffen, M.Pilot,W.Jedrzejewski,C.Greco,E.Randi,D.Bannasch,A.Wilton,J. Shearman,M.Musiani,M.Cargill,P.G.Jones,Z.Qian,W.Huang,etal., Genome-wideSNPandhaplotypeanalysesrevealarichhistoryunderlying dogdomestication,Nature464(2010)898–902.

[28]K.Truvé,P.Dickinson,A.Xiong,D.York,K.Jayashankar,G.Pielberg,M. Koltookian,E.Murén,H.H.Fuxelius,H.Weishaupt,F.J.Swartling,G. Andersson,Å.Hedhammar,E.Bongcam-Rudloff,K.Forsberg-Nilsson,D. Bannasch,K.Lindblad-Toh,Utilizingthedoggenomeinthesearchfornovel candidategenesinvolvedingliomadevelopment-Genomewideassociation mappingfollowedbytargetedmassiveparallelsequencingidentifiesa stronglyassociatedlocus,PLoSGenet.12(2016)e1006000.

[29]B.Hare,M.Tomasello,Human-likesocialskillsindogs?TrendsCogn.Sci.9 (2005)439–444.

[30]A.Miklosi,DogBehaviour,Evolution,andCognition,OxfordUniversity Press,2009.

[31]M.E.Persson,D.Wright,L.S.Roth,P.Batakis,P.Jensen,Genomicregions associatedwithinterspeciescommunicationindogscontaingenesrelated tohumansocialdisorders,Sci.Rep.6(2016)33439.

[32]G.D.Wang,W.Zhai,H.C.Yang,R.X.Fan,X.Cao,L.Zhong,L.Wang,F.Liu,H. Wu,L.G.Cheng,A.D.Poyarkov,N.A.PoyarkovJr.,S.S.Tang,W.M.Zhao,Y. Gao,X.M.Lv,D.M.Irwin,P.Savolainen,C.I.Wu,Y.P.Zhang,Thegenomicsof selectionindogsandtheparallelevolutionbetweendogsandhumans,Nat. Commun.4(2013)1860.

[33]E.Axelsson,A.Ratnakumar,M.L.Arendt,K.Maqbool,M.T.Webster,M. Perloski,O.Liberg,J.M.Arnemo,A.Hedhammar,K.Lindblad-Toh,The genomicsignatureofdogdomesticationrevealsadaptationtoastarch-rich diet,Nature495(2013)360–364.

[34]M.Kaeberlein,K.E.Creevy,D.E.L.Promislow,Thedogagingproject: translationalgeroscienceincompanionanimals,Mamm.Genome27(2016) 279–288.

[35]R.H.Tedford,B.E.Taylor,X.Wang,Phylogenyofthecaninae(Carnivora: canidae):thelivingtaxa,Am.Mus.Novit.3146(1995)1–37.

[36]J.Zrzavy,V.Ricankova,PhylogenyofrecentCanidae(Mammalia,Carnivora): relativereliabilityandutilityofmorphologicalandmoleculardatasets,Zool. Scr.33(2004)311–333.

[37]R.K.Wayne,E.Geffen,D.J.Girman,K.P.Koepfli,L.M.Lau,C.R.Marshall, MolecularsystematicsoftheCanidae,Syst.Biol.46(1997)622.

[38]R.K.Wayne,E.Geffen,D.J.Girman,K.P.Koepfli,L.M.Lau,C.R.Marshall, MolecularsystematicsoftheCanidae,Syst.Biol.46(1997)653.

[39]W.G.Nash,J.C.Menninger,J.Wienberg,H.M.Padilla-Nash,S.J.O’Brien,The patternofphylogenomicevolutionoftheCanidae,Cytogenet.CellGenet.95 (2001)210–224.

[40]T.G.Fanning,W.S.Modi,R.K.Wayne,S.J.O’Brien,Evolutionof heterochromatin-associatedsatelliteDNAlociinfelidsandcanids (Carnivora),Cytogenet.CellGenet.48(1988)214–219.

[41]E.F.Kirkness,V.Bafna,A.L.Halpern,S.Levy,K.Remington,D.B.Rusch,A.L. Delcher,M.Pop,W.Wang,C.M.Fraser,J.C.Venter,Thedoggenome:survey sequencingandcomparativeanalysis,Science301(2003)1898–1903.

[42]A.G.Clark,S.Glanowski,R.Nielsen,P.D.Thomas,A.Kejarwal,M.A.Todd, D.M.Tanenbaum,D.Civello,F.Lu,B.Murphy,etal.,Inferringnonneutral evolutionfromhuman?chimp?mouseorthologousgenetrios,Science302 (2003)1960–1963.

[43]C.J.Yahnke,W.E.Johnson,E.Geffen,D.Smith,F.Hertel,M.S.Roy,C.F. Bonacic,T.K.Fuller,B.VanValkenburgh,R.K.Wayne,Darwin’sfox:adistinct endangeredspeciesinavanishinghabitat,Cons.Biol.10(1996)366–375.

[44]R.K.Wayne,S.George,D.Gilbert,P.Collins,S.Kovach,D.Girman,N.Lehman, Amorphologicandgeneticstudyoftheislandfox,Urocyonlittoralis, Evolution45(1991)1849–1868.

[45]M.Goltsman,E.P.Kruchenkova,D.W.Macdonald,TheMednyiArcticfoxes: treatingapopulationimperilledbydisease,Oryx30(1996)251–258.

[46]H.G.Lloyd,TheRedFox,B.TBatsford,London,1980.

[47]D.W.Macdonald,C.Sillero-Zubiri,TheBiologyandConservationofWild Canids,OxfordUniversityPress,OxfordUK,2004.

[48]G.W.Roemer,D.A.Smith,D.K.Garcelon,R.K.Wayne,Thebehavioural ecologyoftheislandfox(Urocyonlittoralis),J.Zool.255(2001)1–14.

[49]L.H.Frame,J.R.Malcolm,G.W.Frame,H.VanLawick,Socialorganizationof Africanwilddogs(Lycaonpictus)ontheSerengetiplains,Ethology50(1979) 225–249.

[50]AnAge.Theanimalageingandlongevitydatabase.HumanAgeingGenomic Resources.http://genomics.senescence.info/species/.

[51]J.M.Dietz,Chrysocyonbrachyurus,Mamm.Species234(1985)1–4.

[52]E.Geffen,M.E.Gompper,J.L.Gittleman,H.K.Luh,D.W.Macdonald,R.K. Wayne,Sizelifehistorytraits,andsocialorganizationintheCanidae:a reevaluation,Am.Natural.147(1996)140–160.

[53]X.Gou,Z.Wang,N.Li,F.Qiu,Z.Xu,D.Yan,S.Yang,J.Jia,X.Kong,Z.Wei,S. Lu,L.Lian,C.Wu,X.Wang,G.Li,T.Ma,Q.Jiang,X.Zhao,J.Yang,B.Liu,D. Wei,H.Li,J.Yang,Y.Yan,G.Zhao,X.Dong,M.Li,W.Deng,J.Leng,C.Wei,C. Wang,H.Mao,H.Zhang,G.Ding,Y.Li,Whole-genomesequencingofsixdog breedsfromcontinuousaltitudesrevealsadaptationtohigh-altitude hypoxia,GenomeRes.24(2014)1301–1308.

[54]Y.Li,D.D.Wu,A.R.Boyko,G.D.Wang,S.F.Wu,D.M.Irwin,Y.P.Zhang, Populationvariationrevealedhigh-altitudeadaptationofTibetanmastiffs, Mol.Biol.Evol.31(2014)1200–1205.

[55]G.D.Wang,R.X.Fan,W.Zhai,F.Liu,L.Wang,L.Zhong,H.Wu,H.C.Yang,S.F. Wu,C.L.Zhu,Y.Li,Y.Gao,R.L.Ge,C.I.Wu,Y.P.Zhang,Geneticconvergence intheadaptationofdogsandhumanstothehigh-altitudeenvironmentof thetibetanplateau,GenomeBiol.Evol.6(2014)2122–2128.

[56]P.Lee,LongevityoftheAustraliancattledog:resultsofa100-dogsurvey, ACDSpotlight4(2011)96–105.

[57]R.Robinson,Relationshipbetweenlittersizeandweightofdaminthedog, Vet.Rec.92(1973)221–223.

[58]Y.Li,B.Deeb,W.Pendergrass,N.Wolf,Cellularproliferativecapacityandlife spaninsmallandlargedogs,J.Gerontol.ABiol.Sci.Med.Sci.51(1996) B403–B408.

[59]A.R.Michell,LongevityofBritishbreedsofdoganditsrelationshipswithsex size,cardiovascularvariablesanddisease,Vet.Rec.145(1999)625–629.

(11)

[60]O.Thalmann,B.Shapiro,P.Cui,V.J.Schuenemann,S.K.Sawyer,D.L. Greenfield,M.B.Germonpré,M.V.Sablin,F.López-Giráldez,X.

Domingo-Roura,etal.,Completemitochondrialgenomesofancientcanids suggestaEuropeanoriginofdomesticdogs,Science342(2013)871–874.

[61]P.Savolainen,Y.P.Zhang,J.Luo,J.Lundeberg,T.Leitner,Geneticevidencefor anEastAsianoriginofdomesticdogs,Science298(2002)1610–1613.

[62]F.Verginelli,C.Capelli,V.Coia,M.Musiani,M.Falchetti,L.Ottini,R. Palmirotta,A.Tagliacozzo,I.DeGrossiMazzorin,R.Mariani-Costantini, MitochondrialDNAfromprehistoriccanidshighlightsrelationships betweendogsandSouth-EastEuropeanwolves,Mol.Biol.Evol.22(2005) 2541–2551.

[63]L.Trut,Earlycaniddomestication:thefarm-Foxexperiment,Am.Sci.87 (1999)160–169.

[64]J.L.Johnson,H.Wittgenstein,S.E.Mitchell,K.E.Hyma,S.V.Temnykh,A.V. Kharlamova,R.G.Gulevich,A.V.Vladimirova,H.W.Fong,G.M.Acland,L.N. Trut,A.V.Kukekova,Genotyping-By-Sequencing(GBS)detectsgenetic structureandconfirmsbehavioralQTLintameandaggressivefoxes(Vulpes vulpes),PLoSOne10(2015)e0127013.

[65]C.A.Driscoll,D.W.Macdonald,S.J.O’Brien,Fromwildanimalstodomestic pets,anevolutionaryviewofdomestication,PNAS106(2009)9971–9978.

[66]C.A.Driscoll,D.W.Macdonald,Topdogs:wolfdomesticationandwealth,J. Biol.9(2010)10.

[67]R.Coppinger,L.Coppinger,DogsANewUnderstandingofCanineOrigin BehaviourandEvolution,UniversityofChicagoPress,2002.

[68]E.A.Ostrander,R.K.Wayne,Thecaninegenome,GenomeRes.15(2005) 1706–1716.

[69]A.V.Kukekova,L.N.Trut,K.Chase,D.V.Shepeleva,A.V.Vladimirova,A.V. Kharlamova,I.N.Oskina,etal.,Measurementofsegregatingbehaviorsin experimentalsilverfoxpedigrees,Behav.Genet.38(2008)185–194.

[70]A.V.Kukekova,I.N.Oskina,A.V.Kharlamova,K.Chase,S.V.Temnykh,J.L. Pivovarova,D.V.Shepeleva,etal.,Foxfarmexperiment:huntingfor behavioralgenes,BecmHu␬BOuC12(2008)50–62.

[71]T.C.Spady,E.A.Ostrander,Canidgenomics:mappinggenesforbehaviorin thesilverfox,GenomeRes.17(2007)259–263.

[72]A.V.Kukekova,L.N.Trut,K.Chase,A.V.Kharlamova,J.L.Johnson,S.V. Temnykh,I.N.Oskina,etal.,Mappinglociforfoxdomestication:

deconstruction/reconstructionofabehaviouralphenotype,Behav.Genet.41 (2010)1–14.

[73]P.Saetre,J.Lindberg,J.A.Leonard,K.Olsson,U.Pettersson,H.Ellegren,T.F. Bergström,C.Vilà,E.,JazinFromwildwolftodomesticdog:geneexpression changesinthebrain,BrainRes.Mol.BrainRes.126(2004)198–206.

[74]M.M.Gray,J.M.Granka,C.D.Bustamante,N.B.Sutter,A.R.Boyko,L.Zhu,E.A. Ostrander,R.K.Wayne,Linkagedisequilibriumanddemographichistoryof wildanddomesticcanids,Genetics181(2009)1493–1505.

[75]E.K.Karlsson,I.Baranowska,C.M.Wade,N.H.SalmonHillbertz,M.C.Zody,N. Anderson,T.M.Biagi,N.Patterson,G.R.Pielberg,E.J.Kulbokas3rd,K.E. Comstock,E.T.Keller,J.P.Mesirov,H.vonEuler,O.Kämpe,A.Hedhammar, E.S.Lander,G.Andersson,L.Andersson,K.Lindblad-Toh,Efficientmapping ofmendeliantraitsindogsthroughgenome-wideassociation,Nat.Genet. 39(2007)1321–1328.

[76]A.R.Boyko,P.Quignon,L.Li,J.J.Schoenebeck,J.D.Degenhardt,K.E. Lohmueller,K.Zhao,A.Brisbin,H.G.Parker,B.M.vonHoldt,M.Cargill,A. Auton,A.Reynolds,A.G.Elkahloun,M.Castelhano,D.S.Mosher,N.B.Sutter, G.S.Johnson,J.Novembre,M.J.Hubisz,A.Siepel,R.K.Wayne,C.D. Bustamante,E.A.Ostrander,Asimplegeneticarchitectureunderlies morphologicalvariationindogs,PLoSBiol.8(2010)e1000451.

[77]A.Egenvall,B.N.Bonnett,M.Shoukri,P.Olson,A.Hedhammar,I.Dohood, AgepatternofmortalityineightbreedsofinsureddogsinSweden,Prev. Vet.Med.46(2000)1–14.

[78]H.G.Parker,L.V.Kim,N.B.Sutter,S.Carlson,T.D.Lorentzed,Genetic structureofthepurebreddomesticdog,Science304(2004)1160–1164.

[79]F.G.vanSteenbeek,M.K.Hytönen,P.A.Leegwater,H.Lohi,Thecanineera: theriseofabiomedicalmodel,Anim.Genet.47(2016)519–527.

[80]J.D.Schiffman,M.Breen,Comparativeoncology:whatdogsandother speciescanteachusabouthumanswithcancer,Philos.Trans.R.Soc.Lond.B Biol.Sci.370(2015)(pii:20140231).

[81]M.Rimbault,E.A.Ostrander,Somanydoggonetraits:mappinggeneticsof multiplephenotypesinthedomesticdog,Hum.Mol.Genet.21(2012) R52–R57.

[82]M.Rimbault,H.C.Beale,J.J.Schoenebeck,B.C.Hoopes,J.J.Allen,P. Kilroy-Glynn,R.K.Wayne,N.B.Sutter,E.A.Ostrander,Derivedvariantsatsix genesexplainnearlyhalfofsizereductionindogbreeds,GenomeRes.23 (2013)1985–1995.

[83]A.Bartke,L.Y.Sun,V.Longo,Somatotropicsignaling:trade-offsbetween growth,reproductivedevelopment,andlongevity,Physiol.Rev.93(2013) 559–571.

[84]D.G.O’Neill,D.B.Church,P.D.McGreevy,P.C.Thomson,D.C.Brodbelt, LongevityandmortalityofowneddogsinEngland,Vet.J.198(2013) 638–643.

[85]J.D.Hoskins,D.M.McCurnin,Geriatriccareinthelate ´ı90s:vet,Clin.North Amer.SmallAnim.Pract.27(1997)1273–1281.

[86]R.A.Miller,C.Chrisp,W.R.Atchley,Differentiallongevityinmousestocks selectedforearlylifegrowthtrajectory,J.Gerontol.Biol.Sci.55A(2000) B455–B461.

[87]D.Wormser,E.DiAngelantonio,S.Kaptoge,etal.,Adultheightandtherisk ofcause-specificdeathandvascularmorbidityin1millionpeople: individualparticipantmeta-analysis,Int.J.Epidemiol.41(2012)1419–1433.

[88]J.R.Speakman,C.Selman,J.S.McLaren,E.J.Harper,Livingfast,dyingwhen? Thelinkbetweenagingandenergetics,J.Nutr.132(2002)1583S–1597S.

[89]R.A.Miller,S.N.Austad,Growthandaging:whydobigdogsdieyoung?in: E.J.Masoro,S.N.Austad(Eds.),HandbookoftheBiologyofAging,sixthed., AcademicPress,SanDiego,2006,pp.512–533.

[90]K.A.Greer,S.C.Canterberry,K.E.Murphy,Statisticalanalysisregardingthe effectsofheightandweightonlifespanofthedomesticdogRes.Vet.Sci.82 (2007)208–214.

[91]J.R.Speakman,A.vanAcker,E.J.Harper,Age-relatedchangesinthe metabolismandbodycompositionofthreedogbreedsandtheir relationshiptolifeexpectancy,AgingCell2(2003)265–275.

[92]D.K.Detweiler,D.F.Patterson,Theprevalenceandtypesofcardiovascular diseaseindogs,Ann.N.Y.Acad.Sci.127(1965)481–516.

[93]L.H.Olsen,M.Fredholm,H.D.Pedersen,Epidemiologyandinheritanceof mitralvalveprolapseinDachshunds,J.Vet.Intern.Med.13(1999)448–456.

[94]T.C.Jones,B.C.Zook,Agingchangesinthevascularsystemofanimals,Ann. N.Y.Acad.Sci.127(1965)671–684.

[95]S.R.Urfer,T.L.Kaeberlein,S.Mailheau,P.J.Bergman,K.E.Creevy,D.E.L. Promislow,M.Kaeberlein,Asymptomaticheartvalvedysfunctioninhealthy middle-agedcompaniondogsanditsimplicationsforcardiacaging, GeroScience(2017)1–8.

[96]H.D.Pedersen,K.A.Lorentzen,B.O.Kristensen,Echocardiographicmitral valveprolapseincavalierKingCharlesspaniels:epidemiologyand prognosticsignificanceforregurgitation,Vet.Rec.144(1999)315–320.

[97]R.W.Chapman,CaninemodelsofasthmaandCOPD,Pulm.Pharmalol.Ther. 21(2008)731–742.

[98]I.Jeusette,D.Greco,F.Aquino,J.Detilleux,M.Peterson,V.Romano,C.Torre, Effectofbreedonbodycompositionandcomparisonbetweenvarious methodstoestimatebodycompositionindogs,Res.Vet.Sci.88(2010) 227–232.

[99]E.Mason,Obesityinpetdogs,Vet.Rec.86(1970)612–616.

[100]D.F.Lawler,B.T.Larson,J.M.Ballam,G.K.Smith,D.N.Biery,etal.,Diet restrictionandageinginthedog:majorobservationsovertwodecades, birth,J.Nutr.99(2008)(793e805).

[101]N.B.Sutter,C.D.Bustamante,K.Chase,M.M.Gray,K.Zhao,L.Zhu,B. Padhukasahasram,E.Karlins,S.Davis,P.G.Jones,P.Quignon,G.S.Johnson, H.G.Parker,N.Fretwell,D.S.Mosher,D.F.Lawler,E.Satyaraj,M.Nordborg, K.G.Lark,R.K.Wayne,E.A.Ostrander,AsingleIGF1alleleisamajor determinantofsizeindogs,Science316(2007)112–115.

[102]Y.L.Wang,D.Lawler,B.Larson,Z.Ramadan,S.Kochlar,E.Holmes,J.K. Nicholson,Metabolomicinvestigationsofagingandcaloricrestrictionina life-longstudy,J.Prot.Res.6(2007)1846–1854.

[103]H.S.Kooistra,S.Galac,J.J.Buijtels,B.P.Meij,Endocrinediseasesinanimals, Horm.Res.71(2009)144–147.

[104]P.Smets,E.Meyer,B.Maddens,S.Daminet,Cushing’ssyndrome, glucocorticoids,andthekidney,Gen.Comp.Endocrinol.169(2010)1–10.

[105]M.J.Day,Ageing,immunosenescenceandinflammageinginthedogandcat, J.Comp.Path.142(2010)S60–S69.

[106]J.L.Rowell,D.O.McCarthy,C.E.Alvarez,Dogmodelsofnaturallyoccurring cancer,TrendsMol.Med.17(2011)380–388.

[107]S.Fleischer,M.Sharkey,K.Mealey,E.A.Ostrander,M.Martinez, Pharmacogeneticandmetabolicdifferencesbetweendogbreeds:their impactoncaninemedicineandtheuseofthedogasapreclinicalanimal model,AAPSJ.10(2008)110–119.

[108]K.L.Tsai,L.A.Clark,K.E.Murphy,Understandinghereditarydiseasesusing thedogandhumanascompanionmodelsystems,Mamm.Genome18 (2007)444–451.

[109]R.Thomas,S.E.Duke,H.J.Wang,T.E.Breen,R.J.Higgins,K.E.Linder,P.Ellis, C.F.Langford,P.J.Dickinson,N.J.Olby,M.Breen,‘Puttingourheadstogether’: insightsintogenomicconservationbetweenhumanandcanineintracranial tumors,J.Neuroncol.94(2009)333–349.

[110]M.Paoloni,S.Davis,S.Lana,S.Withrow,L.Sangiorgi,P.Picci,S.Hewitt,T. Triche,P.Meltzer,C.Khanna,Caninetumorcross-speciesgenomicsuncovers targetslinkedtoosteosarcomaprogression,BMCGenomics10(2009)625.

[111]J.M.Dobson,Breed-predispositionstocancerinpedigreedogs,ISRNVet.Sci. (2013)941275.

[112]A.Porrello,P.Cardelli,E.P.Spugnini,Oncologyofcompanionanimalsasa modelforhumans:anoverviewoftumorhistotypes,J.Exp.Clin.CancerRes. 25(2006)97–105.

[113]K.S.Borge,A.L.Borresen-Dale,F.Lingaas,Identificationofgeneticvariation in11candidategenesofcaninemammarytumour,Vet.Comp.Oncol.9 (2011)241–250.

[114]S.O.Enginler,I.Akis,T.S.Toydemir,K.Oztabak,D.Haktanir,M.C.Gunduz,I. Kırsan,I.Fırat,GeneticvariationsofBRCA1andBRCA2genesindogswith mammarytumours,Vet.Res.Commun.38(2014)21–27.

[115]N.Veldhoen,J.Watterson,M.Brash,J.Milner,Identificationof tumour-associatedandgermlinep53mutationsincaninemammary cancer,Br.J.Cancer81(1999)409–415.

[116]M.J.Machiela,S.J.Chanock,GWASisgoingtothedogs,GenomeBiol.15 (2014)105.

[117]C.E.Kashtan,Alportsyndromeandthinglomerularbasementmembrane disease,JAm.Soc.Nephrol.9(1998)1736–1750.

Figura

Fig. 1. Examples of natural breeding of dogs (A) Livestock guardian dog ‘Mastino Abruzzese’ from the mountains of Abruzzo, Italy (B) Molossian-type dog ‘Cane Corso’ from rural environment in Southern Italy (photos with permission from A
Fig. 2. Relationship between body size and lifespan for several families of mammals. Reproduced with permission from [15].
Fig. 3. Lifespan negatively scales, −0.096 scaling power for the average lifespan across 90 breeds of dogs, with adult body mass in male (A) and female dogs (B)

Riferimenti

Documenti correlati

From equation (16), given government size, the share of different kinds of expenditure in the public budget influences the growth rate of the economy during transition to the

alienus from Centre-Western Sardinia was found positive for 16SrI-B phytoplasmas ("Maryland aster 16SrXII-A in June 2005. Species captured with entomological net from May

Il ducato friulano passa una fase di buio pressoché totale per il VII secolo, quando le fonti sono scarsissime; per quello che riusciamo a ricostruire, stretto com’era nella

After a number of chapters devoted to the earlier develop- ment of this form of devotion and to indulgences, the suggestions given for the recitation start by comparing the Rosary

The aim of this work is to provide the broadband (550-1350 nm) characterization of elastin absorption, as a first step towards the in vivo quantification in biological tissues

Li S., “Does Mandatory Adoption of International Financial Reporting Standards in the European Union Reduce the Cost of Equity Capital?”, in The Accounting Review,

Le conoscenze più diverse passano così così di mano in mano e si diffondono grazie ai libri de ensenyar e apprendre a scriure, posseduti anche da persone di non

[r]