• Non ci sono risultati.

et al

N/A
N/A
Protected

Academic year: 2021

Condividi "et al"

Copied!
12
0
0

Testo completo

(1)

1 REFERENCES

1. van Amerongen, M.J. et al. (2007) Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J. Pathol.

214, 377–386

2. van Amerongen, M.J. et al. (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170, 818–829

3. Nian, M. et al. (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94, 1543–1553

4. Vandervelde, S. et al. (2006) Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc. Pathol. 15, 83–90

5. Kocher, A.A. et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436

6. Shiojima, I. et al. (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118

7. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671–674

8. Distler, J.H. et al. (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q. J. Nucl. Med. 47, 149–161

9. Asahara, T. et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967

10. Kalka, C. et al. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad Sci. U. S.

A.97, 3422–3427

11. Murohara, T. et al. (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest. 105, 1527–1536

12. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024-32.

(2)

2

13. Murasawa S, Kawamoto A, Horii M, et al. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol 2005;25:1388-94.

14. Koyanagi M, Brandes RP, Haendeler J, et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 2005;96:1039-41.

15. Vogeli KM, Jin SW, Martin GR, et al. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 2006;443:337-9.

16. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121:1109-21.

17. Kim I, He S, Yilmaz OH, et al. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 2006;108:737- 44.

18. Weksberg DC, Chambers SM, Boles NC, et al. CD150 negative Side Population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood 2007;111:2444-51.

19. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.

Arterioscler Thromb Vasc Biol 2004;24:288-93.

20. Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007;27:1572-9.

21. Mukai N, Akahori T, Komaki M, et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 2007;314:430-40.

22. Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007;109:1801-9.

23. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210- 21.

24. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-209.

(3)

3

25. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia.

Circulation. 2001;103:634–637

26. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T.

Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation. 2001;103:897–903.

27. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal- Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A.

2001;98:10344 –10349

28. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization.

Trends Cardiovasc Med. 2004;14:318 –322

29. Cottler-Fox, M.H. et al. (2003) Stem cell mobilization. Hematology Am. Soc.

Hematol. Educ. Program 419–437

30. Hattori, K. et al. (2003) The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk. Lymphoma 44,575–582

31. Jujo, K. et al. (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J. Mol. Cell. Cardiol. 45, 530–544

32. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009 – 3017.

33. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM.

Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690 –1699

34. Moonen, J.R.A.J. et al. (2007) Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus.

Arthritis Res. Ther. 9, R84

35. Herbrig, K. et al. (2006) Kidney transplantation substantially improves endothelial progenitor cell dysfunction in patients with end-stage renal disease.

Am. J. Transplant. 6, 2922–2928

36. Vasa, M. et al. (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.

Circ. Res. 89, e1–e7

(4)

4

37. Kra¨ nkel, N. et al. (2008) Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential.

Circ. Res. 103, 1335–1343

38. Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR. In vitro migratory capacity of CD34 cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood.

2001;97:799–804.

39. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM. Infarct remodeling following intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast enhanced magnetic resonance imaging. Circulation. 2003;108:2212

40. Rehman, J., Li, J., Orschell, C.M., March, K.L., 2003. Peripheral blood

‘‘endothelial progenitor cells'’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169.

41. Zhang, Y., Ingram, D.A., Murphy, M.P., Saadatzadeh, M.R., Mead, L.E., Prater, D.N., Rehman, J., 2009. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 296, H1675–H1682.

42. Anghelina, M., Krishnan, P., Moldovan, L., Moldovan, N.I., 2006.

Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am. J. Pathol. 168, 529–541.

43. Krenning, G., van Luyn, M.J., Harmsen, M.C., 2009. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med. 15, 180–189.

44. Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., Helisch, A., Schaper, W., 2004. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238.

45. Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., Salven, P., 2004. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104, 2084–2086.

46. Zacchigna, S., Pattarini, L., Zentilin, L., Moimas, S., Carrer, A., Sinigaglia, M., Arsic, N.,Tafuro, S., Sinagra, G., Giacca, M., 2008. Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J. Clin. Invest. 118, 2062–2075

47. Wickersheim, A., Kerber, M., de Miguel, L.S., Plate, K.H., Machein, M.R., 2009. Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int. J. Cancer 125, 1771–1777.

(5)

5

48. Stump, M.M., Jordan, G.L., DeBakey, M.E., Halpert, B., 1963. Endothelium grown from circulating blood on isolated Dacron hub. Am. J. Pathol. 43, 361–

367.

49. Shi, Q., Rafii, S., Wu, M.H., Wijelath, E.S., Yu, C., Ishida, A., Fujita, Y., Kothari, S., Mohle, R., Sauvage, L.R., Moore, M.A., Storb, R.F., Hammond, W.P., 1998. Evidence for circulating bone marrow-derived endothelial cells.

Blood 92, 362–367.

50. Xu, Q., Zhang, Z., Davison, F., Hu, Y., 2003. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice. Circ. Res. 93, e76–86.

51. Werner, N., Priller, J., Laufs, U., Endres, M., Böhm, M., Dirnagl, U., Nickenig, G., 2002. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3- methylglutaryl coenzyme a reductase inhibition. Arterioscler. Thromb. Vasc.

Biol. 22, 1567–1572.

52. Rauscher, F.M., Goldschmidt-Clermont, P.J., Davis, B.H., Wang, T., Gregg, D., Ramaswami, P., Pippen, A.M., Annex, B.H., Dong, C., Taylor, D.A., 2003.

Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108, 457–

463.

53. Griese, D.P., Ehsan, A., Melo, L.G., Kong, D., Zhang, L., Mann, M.J., Pratt, R.E., Mulligan,R.C., Dzau, V.J., 2003. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell based vascular therapy. Circulation 108, 2710–

2715.

54. Ma, Z.L., Mai, X.L., Sun, J.H., Ju, S.H., Yang, X., Ni, Y., Teng, G.J., 2009.

Inhibited atherosclerotic plaque formation by local administration of magnetically labeled endothelial progenitor cells (EPCs) in a rabbit model.

Atherosclerosis 205, 80–86.

55. George, J., Afek, A., Abashidze, A., Shmilovich, H., Deutsch, V., Kopolovich, J., Miller, H., Keren, G., 2005. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 25, 2636–

2641.

56. Langwieser, N., Schwarz, J.B., Reichenbächer, C., Stemmer, B., Massberg, S., Langwieser, N.N., Zohlnhöfer, D., 2009. Role of bone marrow-derived cells in the genetic control of restenosis. Arterioscler. Thromb. Vasc. Biol. 29, 1551–

1557.

57. Simon, D.I., Dhen, Z., Seifert, P., Edelman, E.R., Ballantyne, C.M., Rogers, C., 2000.Decreased neointimal formation in Mac-1(-/-) mice reveals a role for inflammation in vascular repair after angioplasty. J. Clin. Invest. 105, 293–300.

(6)

6

58. Dietrich, H., Hu, Y., Zou, Y., Dirnhofer, S., Kleindienst, R., Wick, G., Xu, Q., 2000. Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol. 20, 343–352.

59. Zernecke, A., Schober, A., Bot, I., von Hundelshausen, P., Liehn, E.A., Mopps, B., Mericskay, M., Gierschik, P., Biessen, E.A., Weber, C., 2005. SDF 1 alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ. Res. 96, 784–791

60. Pearson, J.D., 2009. Endothelial progenitor cells—hype or hope? J. Thromb.

Haemost. 7, 255–262.

61. Wendel, H.P., Avci-Adali, M., Ziemer, G., 2009. Endothelial progenitor cell capture stents- hype or hope? Int. J. Cardiol. Jul 2 [Epub ahead of print].

62. Reidy, M.A., Schwartz, S.M., 1984. Recent advances in molecular pathology.

Arterial endothelium–assessment of in vivo injury. Exp. Mol. Pathol. 41, 419–

434.

63. Tsuzuki, M., 2009. Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice. Basic Res. Cardiol. 104, 601–611.

64. Perry, T.E., Song, M., Despres, D.J., Kim, S.M., San, H., Yu, Z.X., Raghavachari, N., Schnermann, J., Cannon, R.O. III, Orlic, D., 2009. Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovasc. Res. 84, 317–325

65. Crosby, J.R., Kaminski, W.E., Schatteman, G., Martin, P.J., Raines, E.W., Seifert, R.A., Bowen-Pope, D.F., 2000. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ.

Res. 87, 728–730.

66. Sorrentino, S.A., Bahlmann, F.H., Besler, C.,Mü ller, M., Schulz, S., Kirchhoff, N., Doerries, C., Hor váth, T., Limbourg, A., Limbourg, F., Fliser, D., Haller, H., Drexler, H., Landmesser, U., 2007. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus:restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116, 163–173

67. Hillebrands, J.L., Klatter, F.A., van Dijk, W.D., Rozing, J., 2002. Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis.Nat. Med. 8, 194–195.

68. Goetzl EJ, Rosen H. Regulation of immunity by lysophospholipids and their G protein-coupled receptors. J Clin Invest 2004;114:1531–7.

69. Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: signaling and biology. Nat Rev Immunol 2005;5:560–70.

(7)

7

70. Olivera A, Rivera J. Sphingolipids and the balancing of immune cell function:

lessions from the mast cell. J Immunol 2005;174:1153–8.

71. Lin DA, Boyce JA. Lysophospholipids as mediators of immunity. Adv Immunol 2006;89:149–67.

72. Alewijnse AE, Peters SL, MichelMC.Cardiovascular effects of sphingosine-1- phosphate and other sphingomyelin metabolites. Br J Pharmacol 2004;143:666–84.

73. Siess W, Tigyi G. Thrombogenic and atherogenic activities of lysophosphatidic acid. J Cell Biochem 2004;92:1086–94.

74. Hla T. Physiological and pathological actions of sphingosine 1-phosphate.

Semin Cell Develop Biol 2004;15:513–20.

75. Brinkmann V, Baumruker T. Pulmonary and vascular pharmacology of sphingosine 1-phosphate. Curr Opin Pharmacol 2006;6:244–50.

76. Yatomi Y. Sphingosine 1-phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des 2006;12:575–87.

77. Toman RE, Spiegel S. Lysophospholipid receptors in the nervous system.

Neurochem Res 2002;27:619–27.

78. Fukushima N. LPA in neural cell development. J Cell Biochem 2004;92:993–

1003.

79. Chun J. Lysophospholipids in the nervous system. Prostaglandins Other Lipid Mediat 2005;77:46–51.

80. Budnik LT, Mukhopadhyay AK. Lysophosphatidic acid and its role in reproduction. Biol Reprod 2002;66:859–65.

81. Saba JD. Lysophospholipids in development: miles apart and edging in. J Cell Biochem 2004;92:967–92.

82. Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006;12:65–75.

83. Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. The roles of sphingosine-1- phosphate in asthma. Mol Immunol 2002;38:1239–45.

84. Toews ML, Ediger TL, Romberger DJ, Rennard SI. Lysophosphatidic acid in airway function and disease. Biochim Biophys Acta 2002;1582:240–50.

85. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004;4:604–16.

(8)

8

86. Padron JM. Sphingolipids in anticancer therapy. Curr Med Chem 2006;13:755–

70.

87. Murph M, Tanaka T, Liu S, Mills GB. Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin Cancer Res 2006;12:6598–602.

88. Sabbadini RA. Targeting sphingosine-1-phosphate for cancer therapy. Br J Cancer 2006;95:1131–5.

89. Morales A, Fernandez-Checa JC. Pharmacological modulation of sphingolipids and role in disease and cancer cell biology. Mini Rev Med Chem 2007;7:371–

82.

90. S. Spiegel, S. Milstien, Sphingosine-1-phosphate: an enigmatic signaling lipid, Nat. Rev., Mol. Cell. Biol. 4 (2003) 397–407.

91. J.D. Saba, T. Hla, Point-counterpoint of sphingosine 1-phosphate metabolism, Circ. Res. 94 (2004) 724–734.

92. C.E. Chalfant, S. Spiegel, Sphingosine and ceramide 1-phosphate: expanding roles in cell signalling, J. Cell. Sci. 118 (2005) 4605–4612.

93. Wattenberg BW, Pitson SM, Raben DM. The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 2006;47:1128–39.

94. Olivera A,Kohama T, Edsall L, et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 1999;147:545–58.

95. Xia P, Gamble JR, Wang L, et al. An oncogenic role of sphingosine kinase.

Curr Biol 2000;10:1527–30.

96. Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S.

Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 2003;278:46832–9.

97. Liu H, Toman RE, Goparaju SK, et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 2003;278:40330–6.

98. Maceyka M, Sankala H, Hait NC, et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 2005;280:37118–29.

99. Pitson SM, Moretti PAB, Zebol JR, et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003;22:5491–500.

(9)

9

100. Pitson SM, Xia P, Leclercq TM, et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 2005;201:49–54.

101. Ancellin N, Colmont C, Su J, et al. Extracellular export of sphingosine kinase-1 enzyme: sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 2002;277:6667–75.

102. Waters C, Sambi BS, Kong K-C, et al. Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF_ receptorsphingosine 1- phosphate receptor complexes in airway smooth muscle cells. J Biol Chem 2003;278:6282–90.

103. Soldi R, Mandinova A, Venkataraman K, et al. Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Exp Cell Res 2007;313:308–18.

104. Mandala SM, Thornton R, Galve-Roperh I, et al. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1- phosphate and induces cell death. Proc Natl Acad Sci USA 2000;97:7859–64.

105. Ogawa C, Kihara A, Gokoh M, Igarashi Y. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 2003;278:1268–72.

106. Le Stunff H, Galve-Roperh I, Peterson C, Milstien S, Spiegel S.

Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol 2002;158:1039–49.

107. Van Veldhoven PP, Gijsbers S, Mannaerts GP, Vermeesch JR, Brys V.

Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochim Biophys Acta 2000;1487:128–34.

108. Ikeda M, Kihara A, Igarashi Y. Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5_-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun 2004;325:338–43.

109. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG.

Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005;309:1735–9.

110. A. Kihara, M. Ikeda, Y. Kariya, E.Y. Lee, Y.M. Lee, Y. Igarashi, Sphingosine-1-phosphate lyase is involved in the differentiation of F9 embryonal carcinoma cells to primitive endoderm, J. Biol. Chem. 278 (2003) 14578–14585.

111. K.R. Johnson, K.Y. Johnson, K.P. Becker, J. Bielawski, C. Mao, L.M.

Obeid, Role of human sphingosine-1-phosphate phosphatase 1 in the regulation

(10)

10

of intra- and extracellular sphingosine-1-phosphate levels and cell viability, J.

Biol. Chem. 278 (2003) 34541–34547.

112. YatomiY, OzakiY, Ohmori T, IgarashiY. Sphingosine 1-phosphate:

synthesis and release. Prostaglandins Other Lipid Mediat 2001;64:107–22.

113. Ito K, Anada Y, Tani M, et al. Lack of sphingosine 1-phosphate- degrading enzymes in erythrocytes. Biochem Biophys Res Commun 2007;357:212–7.

114. Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1- phosphate.

Science 2007;316:295–8.

115. Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S.

Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 2006;103:16394–9.

116. Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic or anti-atherogenic mediator?

Biochim Biophys Acta 2002;1582:132–7.

117. I. Ishii, N. Fukushima, X. Ye, J. Chun, Lysophospholipid receptors:

signaling and biology, Annu. Rev. Biochem. 73 (2004) 321–354.

118. Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 2001;41:507–34.

119. Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 2002;1582:72–80.

120. Taha TA, Argraves KM, Obeid LM. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 2004;1682:48–55.

121. Anliker B, Chun J. Cell surface receptors in lysophospholipid signaling.

Semin Cell Develop Biol 2004;15:457–65.

122. Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors:

signaling and biology. Annu Rev Biochem 2004;73:321–54.

123. Meyer zu Heringdorf D, Jacobs KH. Lysophospholipid receptors:

signalling pharmacology and regulation by lysophospholipid metabolism.

Biochim Biophys Acta 2007;1768:923–40.

124. Gr¨aler MH, Grosse R, Kusch A, Kremmer E, Gudermann T, Lipp M.

The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem 2003;89:507–19.

(11)

11

125. Wang W, Graeler MH, Goetzl EJ. Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. FASEB J 2005;19:1731–3.

126. Niedernberg A, Blaukat A, Schoneberg T, Kostenis E. Regulated and constitutive activation of specific signalling pathways by the human S1P5 receptor. Br J Pharmacol 2003;138:481–93.

127. J.R. Nofer, G. Assmann, Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids, Trends Cardiovasc. Med. 15 (2005) 265–271.

128. Mimeault M, Batra SK. Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006;24:2319–45.

129. Whetton AD, Lu Y, Pierce A, Carney L, Spooncer E.

Lysophospholipids synergistically promote hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood 2003;102:2798–802.

130. Kimura T, Boehmler AM, Seitz G, et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 2004;103:4478–86.

131. Seitz G, Boehmler AM, Kanz L,M¨ohle R. The role of sphingosine 1- phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann NY Acad Sci 2005;1044:84–9.

132. Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007;27:275–82.

133. Licht T, Tsirulnikov L, Reuveni H, Yarnitzky T, Ben-Sasson SA.

Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood. 2003;102: 2099–2107.

134. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest.

2004;113:569 –581.

135. Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M. High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation. 2004;110:3355–3359.

136. Osborne N, Stainier DY. Lipid receptors in cardiovascular development.

Annu Rev Physiol. 2003;65:23– 43.

(12)

12

137. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature.

2004;427:355–360.

138. Singer II, Tian M, Wickham LA, Lin J, Matheravidathu SS, Forrest MJ, Mandala S, Quackenbush EJ. Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes. J Immunol. 2005;175: 7151–7161.

139. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem. 2004;

279:29367–29373.

140. Liu, J., Razani, B., Tang, S., Terman, B. I., Ware, J. A. & Lisanti, M. P.

(1999) J. Biol. Chem. 274, 15781–15785

141. Tanimoto, T., Jin, Z. G. & Berk, B. C. (2002) J. Biol. Chem. 277, 42997–43001.

Riferimenti

Documenti correlati

Figure 6: While standard test set validation usually favours over-fitted nonlinear PCA models, model validation based on the correctness of missing data estimation provides a

Single-inhaler fluticasone furoate/umeclidinium/vilanterol versus fluticasone furoate/vilanterol plus umeclidinium using two inhalers for chronic obstructive pulmonary disease:

Mandatory inputs to run the model are: meteorological data, soil characteristics, crop growth data (i.e. plants density and crop growing period) and management (such as

In the context of fingerprinting applications, this article presents the performance analysis of a type of space labeling based on the binary quantization of the received

Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China. d Also at Universidade Estadual de Campinas,

In questo modello, denominato anche modello T, si assume che la capacità limite del contenuto d’acqua, ϕ , rappresenti il massimo livello raggiungibile nel serbatoio 1 (si veda

Similarly, flow cytometry analyses on total BM isolated at 3 days post-MI confirmed the increased percentage of c-kit pos cells in Ad.hNGF-injected mice (Figure 5f)..

In the Mul- tiple Risk Factor Intervention Trial, 22 the relative risk of coronary heart disease was 3.23 in subjects with an isolated increase in diastolic pressure and 4.19 in