• Non ci sono risultati.

Evidence for associated production of a single top quark and W Boson in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Evidence for associated production of a single top quark and W Boson in pp collisions at √s=7 TeV"

Copied!
16
0
0

Testo completo

(1)

Evidence for Associated Production of a Single Top Quark

and

W Boson in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 16 September 2012; published 11 January 2013)

Evidence is presented for the associated production of a single top quark and W boson in pp collisions atpffiffiffis¼ 7 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of4:9 fb1. The measurement is performed using events with two leptons and a jet originated from a b quark. A multivariate analysis based on kinematic properties is utilized to separate the tt background from the signal. The observed signal has a significance of4:0 and corresponds to a cross section of16þ54 pb, in agreement with the standard model expectation of 15:6  0:4þ1:01:2pb.

DOI:10.1103/PhysRevLett.110.022003 PACS numbers: 14.65.Ha, 12.15.Hh, 13.85.Qk

Electroweak production of single top quarks has been first observed by the D0 [1] and CDF [2] experiments at the Tevatron. Single top quark production proceeds via three processes: the t-channel exchange of a virtual W boson, the s-channel production and decay of a virtual W boson, and the associated production of a top quark and a W boson (tW). The latter channel, which has a negligible production cross section at the Tevatron, represents a significant con-tribution to single top quark production at the Large Hadron Collider (LHC). Associated tW production is a very interesting production mechanism because of its in-terference with top quark pair production [3–5], its sensi-tivity to new physics [6–8], and its role as a background to SUSY and Higgs searches. The ATLAS and Compact Muon Solenoid (CMS) experiments have measured the cross section for t-channel production [9,10] while evi-dence for tW associated production has been presented by the ATLAS experiment [11]. This Letter presents the first study from the CMS experiment of tW production in pp collisions atpffiffiffis¼ 7 TeV.

The production cross section for tW has been computed at approximate next-to-next-to-leading order (NNLO), the theoretical prediction of the cross section for tW in pp collisions atpffiffiffis¼ 7 TeV, assuming a top quark mass (mt)

of 172.5 GeV, is 15:6  0:4þ1:01:2 pb [12], the first uncer-tainty corresponds to scale variation and the second to parton distribution function (pdf ) sets.

The leading order Feynman diagrams for tW production are shown in Fig. 1. The definition of tW production in perturbative QCD mixes with top quark pair production (tt) at next-to-leading order (NLO) [4,5]. Two schemes are proposed to describe the tW signal: ‘‘diagram removal’’

(DR) [3], where all NLO diagrams that are doubly reso-nant, such as those in Fig.2, are excluded from the signal definition; and ‘‘diagram subtraction’’ (DS) [3,13], in which the differential cross section is modified with a gauge-invariant subtraction term, which locally cancels the contribution of tt diagrams. The DR scheme is used in this Letter, but it has been verified that the number of predicted events after full selection is consistent between the two approaches within the statistical uncertainties of the simulated samples. The differences are accounted for in the systematic uncertainties.

In the standard model, top quarks decay almost exclu-sively to a W boson and a b quark. The study presented here has been performed in the channels in which both W bosons decay leptonically into a muon or an electron and a neutrino, with a branching fraction BðW ! ‘Þ ¼ ð10:80  0:09Þ%, where ‘ ¼ e or  [14]. The dilepton final states of the tW process are characterized by the presence of two isolated leptons with opposite charge, a jet from the fragmentation of a b quark, and a substantial amount of missing transverse energy (EmissT ) due to the

presence of the neutrinos. The primary source of back-ground events arise from tt production, followed by Z=?þ jets processes.

The analysis uses fits to a discriminant variable built from kinematic quantities combined with a multivariate technique. A second analysis, intended as a cross-check of the robustness of the selection, is performed using event counting. In both cases, a sample collected atpffiffiffis¼ 7 TeV

FIG. 1. Leading order Feynman diagrams for single top quark production in the tW mode; the charge-conjugate modes are implicitly included.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

by CMS, corresponding to an integrated luminosity of 4:9 fb1, is used.

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description can be found in Ref. [15].

Single top quark events in all channels have been simu-lated with thePOWHEG event generator version 301 [16], designed to describe the full NLO properties of these processes, whileMADGRAPH 5.1.1 [17] is used for tt and for the inclusive single-boson production (V þ X), where V ¼ W, Z, and X can indicate light or heavy partons. The remaining background samples are simulated usingPYTHIA version 6.4.24 [18], including diboson production and QCD multijet production enriched in events with electrons or muons produced in the decay of b and c quarks, and muons from the decay of long-lived hadrons. The CTEQ 6.6M pdf sets [19] are used for all simulated samples. All generated events undergo a full simulation of the detector response usingGEANT4 [20,21]. The value used for the top quark mass is mt¼ 172:5 GeV.

Approximate NNLO theoretical predictions are used to normalize tt production (tt ¼ 163þ1110 pb) [22], W þ jets

and Z=þ jets processes are normalized to complete NNLO calculations for the inclusive cross sections, and NLO cross sections are used for diboson processes [23]. Unless otherwise stated, the theoretical values of the cross section have been used in this Letter to normalize the simulation in figures and tables.

Leptons, jets, and EmissT are reconstructed by the CMS particle flow (PF) algorithm [24], which performs a global event reconstruction and provides the full list of particles identified as electrons, muons, photons, and charged and neutral hadrons.

Events are collected using dilepton triggers with elec-trons or muons. The lepton transverse energy thresholds are symmetric, the highest used in these triggers is 17 GeV while the lowest is 8 GeV. The two selected leptons must originate from the same primary vertex and have opposite

charge. The primary vertex used is defined as the recon-structed vertex with the highest pTof associated tracks and

is required to have at least four tracks, with longitudinal (radial) distance of less than 24 (2) cm from the center of the detector. Muon (electron) candidates are required to have a transverse momentum pT> 20 GeV and pseudorapidity

jj < 2:4ð2:5Þ; events with additional leptons passing looser quality criteria are vetoed.

To remove low invariant mass Drell-Yan (Z=) events, the invariant mass of the lepton pair (m‘‘) is required to be

greater than 20 GeV. In the ee and  final states, events are also rejected if m‘‘ is between 81 and 101 GeV,

com-patible with the Z boson mass; this veto removes back-ground from Z=þ jets, as well as from ZZ and WZ processes. In the ee and  decay channels, a requirement is applied on the EmissT as well to further reduce the con-tribution from events without genuine EmissT (mostly

Z=þ jets and QCD multijet production). Since the EmissT resolution is degraded in events with high pileup, an additional quantity is used (tracker-EmissT ), calculated

using only the charged particles associated with the pri-mary vertex. Events are selected if both EmissT and

tracker-EmissT are larger than 30 GeV.

Jets are defined according to the anti-kTalgorithm [25]

with a distance parameter of 0.5. Jets withinjj < 2:4 and with pT> 30 GeV are considered in the analysis.

Exactly one jet is required to be present in the event, and it must be identified as coming from a b quark. The identification of b jets is done according to an algorithm that reconstructs the secondary vertex of the decay of the b quark [26,27], resulting in a discriminating variable sensi-tive to the lifetime of b hadrons. The selection on this discriminant yields a b-tagging efficiency of 62% with a mistag rate of 1.4% for jets with pT between 50 and

80 GeV. Events with additional b-tagged jets with pT>

20 GeV are removed. After this selection, the sample is dominated by tt events and a tW signal.

Additionally, events with exactly two jets, in which either one or both jets have been b tagged, are used in the fit. Three regions are defined per dilepton final state: one region with one jet that is b tagged (1j1t) where the tW signal is substantial, and two regions with two jets, where the tt background is dominant, and exactly one or two b tags are required (2j1t and 2j2t, respectively).

A smaller background comes from Z= events. It is found that in high-pileup scenarios the EmissT distribution for Z=events is not properly modeled by the simulation, leading to disagreement between data and simulation. To solve this problem, the Z= simulation is corrected to match the missing transverse energy distribution observed in the data using events from the Z resonance.

The contributions of other backgrounds, i.e., diboson production (WW, WZ, ZZ), QCD, W þ jets, and other single top quark processes, are small, less than 1% of the selected events, and estimated from simulation.

FIG. 2. Feynman diagrams for tW single top quark production at next-to-leading order that are removed from the signal defi-nition in the DR scheme; the charge-conjugate modes are implicitly included.

(3)

The number of events in the signal and two control regions is presented for data and simulation in Table I. The approximate composition of the sample at this level is 70% tt events with 20% tW events in the signal region. In the2j1t region the tt content represents 90% of the events, while tW events are less than 6%. In the 2j2t region, more than 95% of the events are tt events.

A multivariate analysis based on boosted decision trees (‘‘BDT’’ analysis) [28,29] is used, testing the overall com-patibility of the signal event candidates with the event topology of the tW associated production. Four variables are chosen to train the BDT based on their ability to separate the tW signal from the dominant tt background. These variables are HT, defined as the scalar sum of the

transverse momenta of the leptons, jet, and EmissT , the pTof

the system composed of the leptons, EmissT and jet, the pTof

the jet with the highest energy, and the difference in angular separation, , between the direction associated to the EmissT and the closest of the two selected leptons.

The distributions of HTand the pTof the system composed

of the leptons, EmissT and the jet, are presented, in the signal

region (1j1t), in Fig.3. The presence of the tW signal over the background is visible in all the distributions. The distributions of the other two variables are available in the Supplemental Material [30].

The output of the BDT is a single discriminant value for every event ranging from 1 (backgroundlike) to þ1 (signal-like). The distribution of the BDT discriminant is shown for the1j1t signal region in Fig.4. Even if the tW signal does not peak strongly atþ1, its distribution dis-criminates it with respect to tt and other backgrounds. Maximum signal sensitivity is achieved through a simul-taneous fit to 9 categories: the 3 BDT discriminant shapes (1j1t, 2j1t, and 2j2t) in the three final states (ee, e, and ). The two tt enriched regions are included to control the rate of this background in the signal region.

The impact of each individual source of uncertainty on the analysis has been estimated in every region and final state. The dominant systematic uncertainty that affects the rate of the tW signal is associated with the b-tagging efficiency, with values between 3% and 6% for the differ-ent final states. The b-tagging efficiency uncertainty is also important for the tt background yield, with values between 1.5% and 4.0%. The main systematic uncertainty for the tt background is due to the factorization/renormalization

scale used in the simulation, up to 11%, with values around 2% for the tW signal. Also for tt, the uncertainties due to jet energy scale (7%) and the threshold used to match the matrix element generator to the parton shower model in

TABLE I. Event yields in the different regions. The simulation is quoted with statistical (first) and systematic uncertainties (second). When only one uncertainty is quoted, it is the total one.

1j1t 2j1t 2j2t tW 336  5  16 180  3  16 45  1  6 tt 1263  19  138 2775  28  205 1488  21  222 Z=þ jets 128  12  28 113  10  22 8:5  1:8  1:8 Other 19  3 8:8  0:7  0:2 4  3 Total estimated 1746  23  141 3077  30  207 1546  21  222 Total data 1699 2878 1507 [GeV] T H 0 50 100 150 200 250 300 350 400 450 500 Events / 20 GeV 0 50 100 150 200 250 300 Data tW t t *+jets γ Z/ Other Systematic -1 = 7 TeV, 4.9 fb s CMS,

of the system [GeV] T p 0 20 40 60 80 100 120 140 160 180 200 Events / 6.67 GeV 0 50 100 150 200 250 300 350 Data tW t t *+jets γ Z/ Other Systematic -1 = 7 TeV, 4.9 fb s CMS,

FIG. 3 (color online). Distributions of HT and the pT of the

system composed of the leptons, EmissT and the jet, in data and

(4)

simulation (3%) are important. The statistical uncertainty is the largest contribution to the uncertainty of the mea-sured cross section, with a 20% effect. The complete information about the systematic uncertainties is available in tabulated form in the Supplemental Material [30].

A binned likelihood fit is performed on the distributions of the BDT discriminant. Template shapes for the signal and backgrounds are taken from simulation. Distributions are included separately in the fit for each of the three dilepton channels (ee, e, and ) in the signal region (1j1t) and control regions (2j1t and 2j2t). Signal and background rates are allowed to vary in the fit, using the systematic uncertainties on the background rates as con-straint terms in the likelihood function. The signal rate and 68% confidence level (C.L.) interval is determined using the profile likelihood method. The sources of theoretical uncertainty that affect the template shape are then consid-ered. For each uncertainty, 1 systematic shifts are applied to the simulated samples to obtain revised tem-plates. Differences in signal rates found using the revised templates are taken as systematic uncertainties and are added in quadrature to the1 interval from the fit using the baseline templates. The expected significance is eval-uated using the median and central 68% of the values obtained from pseudoexperiments generated using the theoretical prediction of the standard model tW cross section.

An excess of events over the expected background is observed with a significance of4:0, compatible with the expected significance of the tW signal, 3:6þ0:80:9. The measured cross section, including both statistical and sys-tematic uncertainties, is 16þ54 pb, in agreement with the standard model prediction.

The measurement can be used to determine the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element jVtbj, following the same technique as in [10], assuming

thatjVtdj and jVtsj are much smaller than jVtbj: jVtbj ¼ ffiffiffiffiffiffiffiffiffi tW thtW s ¼ 1:01þ0:16 0:13ðexp:Þþ0:030:04ðth:Þ; (1)

where thtW is the standard model prediction computed

assumingjVtbj ¼ 1. Using the standard model assumption of0  jVtbj2 1, a value of jVtbj ¼ 1:00 is inferred, with a 90% confidence level interval of [0.79,1.00]. This is based on profile likelihood intervals, the same method used for the cross section measurement and intervals. Studies with pseudoexperiments were performed, showing the validity of the profile likelihood method in presence of the boundaryjVtbj  1:0.

A second analysis (‘‘count-based’’ analysis), used as a cross-check, is performed using event counts. After the jet selection step, instead of building the BDT discriminant, events are required in addition to having HT> 60 GeV in

the e channel, where no invariant mass and EmissT require-ments are applied. The analysis uses a statistical model of Poisson event counts in the three dilepton final states in the signal region (1j1t) and control regions (2j1t and 2j2t). The event yield for each process in every region is affected by different sources of systematic uncertainties, equivalent to the ones calculated for the BDT analysis. These are included in the model as nuisance parameters. The same methods for the cross section measurement and the signifi-cance calculation as in the BDT analysis have been used. Figure5shows the event yields selected by the count-based analysis for each region, in data and simulation, in which BDT discriminant -1.0 to -0.99 -0.99 to -0.7 -0.7 to 0.7 0.7 to 0.99 0.99 to 1.0 Events 0 100 200 300 400 500 600 700 Data tW t t *+jets γ Z/ & Other Systematic -1 = 7 TeV, 4.9 fb s CMS,

FIG. 4 (color online). Distribution of the BDT discriminant in the signal region (1j1t) in data and simulation.

1j1t 2j1t 2j2t Events 500 1000 1500 2000 2500 3000 3500 Data tW t t *+jets γ Z/ Other Systematic -1 = 7 TeV, 4.9 fb s CMS,

FIG. 5 (color online). Event yields in data and simulation in the signal region (1j1t) and the two tt-enriched control regions for the count-based analysis. Simulation yields are scaled to the outcome of the fit.

(5)

the simulation yields have been normalized to the outcome of the maximum likelihood fit. The observed significance of the tW signal obtained with the count-based analysis is 3:5, with an expected significance of 3:2  0:9. The count-based analysis measures a cross section of 15  5 pb. These results are consistent with those obtained with the BDT analysis.

In summary, using 4:9 fb1 of data collected with the CMS experiment at the LHC, evidence has been found for the associated production of a single top quark and W boson in pp collisions atpffiffiffis¼ 7 TeV with a significance of4:0 and a measured cross section of 16þ54pb.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE, and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[1] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 103, 092001 (2009).

[2] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 103, 092002 (2009).

[3] S. Frixione, E. Laenen, P. Motylinski, C. White, and B. R Webber,J. High Energy Phys. 07 (2008) 029.

[4] A. S. Belyaev, E. E. Boos, and L. V. Dudko,Phys. Rev. D 59, 075001 (1999).

[5] C. D. White, S. Frixione, E. Laenen, and F. Maltoni,

J. High Energy Phys. 11 (2009) 074.

[6] T. M. P. Tait and C.-P. Yuan, Phys. Rev. D 63, 014018 (2000).

[7] Q.-H. Cao, J. Wudka, and C.-P. Yuan,Phys. Lett. B 658, 50 (2007).

[8] V. Barger, M. McCaskey, and G. Shaughnessy,Phys. Rev. D 81, 034020 (2010).

[9] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 717, 330 (2012).

[10] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett. 107, 091802 (2011).

[11] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 716, 142 (2012).

[12] N. Kidonakis,Phys. Rev. D 82, 054018 (2010). [13] T. M. P. Tait,Phys. Rev. D 61, 034001 (1999).

[14] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86, 010001 (2012).

[15] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[16] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[17] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[18] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[19] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[20] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[21] J. Allison et al.,IEEE Trans. Nucl. Sci. 53, 270 (2006). [22] N. Kidonakis,Phys. Rev. D 82, 114030 (2010).

[23] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput. Phys. Commun. 182, 2388 (2011).

[24] CMS Collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and EmissT , CMS

Physics Analysis Summary CMS-PAS-PFT-09-001 (2009) [http://cds.cern.ch/record/1194487].

[25] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[26] CMS Collaboration, Commissioning of b-jet identification with pp collisions atpffiffiffis¼ 7 TeV, CMS Physics Analysis Summary CMS-PAS-BTV-10-001 (2010) [http://cds.cern .ch/record/1279144].

[27] CMS Collaboration, Performance of b-jet identification in CMS, CMS Physics Analysis Summary CMSPAS-BTV-11-001 (2011) [http://cds.cern.ch/record/1366061]. [28] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,

Classification and Regression Trees (Chapman and Hall, London, 1984).

[29] Y. Freund and R. E. Schapire,J. Comput. Syst. Sci. 55, 119 (1997).

[30] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.110.022003 for kine-matic distributions and complete systekine-matic tables.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

(6)

W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4 B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6 G. Vander Marcken,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7 G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7

N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10 T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11 D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11 H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12,d C. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12 P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15 Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16 D. Wang,16L. Zhang,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19 V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26

R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26 T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29

R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30 D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30 J.-C. Fontaine,30,oD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31

S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32 P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32 L. Mirabito,32S. Perries,32L. Sgandurra,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32V. Roinishvili,33 G. Anagnostou,34C. Autermann,34S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34

R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34 D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,pM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35

M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35 P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35

S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Weber,35M. Bontenackels,36 V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36

T. Kress,36Y. Kuessel,36J. Lingemann,36,fA. Nowack,36L. Perchalla,36O. Pooth,36P. Sauerland,36A. Stahl,36 M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,qA. Bethani,37K. Borras,37

(7)

C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37S. Habib,37 J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37 M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,qB. Lutz,37R. Mankel,37I. Marfin,37

M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37 O. Novgorodova,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37

C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,qT. Schoerner-Sadenius,37N. Sen,37 A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38 U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38 R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38

P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38J. Sibille,38,rV. Sola,38 H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39

W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39F. Hartmann,39 T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39U. Husemann,39I. Katkov,39,pJ. R. Komaragiri,39 P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39

J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39F.-P. Schilling,39G. Schott,39 H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39

G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40 C. Markou,40C. Mavrommatis,40E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41

I. Evangelou,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43 P. Hidas,43D. Horvath,43,sF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44 J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46

N. Dhingra,46R. Gupta,46M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. B. Singh,46 Ashok Kumar,47Arun Kumar,47S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47 K. Ranjan,47V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48

Sh. Jain,48R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49 V. Kumar,49P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,u M. Maity,50,vG. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50

S. Banerjee,51S. Dugad,51H. Arfaei,52,wH. Bakhshiansohi,52S. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52 H. Hesari,52A. Jafari,52M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,y

M. Zeinali,52M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cG. Maggi,53a,53c

M. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53b G. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53a,53bG. Zito,53aG. Abbiendi,54a

A. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54b A. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54b

D. Fasanella,54a,54b,fP. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54a M. Meneghelli,54a,54b,fA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54b A. M. Rossi,54a,54bT. Rovelli,54a,54bG. P. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b

M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,56bL. Benussi,57S. Bianco,57S. Colafranceschi,57,z F. Fabbri,57D. Piccolo,57P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59a,59bF. De Guio,59a,59b

L. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b A. Martelli,59a,59bA. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a

N. Cavallo,60a,aaA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60a,60bL. Lista,60a S. Meola,60a,bbM. Merola,60aP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fD. Bisello,61a,61bA. Branca,61a,f

R. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61a K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61b J. Pazzini,61a,61bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b

(8)

C. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63b G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63b A. Spiezia,63a,63bS. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64c,fR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ccA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ddP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64bA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,f

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66c R. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b M. Casarsa,67aF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,f A. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69 D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71 B. Hong,71M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. H. Ansari,81M. I. Asghar,81J. Butt,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81 M. A. Shah,81M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82

K. Nawrocki,82K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83 K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83

N. Almeida,84P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84 J. Varela,84P. Vischia,84I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85 V. Karjavin,85G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85 V. Smirnov,85A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86 V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86

Yu. Andreev,87A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87 A. Pashenkov,87D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88 N. Lychkovskaya,88V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89 E. Boos,89V. Bunichev,89M. Dubinin,89,eL. Dudko,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89

A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89 A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90 S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91 D. Konstantinov,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91 N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,eeM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,eeJ. Milosevic,92

M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ffM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97M. Bachtis,97P. Baillon,97A. H. Ball,97

(9)

D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97 H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Girone,97M. Giunta,97F. Glege,97 R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97 B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97

Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97 L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97 E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97

M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97

J. Rodrigues Antunes,97G. Rolandi,97,ggC. Rovelli,97,hhM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97 C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,iiD. Spiga,97 A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,jjW. D. Zeuner,97W. Bertl,98K. Deiters,98

W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98 U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98L. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99B. Casal,99

N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99 K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99

P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,kkP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99 L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,ll B. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99 H. A. Weber,99L. Wehrli,99C. Amsler,100,mmV. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100 B. Millan Mejias,100P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101

K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101 R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102 C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102

E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102B. Asavapibhop,103 N. Srimanobhas,103A. Adiguzel,104M. N. Bakirci,104,nnS. Cerci,104,ooC. Dozen,104I. Dumanoglu,104E. Eskut,104

S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104T. Karaman,104G. Karapinar,104,pp A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,qqA. Polatoz,104K. Sogut,104,rr D. Sunar Cerci,104,ooB. Tali,104,ooH. Topakli,104,nnL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105 R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106B. Isildak,106,ssM. Kaya,106,tt O. Kaya,106,ttS. Ozkorucuklu,106,uuN. Sonmez,106,vvK. Cankocak,107L. Levchuk,108J. J. Brooke,109E. Clement,109

D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109H. F. Heath,109 L. Kreczko,109S. Metson,109D. M. Newbold,109,jjK. Nirunpong,109A. Poll,109S. Senkin,109V. J. Smith,109 T. Williams,109L. Basso,110,wwK. W. Bell,110A. Belyaev,110,wwC. Brew,110R. M. Brown,110D. J. A. Cockerill,110

J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110D. Petyt,110 B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110R. Bainbridge,111

G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111P. Dauncey,111 G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111A. Guneratne Bryer,111

G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111L. Lyons,111A.-M. Magnan,111 J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,llA. Papageorgiou,111J. Pela,111 M. Pesaresi,111K. Petridis,111M. Pioppi,111,xxD. M. Raymond,111S. Rogerson,111A. Rose,111M. J. Ryan,111

C. Seez,111P. Sharp,111,aA. Sparrow,111M. Stoye,111A. Tapper,111M. Vazquez Acosta,111T. Virdee,111 S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112J. E. Cole,112P. R. Hobson,112A. Khan,112 P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112P. Symonds,112L. Teodorescu,112M. Turner,112

K. Hatakeyama,113H. Liu,113T. Scarborough,113O. Charaf,114C. Henderson,114P. Rumerio,114A. Avetisyan,115 T. Bose,115C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115 L. Sulak,115J. Alimena,116S. Bhattacharya,116D. Cutts,116Z. Demiragli,116A. Ferapontov,116A. Garabedian,116 U. Heintz,116S. Jabeen,116G. Kukartsev,116E. Laird,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116

(10)

M. Calderon De La Barca Sanchez,117S. Chauhan,117M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117 J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117W. Ko,117A. Kopecky,117R. Lander,117O. Mall,117 T. Miceli,117D. Pellett,117F. Ricci-tam,117B. Rutherford,117M. Searle,117J. Smith,117M. Squires,117M. Tripathi,117 R. Vasquez Sierra,117R. Yohay,117V. Andreev,118D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118 C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118C. Plager,118G. Rakness,118P. Schlein,118,aP. Traczyk,118 V. Valuev,118M. Weber,118J. Babb,119R. Clare,119M. E. Dinardo,119J. Ellison,119J. W. Gary,119F. Giordano,119

G. Hanson,119G. Y. Jeng,119,yyH. Liu,119O. R. Long,119A. Luthra,119H. Nguyen,119S. Paramesvaran,119 J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120J. G. Branson,120G. B. Cerati,120

S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120M. Lebourgeois,120J. Letts,120I. Macneill,120 B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120M. Pieri,120M. Sani,120V. Sharma,120S. Simon,120 E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120S. Wasserbaech,120,zzF. Wu¨rthwein,120A. Yagil,120J. Yoo,120 D. Barge,121R. Bellan,121C. Campagnari,121M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121

J. Incandela,121C. Justus,121P. Kalavase,121S. A. Koay,121D. Kovalskyi,121V. Krutelyov,121S. Lowette,121 N. Mccoll,121V. Pavlunin,121F. Rebassoo,121J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121 C. West,121A. Apresyan,122A. Bornheim,122Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122

A. Mott,122H. B. Newman,122C. Rogan,122M. Spiropulu,122V. Timciuc,122J. Veverka,122R. Wilkinson,122 S. Xie,122Y. Yang,122R. Y. Zhu,122B. Akgun,123V. Azzolini,123A. Calamba,123R. Carroll,123T. Ferguson,123 Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124B. R. Drell,124

W. T. Ford,124A. Gaz,124E. Luiggi Lopez,124J. G. Smith,124K. Stenson,124K. A. Ulmer,124S. R. Wagner,124 J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125B. Heltsley,125A. Khukhunaishvili,125B. Kreis,125

N. Mirman,125G. Nicolas Kaufman,125J. R. Patterson,125A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125 J. Thom,125J. Thompson,125J. Tucker,125J. Vaughan,125Y. Weng,125L. Winstrom,125P. Wittich,125D. Winn,126 S. Abdullin,127M. Albrow,127J. Anderson,127L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127P. C. Bhat,127 I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127 I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127

B. Hooberman,127S. Jindariani,127M. Johnson,127U. Joshi,127B. Kilminster,127B. Klima,127S. Kunori,127 S. Kwan,127C. Leonidopoulos,127J. Linacre,127D. Lincoln,127R. Lipton,127J. Lykken,127K. Maeshima,127 J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127K. Mishra,127S. Mrenna,127Y. Musienko,127,aaa

C. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127 L. Spiegel,127L. Taylor,127S. Tkaczyk,127N. V. Tran,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127 J. Whitmore,127W. Wu,127F. Yang,127F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128

M. Chen,128T. Cheng,128S. Das,128M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128 R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128J. Konigsberg,128

A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128J. F. Low,128K. Matchev,128P. Milenovic,128,bbb G. Mitselmakher,128L. Muniz,128M. Park,128R. Remington,128A. Rinkevicius,128P. Sellers,128N. Skhirtladze,128

M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129S. Hewamanage,129L. M. Lebolo,129S. Linn,129 P. Markowitz,129G. Martinez,129J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130 B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130

H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131 H. Kalakhety,131I. Vodopiyanov,131M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132 V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132R. Cavanaugh,132O. Evdokimov,132L. Gauthier,132

C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132 D. Strom,132P. Turner,132N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,cccW. Clarida,133F. Duru,133

J.-P. Merlo,133H. Mermerkaya,133,dddA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133 E. Norbeck,133Y. Onel,133F. Ozok,133,eeeS. Sen,133P. Tan,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133 B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134

G. Hu,134P. Maksimovic,134S. Rappoccio,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135 G. Benelli,135R. P. Kenny Iii,135M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135 J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136 M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137D. Wright,137 A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138

(11)

M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138K. Pedro,138A. Skuja,138J. Temple,138 M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138A. Apyan,139G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139

I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139Y. Kim,139 M. Klute,139K. Krajczar,139,fffP. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139 G. Roland,139M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139 E. A. Wenger,139R. Wolf,139B. Wyslouch,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140

B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140S. C. Kao,140K. Klapoetke,140Y. Kubota,140 J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140 L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141E. Avdeeva,142K. Bloom,142

S. Bose,142D. R. Claes,142A. Dominguez,142M. Eads,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142 H. Malbouisson,142S. Malik,142G. R. Snow,142A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143

A. Kumar,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144D. Nash,144 D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145A. Kubik,145L. Lusito,145N. Mucia,145N. Odell,145 R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145 L. Antonelli,146D. Berry,146A. Brinkerhoff,146K. M. Chan,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146 J. Kolb,146K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146M. Planer,146 R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146M. Wolf,146B. Bylsma,147L. S. Durkin,147C. Hill,147

R. Hughes,147K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147 B. L. Winer,147N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148 A. Hunt,148P. Jindal,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148

P. Piroue´,148X. Quan,148A. Raval,148B. Safdi,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148 A. Zuranski,148E. Brownson,149A. Lopez,149H. Mendez,149J. E. Ramirez Vargas,149E. Alagoz,150V. E. Barnes,150 D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150 M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150 I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150 S. Guragain,151N. Parashar,151A. Adair,152C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152W. Li,152 B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153

P. de Barbaro,153R. Demina,153Y. Eshaq,153T. Ferbel,153A. Garcia-Bellido,153P. Goldenzweig,153J. Han,153 A. Harel,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154

K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155J. P. Chou,155 C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155R. Gray,155 E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155J. Robles,155 K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155M. Walker,155

G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157 J. Gilmore,157T. Kamon,157,gggV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157 J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158

J. Damgov,158C. Dragoiu,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158 Y. Roh,158I. Volobouev,158E. Appelt,159A. G. Delannoy,159C. Florez,159S. Greene,159A. Gurrola,159W. Johns,159

P. Kurt,159C. Maguire,159A. Melo,159M. Sharma,159P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159 M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160

A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160S. Gollapinni,161R. Harr,161P. E. Karchin,161 C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162D. Belknap,162 L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162E. Friis,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

(12)

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg,

Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3,

Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39

Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53c

Politecnico di Bari, Bari, Italy

54aINFN Sezione di Bologna, Bologna, Italy 54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

(13)

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61a

INFN Sezione di Padova, Padova, Italy

61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67b

Universita` di Trieste, Trieste, Italy

68Kangwon National University, Chunchon, Korea 69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90

P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland 99

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

100Universita¨t Zu¨rich, Zurich, Switzerland 101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

(14)

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112

Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128

University of Florida, Gainesville, Florida, USA

129Florida International University, Miami, Florida, USA 130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, USA 135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, Oxford, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico, USA

150Purdue University, West Lafayette, Indiana, USA 151

Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160

University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

(15)

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt. mAlso at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. o

Also at Universite´ de Haute Alsace, Strasbourg, France.

pAlso at Moscow State University, Moscow, Russia.

qAlso at Brandenburg University of Technology, Cottbus, Germany. rAlso at The University of Kansas, Lawrence, USA.

sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ccAlso at Universita` degli Studi di Siena, Siena, Italy.

dd

Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.

eeAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. ffAlso at University of California, Los Angeles, Los Angeles, California, USA. ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

hhAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. iiAlso at University of Athens, Athens, Greece.

jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. kkAlso at Paul Scherrer Institut, Villigen, Switzerland.

llAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. mmAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

nnAlso at Gaziosmanpasa University, Tokat, Turkey. ooAlso at Adiyaman University, Adiyaman, Turkey. ppAlso at Izmir Institute of Technology, Izmir, Turkey. qqAlso at The University of Iowa, Iowa City, USA.

rr

Also at Mersin University, Mersin, Turkey.

ssAlso at Ozyegin University, Istanbul, Turkey. ttAlso at Kafkas University, Kars, Turkey.

uuAlso at Suleyman Demirel University, Isparta, Turkey. vvAlso at Ege University, Izmir, Turkey.

wwAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. xxAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

yyAlso at University of Sydney, Sydney, Australia. zzAlso at Utah Valley University, Orem, USA.

aaaAlso at Institute for Nuclear Research, Moscow, Russia.

bbbAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. cccAlso at Argonne National Laboratory, Argonne, USA.

(16)

dddAlso at Erzincan University, Erzincan, Turkey.

eeeAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.

fffAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. gggAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 1. Leading order Feynman diagrams for single top quark production in the tW mode; the charge-conjugate modes are implicitly included.
FIG. 2. Feynman diagrams for tW single top quark production at next-to-leading order that are removed from the signal  defi-nition in the DR scheme; the charge-conjugate modes are implicitly included.
FIG. 3 (color online). Distributions of H T and the p T of the
FIG. 4 (color online). Distribution of the BDT discriminant in the signal region ( 1j1t) in data and simulation.

Riferimenti

Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and