• Non ci sono risultati.

Takatsu: Effects of hydrogen atmosphere on mechanical properties and surface conditions of a reduced activation ferritic steels F82H, journal of Nuclear Materials 258-263 (1998) 1280-1284 [3] P

N/A
N/A
Protected

Academic year: 2021

Condividi "Takatsu: Effects of hydrogen atmosphere on mechanical properties and surface conditions of a reduced activation ferritic steels F82H, journal of Nuclear Materials 258-263 (1998) 1280-1284 [3] P"

Copied!
2
0
0

Testo completo

(1)

BIBLIOGRAFIA

[1] S. Jitsukawa et al: Development of an estensive database of mechanical and physical properties of reduced-activation martensitic steel F82H, journal of Nuclear Materials 307-311 (2002) 170-186

[2] S. Har, T. Abe, M. Enoeda, H. Takatsu: Effects of hydrogen atmosphere on mechanical properties and surface conditions of a reduced activation ferritic steels F82H, journal of Nuclear Materials 258-263 (1998) 1280-1284

[3] P. Atkins, L. Jones: Principi di chimica, Zanichelli Giugno(2002) [4] EURATOM-CEA: Tore Supra Gennaio(2004)

[5] Embassy of France in Australia : Technologies 'France' no. 29, Novembre 1996 and Les Défis du CEA no. 47, Giugno 1996

[6] E. Serra, G. Benamati, O. V. Ogorodnikova: Hydrogen isotopes transport parameters in fusion reactor materials, , journal of Nuclear Materials 255 (1998) 105-115

[7] M. R. Fox, A. B. Hull, T. F. Kassner: Stress corrosion cracking of candidate structural materials in simulated first-wall aqueous coolant environments, fusion technologies 19 (1991) 1619-1628

[8] C. B. Ashmore and N. R. Large: Corrosion of low activation martensitic stainless steel developed for fusion reactor applications, AEA Technologies report AEA FUS 102 (1991) [9] J. Lapena, F. Blasquez: water corrosion of F82H-modified in simulated irradiation conditions by heat treatment, journal of nuclear materials 283-287 (2000) 1341-1345 [10] Roberto Renzetti: Reattori a fusione nucleare, www. fisicamente. net

[11] Yu. Jagodzinski, A. Tarasenko, S. Smuk, S. Tahtinen, H. Hanninen: Internal friction study of hydrogen behaviour in low activated martensitic F82H steel, journal of Nuclear Materials 275 (1999) 47-55

[12] N. Wanderka et al : Decomposition of the MANET steel under dual-beam irradiation, journal of nuclear materials 228 (1996) 77-82

[13] S. J. Zinkle, J. P. Robertson and R. L. Klueh: Thermophysical and Mechanical Properties for Fe-(8-9)%Cr reduced activation steels, Oak Ridge National Laboratory (1998)

[14] A. Marchetti: Appunti di proprietà meccaniche e tecnologiche di alti polimeri

[15] E. Daum, K. Ehrlich, M. Schirra: Proceedings of the second milestone meeting of European laboratories on the development of ferritic/martensitic steels for fusion technology, Karlsruhe, September 9-10, 1996.

[16] P. Jung: Hydrogen inventory and embrittlment in low activation steels, , journal of Nuclear Materials, 258-263 (1998) 124-129

(2)

[17] R. A. Oriani: A brief survey of useful information about hydrogen in metals [18] J. Crank: The mathematics of diffusion, second edition, Oxford

[19] A. Solina: Appunti dalle lezioni del corso di Scienze dei metalli

[20] Hans Jurgen Grabke, Ernst Riecke: Absorption and diffusion of hydrogen in steels, Materiali in Tehnologije 34(2000)331-342

[21] H. G. Lee, Yai-Young Lee: Hydrogen trapping By TiC particles in iron, Acta metallurgica, Vol. 32, 1(1984)131-136

[22] R. A. Oriani: The diffusion and trapping of hydrogen in steel, Acta Metallurgica, Vol.

18(1970)147-157

[23] W. Y. Choo, J. Y. Lee: Thermal analysis of trapped hydrogen in pure iron, Metallurgical Tranasactions, Vol. 13A(1982) 135-140

[24] A. Turnbull, R. B. Hutchings, D. H. Ferriss: Modelling of thermal deosrption of Hydrogen from metals, Materials Science and Engineering A238(1997)317-328

[25] R. A. Oriani: Hydrogen degradation of ferrous alloys, 254-261, 272-274

[26] P. Pedeferri: Corrosione e protezione dei materiali metallici, Clup, Luglio(1978)

[27] P. Brozzo, N. Vantini: Contributo allo studio della fragilizzazione da idrogeno degli acciai bonificati, la metallurgia Italiana, n°6(1969)237-245

[28] Yu. N. Dolinsky et al: Permeation of deuterium and tritium through the martensitic steel F82H, Journal of nuclear materials307-311(2002)1484-1487

[29] N. R. Quick, H. H. Johnson: Permeation and diffusion of hydrogen and deuterium in 310 Stainless steel, 472K to 779K, Metallurgical transactions, 10A, Gennaio(1979)67-70

[30] K. S: Forcey et al: Hydrogen transport and solubility in 316L and 1. 4914 steels for fusion reactor and applications, Journal of nuclear materials160(1988)117-124

[31] M. Beghini, G. Benamati, L. Bertini, I. Ricapito, R. Valentini: Effect of hydrogen on the ductility reduction of F82H martensitic steel after different heat treatments, journal of Nuclear Materials, (288): 1-6, Novembre 2000

[32] E. T. Turkdogan: Fundamentals of Steelmaking, the institute of materials 96-97, 1996

Riferimenti

Documenti correlati

• Beyond the yield stress, plastic deformation occurs, the stress-strain response is non linear (hardening): elongation is still uniform.. • In ductile materials, at the

In a second series of tests, the soil is compacted according to the standard Proctor method, which is the reference compaction procedure for the design of geotechnical fills

The results of the research showed that as the hydrogen concentration in the examined steel increased (the lengthening of the saturation time), the deterioration of its mechanical

The microhardness measurements made it possible to determine the changes of strain hardening, in the both near the interface (up to 0.5 mm) and in areas above 3 mm from

To evaluate the suppressive activity of Treg cells induced by MDDC-PfSE, we purified CD25 high cells from CD4 ⫹ cells cultured for 5 days with MDDC-PfSE, MDDC-uRBCL, or

Sardegna e Sicilia: circolazione di modelli tra le due maggiori isole del Mediterraneo dal Neolitico al Bronzo Antico, in La Preistoria e la Protostoria della Sardegna, Atti della

Leafy vegetables allow multiple, short-duration production cycles, and share several common fea- tures, including: high value of the harvested crops, with many new species

Observing a lithological gradients from sialic (gneiss), serpentinite with small gneiss addition and pure serpentinite below timberline, we can observe the different rates of