• Non ci sono risultati.

Turning biomass into functional composite materials: rice husk for fully renewable immobilized biocatalysts

N/A
N/A
Protected

Academic year: 2021

Condividi "Turning biomass into functional composite materials: rice husk for fully renewable immobilized biocatalysts"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

EFB

Bioeconomy

Journal

journalhomepage:www.elsevier.com/locate/bioeco

Turning

biomass

into

functional

composite

materials:

Rice

husk

for

fully

renewable

immobilized

biocatalysts

Mariachiara

Spennato

a

,

Anamaria

Todea

a

,

Livia

Corici

a,#

,

Fioretta

Asaro

a

,

Nicola

Cefarin

b

,

Gilda

Savonitto

c

,

Caterina

Deganutti

a

,

Lucia

Gardossi

a,∗

a Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy b Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, Trieste TS 34149, Italy

c Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Biocatalysis for bioeconomy Covalent immobilization of lipases Rice husk

Renewable immobilization carriers Laccase oxidation of cellulose

a

b

s

t

r

a

c

t

Ricehuskisanunderexploited,lowdensityandhighlyrobustcompositematerial,massivelyavailablefromrice processing.Herewereporttwonewproceduresfortheformulationofimmobilizedlipasesapplicableinfats andoilstransformations.Theenzymeswerecovalentlyanchoredonaldehydegroupsintroducedonricehusk bylaccase-catalysedoxidationofthecellulosecomponent.Themethodavoidstheuseoftoxicglutaraldehyde whileallowsfortheapplicationandrecyclingofthebiocatalystsinaqueousmedia.Thesecondmethoduseda fluidizedbedgranulatorforthecoatingoftheparticlesofricehusk(200–400𝜇m)inthepresenceofwater-soluble binders.Theformulationsaremechanicallystableandsuitableforapplicationsindifferenthydrophobicmedia. Bothmethodsallowfortherecoveryandreuseofthericehuskattheendofthelifecycleofthebiocatalysts.

1. Introduction

Whenconsidering thelargest scaleapplicationsofenzymesin in-dustry, they include glucose isomerase for production of high fruc-tosesyrup(107 ton/y),𝛽-galactosidasesforlactosehydrolysisinmilk (105ton/y),andlipasefortransesterificationoffoodoil(105ton/y). Alltheseprocessesareembeddedinbioeconomyvaluechainsand uti-lizeimmobilizedenzymes(DiCosimoetal.,2013).Animmobilized in-solubleenzymaticformulationnotonlyenablestheirreusability,thus loweringproductioncosts,butalsoreduces wastestreamgeneration (Girellietal.,2020).Inthelastyears,wehavetackledthechallenge ofmakingbiocatalysismoresustainableandsuitableforthelarge-scale processesofbioeconomybydevelopingimmobilizedbiocatalyststhat exploitresidualbiomassfromagriculturalproducts.Achievingboththe environmentalandeconomicsustainabilityofimmobilizedenzymesis quitechallenging,sincethe“readytouse” carriers,suchasfossil-based methacrylicresins,arequiteexpensiveandalsoresponsibleof green-housegasemission(Kimetal.,2009).Finally,thestabilityoforganic fossil-basedcarrierswasreportedunsatisfactoryunderchemicaland me-chanicalstress(Hilterhausetal.,2008;Pellisetal.,2015;Koruppetal., 2010).

Considering that for bulk products the allowable cost contribu-tion of immobilized enzymes should be around 0.05 € kgproduct−1

Correspondingauthor.

E-mailaddress:gardossi@units.it(L.Gardossi).

#PresentAddresses:“CoriolanDrăgulescu” InstituteofChemistry,MihaiViteazul24,300223Timișoara,Romania

(Tufvessonetal., 2011),ricehusks(RH)attractedourattentionasa potentialrenewablecarrierforenzymeimmobilization.This lignocel-lulosic material is the second most abundant biomassglobally, pro-duced in around 120 Mt per year, of which only 20 Mt are used (Tucketal.,2012).RHisanextremelyrobustcompositematerialmade ofSiO2,lignin,hemicelluloseandcellulose,(Coricietal.,2016)which provides aversatilechemicalplatformforintroducing functionalities (Raynaud2014).Italsomeetscircularitycriteriabecauseitcanbe re-utilizedattheendofitsproposedindustrialapplication(Contrerasetal., 2012).Finally,asnaturalmaterial,ithasthesubsidiaryadvantagethat itissubjectedtolessstringentlegislativeconstraintsevenafterchemical modification(Raynaud2014).Thetubularstructureoftracheidsconfers toRHaverylowdensity(<0.4gmL−1),whileSiO

2isresponsiblefor itsremarkablemechanicalrobustness.

Our previous studies reported the chemical oxidative cleavage (NaIO4)ofthecellulosepresentinRHfortheintroductionofcarbonyl functionalities,whichwereexploitedforthebindingofenzymesinthe presenceof glutaraldehydeascrosslinking agent(Corici etal.,2016; Cespuglietal.,2018;Pellisetal.,2017).

Applicationsoflipasesinanaqueousenvironmentrequirethe cova-lentanchoringoftheenzymeonthecarriersforpreventingthe detach-mentoftheproteinanditspartitionin themedium(Biermannetal. 2000,SchmidandVerger1998).Despitethewidenumberofstudies presentintheliterature(Hanefeldetal.,2009),veryfewexamplesof

co-https://doi.org/10.1016/j.bioeco.2021.100008

Received23March2021;Receivedinrevisedform26May2021;Accepted26May2021

(2)

valentbindingonsolidsupportswithsatisfactoryandclearlystated im-mobilizationyieldshavebeenreportedsofarbecauseoftheirstructural andconformationalfeatures(Hilterhaus etal., 2008;Cantoneet al., 2013).Wehavepreviouslyreported(Cespuglietal.,2018)thatCaLB canbeimmobilizedcovalentlyonchemicallyoxidizedRHafterthe in-troductionofahexamethylenediaminespacer(HMDA)andemploying glutaraldehydeasbi-functionalagentabletoformiminebondswiththe spacerandtheaminegroupsoflysineresiduespresentonthesurfaceof thelipase.ThetoxicityofGAiswidelydocumentedalthoughitisstill usedinfoodindustryaccordingtostrictlydefinedofficialregulations. Theadversehealtheffectsonhumansincludesensitizationofskinand respiratoryorgansandclosed-systemsarerecommendedtoprevent haz-ardsfromGAexposureinindustrialplants(TakigawaandEndo2006; ToxicologicalProfile,2015;EFSA,2011)

Thepresentstudyillustratestwosustainableandscalablemethods thatdemonstratehowitispossibletoexploitRHasimmobilization car-rierwhileovercomingtheuseoftoxicreagents,suchasNaIO4and glu-taraldehyde.Thefirstapproachexploitslaccaseenzymesforthe oxida-tionofthecellulosecomponentofRHandtheintroductionofaldehyde groupsusableforthedirectcovalentanchoringofproteins.Themethod wasvalidatedwithlipaseBfrom Candida antarctica (CaLB)andlipase fromThermomyces lanuginosus (TLL),appliedinthehydrolysisof triglyc-eridesinaqueousmedia.Thesecondimmobilizationmethodemploysa fluidizedbedgranulatorforthecoatingofRHwithTLLinthepresence ofwater-solublebindersandallowsfortheinexpensiveimmobilization oflipasestobeusedinlow-watermedia.

2. Materials and methods 2.1. Chemicals

LipaseB from Candida antarctica (EC3.1.1.3,CASnumber9001– 62–1,liquidsolution,activity:1372TBU g −1 (TBU=enzymaticUnits calculatedwithtributyrinhydrolysis),proteincontent=84mgmL−1) andLaccaseNovozym51,003(EC1.10.3.2.,CASnumber80,498–15– 3)from Myceliophthora thermophila expressedin Aspergillus sp . (activ-ity: 64 UABTS mL−1) were from Novozymes(Denmark). Lipase from Thermomyces lanuginosus (specific activity: 3176 TBU g −1, liquid so-lution, protein content = 38 mg mL−1) maltodextrin, Kollidon®25, 2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO), NaOH, NaIO4, Brad-ford reagent, tributyrin and 2,2′ -Azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)diammoniumsalt(ABTS)werefrom Sigma-Aldrich. Li-pasefrom Ryzopus oryzae (powder,activity:29,496U g −1)waskindly donatedbyAmanoCorporation(Japan).LaccaseC(EC1.10.3.2)from Trametes versicolor (2176 UABTS g −1) was from ASA Spezialenzyme GmbH(Germany).PEG3000wasfromMerck.Arabicgumwasfrom FlukaTM.HydroxyethylcellulosewasfromEsperisS.p.A.(Italy).TheRH waskindlydonatedbyRiseriaCusaro,Binasco(Italy),milledandsieved aspreviouslyreported(Cespuglietal.,2018).Allenzymaticspecific ac-tivitiesandproteincontentreportedaboveweredetermined indepen-dently.

2.2. Chemical oxidation of rice husk

ThechemicaloxidationofRHwasperformedaspreviouslydescribed byCespuglietal.(2018)

2.3. Assays for enzymes activity

ActivityoflaccaseswasevaluatedusingtheABTSmethodreported byPiscitellietal.(2005)(seesupplementarymaterialsmethodS1).

Theactivityoflipases(hydrolysisoftributyrin)wasassayedas pre-viouslydescribedbyCespuglietal.(2018),Martinsetal.(2013b).

2.4. Enzymatic oxidation of RH

Protocolat20°C:a10mMsolutionofTEMPOwasaddedto0.2gof RHpreviouslywashedwith10mLsodiumcitratebuffer0.1MpH5.The laccaseandthephosphatebufferwereaddedtoobtainafinal concen-trationof8or40UmL−1in25mLtotal.Theprotocolat70°Cemployed sodiumcitratebuffer0.1MpH5usingafinallaccaseconcentrationof 8UmL−1.Thereactionmixturesweremagneticallystirred(350rpm) andairwasinsufflatedfor2minevery8htoincrease theexposure oftheenzymetooxygen.Attheendofthereaction,themixturewas filtered andwashedwithdistilledwater(15mL,4times).The recy-clabilityofthelaccasewasdemonstratedasreportedinESI(Electronic SupplementaryInformation,methodS2).

2.5. Immobilization of lipases on oxidized RH

The lipases were immobilized according to the protocol of Cespuglietal.(2018) modifiedasfollows:on0.2gofoxidizedRHby adding1mLofsolutioncontaining2000U(TBU)ofeachcommercial lipase,dilutedinphosphatebuffer(0.5MatpH8)andaddingPEG-3000 (0.5mLofa2mgmL-1solutioninphosphatebuffer0.5MatpH8)as stabilizer.

2.6. Determination of carbonyl and carboxylic groups content

Thecontentofcarbonylandcarboxylicgroupsweredeterminedas previouslydescribedbyCespuglietal.(2018).Thedetailsareincluded intheESImaterialasmethodS3andS4

2.7. Physical immobilization of lipase TLL on RH

The immobilization of TLL on 100 g of RH in the presence of polyvinylpyrrolidone (Kollidon®25), maltodextrin and hydroxyethyl cellulosewascarriedoutinafluidbedgranulatorMini-Glattfluidized bed(GlattGMbH,Binzen,Germany)equippedwithaconicalvessel (vol-umeof0.75L),threemetallicfiltersandatimingfilterblowing.The immobilizationwasperformedbyadaptingaprocedurepreviously de-scribedby Trastulloetal. (2015) anddetailsareavailable inESI as methodS5.

2.8. Energy dispersive X-ray spectroscopy (EDS)

Non-metallizedsampleswereinvestigatedwithZeissSupra40 high-resolution Field Emission Gun (FEG) Scanning Electron Microscope (SEM). Imageswereobtained bycollecting secondaryelectronswith theelectronhightension(EHT)equalto10keVthankstoan Everhart-Thornleydetector.ThemicroscopewasequippedwithanOxfordAztec energydispersiveX-rayspectroscopy(EDS)systemandanX-act10mm silicondriftdetector(SDD)forcompositionalanalysis.Thesameenergy of10keVwasexploitedtocollectthesiliconsignalonthesample (Fig-ureS1).

2.9. SEM microscopy

SamplesweremetallizedwiththeS150ASputterCoaterinstrument (EdwardsHighVacuum,Crawley,WestSussex,UK)beforebeing ob-servedwiththeLeicaStereoscan430iscanningelectronmicroscope (Le-icaCambridgeLtd.,Cambridge,UK)integratedwithanSidetector(Li) PENTAFETPLUSTM,withanATWTMwindow(OxfordInstruments, Oxfordshire,England)formicroanalysis.

2.10. Stereoscopic microscopy

(3)

Fig.1.Schematiccomparisonofthechemicaland enzymatic mediated oxidation of cellulose. The NaIO4 causes theoxidativecleavage ofthe

glu-cosewiththeformationoftwoaldehydegroups. Thelaccase/TEMPOsystemoxidizestheprimary hydroxylgrouptoanaldehyde,whichundergoes spontaneousoxidationtocarboxylgroup.

2.11. Synthesis of butyl butyrate catalyzed by immobilized TLL in hexane and toluene

TheimmobilizedTLL(160mg)wereincubatedfor1hat48°Cin hexaneortoluene(6.676mL).Thereactionwasinitiatedbytheaddition of1-butanol(0,618mL)andbutyricacid(0,206mL)at3:1molarratio. Thereactionswerecarriedoutat48°C,inanorbitalshaker(250rpm) for24handmonitoredbyHPLCasreportedinESI(methodS6).Control reactionswithoutenzymewereperformedunderidenticalconditions. Alltheexperimentsweremadeinduplicateandthemeanvalueswere considered.

2.12. Synthesis of butyl butyrate catalyzed by physically immobilized TLL in isooctane

1-butanol(0.25mL)andbutyricacid(0.25mL)(1:1 molarratio) wereaddedto9.5mlofisooctaneand130mgimmobilizedTLL.The reactionwasincubatedat45°Cinanorbitalshaker(250rpm)for21h andmonitoredasreportedinESI(methodS7).Alltheexperimentswere madeinduplicateandthemeanvalueswereconsidered.

3. Results and discussion

3.1. Enzymatic functionalization of RH

Thecovalentbindingofproteinsonanycarrierrequiresthe intro-ductionoffunctionalgroupsabletoformsuitablebondswiththeside chainsofaminoacidspresentontheproteinsurface.Wehave previ-ouslyreportedthefunctionalizationofRHthroughanoxidative cleav-ageofthecellulosiccomponentbymeansofNaIO4(Coricietal.,2016; Cespugli etal., 2018).To improvethe sustainability andscalability oftheoxidativeprocess,aprotocolwasdevelopedinwhichthetoxic NaIO4 was replaced bylaccase enzymes,copper-oxidases presentin variousorganismslikebacteria,plants,insectsandfungi(Claus2004). Bigmoleculesandnon-phenoliccompoundsareoxidizedwithdifficulty bylaccasesduetothereducedaccessibilityoftheactivesiteandalso becauseoftheir lowredoxpotential (Bourbonnaisetal.1995).This drawbackcanbe overcome withtheuseof a laccase-mediator system (LMS),namelybyaddingasmallmoleculeabletogeneratestable rad-icalspecies(CañasandCamarero2010).Inourworkwehavetaken inspirationfromtheworkofPatelandco-workersthatdescribesthe ox-idationoftheC6hydroxylofglucoseinthecellulosechaincatalyzedby laccaseinthepresenceofTEMPO-radical(Pateletal.,2011)(Fig.1b)

Inthepresentstudy,milledRHparticles(0.2–0.4mm)wereoxidized bylaccasefromTrametes sp.andlaccasefromMyceliophthora thermophile andthecontentof carbonylgroupswas assessedusing the hydroxy-laminehydrochlorideassay(Cespuglietal.,2018;Guigoetal.,2014). DatainFig.2aindicatethatlaccasefromTrametes sp.wasmoreeffective inoxidizingtheRHandthattheTEMPOmediatorwasnecessary.The amountoftheresultingcarbonylgroupsdependsonthelaccaseunits, withthehighestconcentrationachievedinthepresenceof40UmL−1 oflaccasefromTrametes sp.

Todecreasetheamountoflaccaseintheoxidationprocess,alarger amountofRHwasusedinthereactionmixturewhilemaintainingthe sameconcentrationofenzyme(Fig.2b).Thetemperaturewasalso in-creasedto70°Candtherecyclabilityofthelaccaseforfurther oxida-tivecycleswasdemonstrated.After48hofenzymatictreatment,the oxidizedRHwasremovedbyfiltrationandsomefreshrice-huskwas addedintheenzymaticsolution.Fig.2bshowsthatwithoutthe addi-tionofTEMPOtheconcentrationofcarbonylgroupsstillincreasedafter 24h,indicatingaresidualpresenceofunreactedTEMPOderivingfrom thefirstcycle.WhenTEMPOwasaddedtotherecycledenzyme,the carbonylgroupsincreasedby166%in24hand177%in48h.Overall, thedatasuggestthattheTEMPOconcentrationcanbereducedinboth cyclesandthattheoxidationoccursmuch fasterin thesecond cycle (terminated in24h),thusdemonstratingtherecyclabilityof the lac-case.Theobservedhigheractivityinthesecondcyclecouldbeascribed toactivationphenomenaoccurringuponexposuretohightemperature ordenaturingfactors,asreportedinourstudyonlaccasefromSteccher- inum ochraceum 1833.Bymeansofmoleculardynamicssimulationswe disclosedminorsuperficialconformationalmodificationsofthelaccase thatimproveitsactivitywithoutcausingsevereunfoldingnorthe dis-ruptionoftheelectrontransferpathway(ETP)(Ferrarioetal.,2015).

Currentdataonthepreservationoftheactivityofthelaccasefrom Trametes sp.during96hofreactionat70°Csuggestthattheenzymatic oxidativefunctionalizationofRHcanbefurtheroptimizedinorderto maximizethenumberofcyclesandminimizeofeconomicimpactof thetreatment.TheTEMPOmediatorseems toplayamajorroleand althoughitsconcentrationcanbereduced,itsenvironmentaland eco-nomicimpactdeservesforfurtherattention.Futurestudieswillbe fo-cusedonthereplacementofTEMPOwithrenewableandinexpensive mediatormolecules,whichhavebeenprovedeffectiveinprevious stud-ies(CañasandCamarero2010;Medinaetal.,2013)

Inallcases,thecontentofcarbonylgroupsmeasuredafterthe en-zymaticLMSmethod(Fig.2a)resultedtobeconsiderablylowerthan the1mmol g −1obtainedwith0.2MNaIO

(4)

Fig.2. (a)Concentrationofcarbonylgroupsupondifferentoxidationtreatmentsat20°C.RH1:untreatedrisehusk;RH2:Novozyme51,00320UmL−1;RH3:

LaccaseC8UmL−1;RH4:LaccaseC40UmL−1withoutTEMPO;RH5:LaccaseC40UmL−1withTEMPO.(b)Oxidationat70°Candrecyclingoflaccase:first48h

cycleofoxidation(blackbars);laccasereusedforasecondoxidationcycleonfreshRH(graybars);recycledlaccasebutwithoutadditionofTEMPO.

Fig.3. SEMimagesillustratingtheeffectofNaIO4(a,c)vsenzymaticoxidation

(b,d)onthemorphologyofRH.CorrosiveeffectoftheNaIO4onthesurface(a)

andontheinnercellulosicmatrixoftracheid(d).

unit,whereasinthecaseofLMSoxidationonesinglecarbonylgroup perglucoseunitisformed.Moreover,SEMmicroscopyhighlightedthe corrosiveeffectofNaIO4,whichleadstomarkedcovalentmodification ofthepolysaccharidebecauseoftheoxidativecleavage,openingthe ac-cesstodeeperlayersofthematerial(Fig.3),bothinsidethetracheid structures(Fig.3c)andontheoutersurface(Fig.3a).

Fig.3indicatesthepoorselectivityoftheNaIO4towardsthevarious componentsof thelignocellulosicmatrixof theRH.Onthecontrary, theenzymatictreatmentwithlaccasecausesnegligiblemorphological modificationontheexternalsurface,whileleadstoamodestincrease oftheroughnessoftheinternalsurfaceofthetracheids.

MorphologicalstudiesmakinguseofenergydispersiveX-ray spec-troscopy (EDS) were of aid in understanding the robustnessof the outersurfaceofthehuskand,moreprecisely,thelocalizationofSiO2 (Parketal.,2003;Colettaetal.,2013).UsingtheEDS(Fig.4right)the K𝛼1signalofthesilicon(ESIFigureS1)wascollected(greendots)to appreciatethepresenceSiO2onthesurfaceoftheRHandtoconfirmits roleinprotectingthericegrainfrommechanicalandchemicalagents.

Theformationofcarboxylicgroupsduringboththechemicaland enzymaticoxidationprocesseswerealsoevaluated(ESIFigureS2)and theyconfirmedthattheoxidationofaldehydestocarboxylicgroupsis notlaccasemediated.

3.2. Glutaraldehyde free covalent immobilization of lipases on RH Inthepresentstudy,we aimedatsimplifying theimmobilization protocol,byreducingthesyntheticstepswhileavoidingtheuseof glu-taraldehyde(GA).Wehaveexploredthepossibilitytoformtheimine bonddirectly betweenlysineresidues andthecarbonyl grouponC6 formed via laccaseoxidation,whichappearsmoreaccessiblethanthe di-aldehydegroupsobtainedusingNaIO4.Twomorelipasesweretested inthestudy:lipasefromThermomyces lanuginosus (TLL)andlipasefrom Rhizopus oryzae (ROL),whicharewidelyemployedinthefoodsector for thetransesterification of oils andfats (Higashiyama andSumida 2004).Therefore,avoidingtheuse ofglutaraldehyde intheir formu-lationswouldbedesirable(Zeigeretal.,2005).

Thetri-dimensionalmodelsofthelipasesarereportedinESI (Fig-ure S3).TLLandROLundergointerfacialactivation(Ferrarioetal. 2011)whenapproachingahydrophobicphase,whereasCaLBdoesnot undergosignificantconformationalchangesanditsactivesiteis perma-nentlyaccessible(Ferrarioetal.2011,Bassoetal.,2007).Theanalysis ofthenumberandthepositionoflysineresiduespotentiallyinvolved in thecovalentbindingwiththecarrierindicatesthatCaLBandTLL have9and7lysinesrespectively,whereasROLhas15lysines,oneof themlocatedintheproximityoftheactivesite.Thatfeaturemakesthe immobilizationofROLquitechallenging,sincetheformationofthe co-valentbondcanoccludetheactivesitebutalsopreventthenecessary conformationalchangesconnectedtotheinterfacialactivation.Indeed, previousdatacollectedinourgroupshowedthatthehydrolytic activ-ityiscompletelylostuponcovalentimmobilizationofROLinaqueous bufferonmethacrylicepoxyresins(Gardossietal.,2012).

DatareportedinTable1 demonstratethatTLLandCaLBcanbe an-choreddirectlyontheenzymaticallyoxidizedRH,whileavoidingthe useofglutaraldehydeandspacers.Higherloadingwasobtainedinthe caseofRHoxidizedenzymatically,indicatingaregio-preferenceinthe formationofiminebondswiththemoreaccessiblealdehydegroupson C6.

(5)

forma-Fig.4.Left:SEMimageoffragmentsofmilledRH, showingthelinearrippleswithconicalshapeonthe externalsurface.Right:2Dmapthedistributionof SiO2.

Table1

FormulationsoflipasescovalentlyimmobilizedonRH.Inallcases10.000UoflipasepergofRHwereemployed.Theactivityisexpressed astheaverageofthreemeasurements.LMS=laccasefromTrametessp.+Tempomediator.Lastthreeentrieswerepublishedinref. (Cespuglietal.,2018)andarereportedforcomparison.

Lipase Oxidation method Other functionalization Protein loaded (%) hydrolytic activity (Ug -1 dry ) immobilization yield (%)

CALB LMS no 65 590 ± 2 5.9 TLL LMS no 72 974 ± 65 9.74 ROL LMS no 53 328 ± 42 3.28 CALB NaIO 4 no 33 290 ± 45 2.90 TLL NaIO 4 no 56 643 ± 67 6.43 ROL NaIO 4 no 32 171 ± 14 1.71 CALB LMS GA 55 155 ± 5 1.55 CALB NaIO 4 GA 65 < 50 < 0,5 CaLB LMS HMDA + GA § 17 56 ± 25 0.56

CaLB NaIO 4 HMDA + GA § 72 316 3.16

CaLB n.a. Epoxy (on methacrylic resin) § 95 709 7.09

§previouslypublished.

tionofunspecificcovalentbondsandcrosslinks.Whencomparedtoour previouslypublisheddataofimmobilizationofCaLBonRHchemically oxidizedandfunctionalizedwithdiaminospacerswithGA,thespecific activitywiththesimplifiedprotocolisalmostdoubled.The immobiliza-tionyieldiscomparabletothatobservedforCaLBimmobilizedonepoxy methacryliccarrier(Cespuglietal.,2018)

The immobilization yields are in line with previous experimen-taldata obtained in thecovalentimmobilizationof different lipases on epoxy methacrylic resins using aqueous bufferasimmobilization medium, which have been always below 10% (Pellis et al., 2016; Gardossietal.,2012).Thedifficultiesencounteredinthecovalent im-mobilizationoflipaseshavebeendiscussedpreviouslyandtheyare as-cribablebothtotheirconformationalandsuperficialstructuralfeatures (Cantoneetal.,2012;Ferrarioetal.,2011).Conversely,veryfewstudies reporttheactualimmobilizationyieldaccompaniedbytheevaluation oftheproteinleachingfromthesupport,asaproofoftherobust an-chorageoftheenzymeonthecarrier.Atthebestofourknowledge,no covalentlyimmobilizedlipaseiscommercializedforindustrial applica-tions,althoughthehydrolyticapplicationsoftheseenzymesrequestthis typeofformulationforenablinganefficientrecyclingofthebiocatalyst andthereductionofthecosts.Asamatteroffact,ananalysisof Tufves-sonandco-workers(Tufvessonetal.,2011)indicatedthatinthecaseof biocatalystsimmobilizedbyadsorption63%ofthematerialcostis as-cribabletothecarrierandonly37%totheenzyme.Takingintoaccount thatthecostofcarriersforcovalentimmobilizationisabout2–6times higher,itisevidentthattheeconomicviabilityofthesebiocatalystsis mainlylinkedtothepriceofthecarrierandthepreservationofthe en-zymeactivityacrossmultiplereactioncycles(i.e.productivity). There-fore,thereareseveralpotentialadvantagesderivingfromthecovalent immobilizationoflipasesonoxidizedricehusk.Firstlythecostofthe carrierisreduced;secondlytheenzymecanbeseparatedbythe hydrol-ysisproductandrecycled,thusfurtherdecreasingtheeconomicimpact ofthebiocatalyst;finally,there-useofthenon-fossilandbiodegradable

carrierattheendofthebiocatalystlifecyclewouldintegrate environ-mentalandeconomicsustainability.

3.3. Stability and recyclability of covalently immobilized lipases in aqueous media

Thestabilityof theimmobilizedlipases wasevaluated inthe hy-drolysisoftributyrin,undervigorousmechanicalstirring.Theresultsin Fig.5indicateanexcellentstabilityofCaLBonricehuskandTLLonrice huskafter10reactioncycles,withabout80%and70%ofrecovered ac-tivity,whereasROLretainsonly15%ofactivity,whichwasascribedto theleachingofROLfromRH,asexperimentallyobserved(ESI,Figure S4).Notably,allbiocatalystsreportedinTable1 weretestedfor pro-teinleachingandonlyROLformulationsshowedthedetachmentofthe proteinfromthecarrier.

(6)

Fig.5. OperationalstabilityofCaLBonricehusk(blackbar)TLLonricehusk(graybar)andROLonricehusk(whitebar)inmultiplehydrolyticcyclesexpressed asthepercentageofretainedactivityaftereachcycle.Measurementswerecarriedoutinduplicateandreportedastheaveragevalue.

3.4. Physical immobilization of TLL in a fluidized bed

Thesecondpartofthestudywasaimedbydevelopingscalable pro-ceduresfor theimmobilizationoflipases tobeapplied in low-water hydrophobicmedia,whileensuringenvironmentalandeconomic sus-tainability.Generally,theapplicationofimmobilizedenzymesin hy-drophobicmediadoesnotrequirethecovalentbindingoftheproteinto thecarrier,sincetheenzymehasaloweraffinityforthehydrophobic phase(Pellisetal.,2015).

LipaseTLLwas selectedforthestudyanditwas immobilizedon milled RH (200–400 μm) in a fluidized bed in the presence of an aqueoussolutionofdifferentbindersapprovedforpharmaceuticalsand foodapplications:Kollidon25(polyvinylpyrrolidone=PVP)(Reddyand Sharma,2020),hydroxyethylcellulose(HEC)(DiGiuseppe2018)and maltodextrin(MLDX)(Velásquez-Cocketal.,2018).Auniformlayerof enzymecoatedtheRHandtheimmobilizedbiocatalystsappearas dis-tinctparticles,withoutanyexampleofagglomerates(Fig.6).

3.5. Synthesis of butyl butyrate catalyzed by TLL physically immobilized on rice husk particles

Theefficiencyof theTLLformulations obtainedthroughphysical immobilizationwasevaluatedinthesynthesisofbutylbutyrate start-ingfrombutyricacidand1-butanol(Martinsetal.,2013a).Thisshort chainfruityester,presentinpineappleflavor(Martinsetal.,2013),is usedinperfumesandfragrances,waxes,washing,cleaning,cosmetics andpersonalcareproducts(Xinetal.,2016).Threeorganicsolvents weretested:toluene(logP2.5),hexane(logP3.5)andisooctane(log P4.6).Figs.7illustratesthetime-courseofthereactionsinhexaneand toluene,indicatingstrikingdifferencesofperformanceofthe biocata-lysts.Inhexane,PVP-TLLleadstocompleteconversioninlessthan5h, whereastheprofilesoftheothertworeactionssuggestsomelag-time beforethestartingofthereactions,possiblyascribable tosomemass transferlimitation.Conversions>93%wereachievedinallcasesandit

wasnoticedthattheabsenceofagglomeratesconfershighmechanical stabilitytotheformulations,preventingdisaggregationandproduction offinesuponstirring.

Allreactionscarriedoutintoluenewereconsiderablyslower: PVP-TLLwasthebestperformingformulationwith > 80%conversionafter 8hofreaction,whileMLDX-TLLstoppedworkingafter10%of conver-sion.

Controlreactionswereperformedintheabsenceofthebiocatalyst, usinglipasefreeparticlesofRHtreatedinthefluidizedbedonlywiththe binders.Moreover,blankexperimentsdemonstratedtheabsenceofany aspecificadsorptionofthesubstrateonthebiocatalystwhenincubated intoluene(ESIFigureS5).

Whenthe synthesiswas conductedin isooctane(Batistella etal., 2012),thesubstrateswereemployedinequimolaramounts,resulting inalowerconcentrationof1-butanolascomparedtotheprevious syn-thesis.Inthiswaywewantedtoverifythepossibilitytoachieve quan-titativeconversionevenwithoutusinganexcessofthepolaralcohol, whichisknowntoaffectnegativelythestabilityofenzymes.

(7)

intrin-Fig.6. TLLphysicallyimmobilizedonricehuskparticlesand pre-pared using a fluidized bed reactor. Images obtained by means of stereoscopicmicroscopyat differentmagnificationvalues: PVP (a)−10x(b)−60xandHEC(a)−10x(b)−60x.

Fig.7. ReactionprofilesofthesynthesisofbutylbutyratesynthesiscatalyzedbyTLLphysicallyimmobilizedonricehuskparticlesinhexane(a)andtoluene(b).

sicactivityofthelipase,whereas thepartitionphenomenaappearto predominate.

3.6. Stability of physically immobilized TLL and reusability of rice husk PVP-TLLandHEC-TLLweretestedunderhydrolysisconditionsand vigorous stirringin order toevaluatethemechanical stabilityof the formulationsbutalsotomonitorthedetachmentoftheenzymefrom theRH.Thedeterminedhydrolyticactivities(TBU)were4459Ug-1for HEC-TLLand6609Ug-1forPVP-TLL.Comparedtothepreviously im-mobilizedTLLontosilicagranules,thehydrolyticactivitiesobtainedin thisstudywereatleast2timeshigher(Ferreretal.,2002).Microscope

images(ESIFigureS6)demonstratethattheintegrityoftheRHisfully preserved after10 cyclesof reactionundervigorousmechanical stir-ring.Itmustbenoted,thatafter4yearsofstorageat4°CPVP-TLLand HEC-TLLpreserved96%and82%ofhydrolyticactivityrespectively.No microbialcontaminationwasobserved,indicatingthelong-term stabil-ityofthetwoformulations.

(8)

Fig.8. SynthesisofbutylbutyratecatalyzedbythethreedifferentformulationsofimmobilizedTLLinisooctane(a)andisooctanewithadditionof0.1%(v/v)of H2O(b).

beingmadebyasinglerobustfragmentofcompositematerial,which doesnotundergodisaggregationortheformationoffinesunderphysical stress.

ConcerningthereusabilityofRH,dataconfirmthattheenzyme de-tachesfromRH(> 90%)afteronecycleinaqueoussolution(FigureS6) butthecarrierremainsintact(FigureS7).Therefore,attheendofthe biocatalystlifecycle,theRHcanbereutilizedeitherasimmobilization carrierorforsecondaryuses(Contrerasetal.,2012).

Inordertoperformaverypreliminaryanalysisoftheeconomic sus-tainabilityofnewvaluechainsforthevalorizationofrice,we consid-eredtheItaliancontext.Ricemillssellonlyafractionofricehuskfor amaximumpriceof90€ ton−1(CCIAA,2021).Thatricehuskisused byflorists,farmersforanimallitterandpoultryfarms.Someoftherice huskisemployedbymillsalsofortheinternalproductionofenergyand steamrequiredforparboiledriceproduction.However,theashcontent ofburntricehuskisveryhigh(about20%byweight)comparedtoother biomasssuchaspoplar(1.0%)anddealingwiththelargeamountof re-mainingashisextremelydifficult.Therefore,ricehuskscanbe sustain-ablyusedasafuelforenergyrecoveryonlywhentheirashisusedasa resource.Whenburntat700°C,ricehuskyieldsashcontains97%silica inamorphousform,whichhasmanyapplicationssuchasin construc-tionalworks,intheproductionofporcelainorasamendantinpaddy fields.(SekifujiandTateda2019).

Notably,thecostsofcommercialorganiccarriers,arearound50€ kg−1 foradsorption immobilization,which meansthat theyhave no chemicalfunctionalitiesontheirsurface,buttheysimplyinteractwith theproteinbyweaknon-covalentinteractions(Tufvessonetal.,2011). Carrierspricereaches100–300€ kg−1whentheyarefunctionalizedfor covalentimmobilization,andthesefiguresmakeevidentthatthereis potentialfornewusesofricehuskandthatricemillswouldfindmore advantageoustoselllargeramountsofricehusktoindustriesableto transformitinaddedvalueproducts,which,attheendoftheirlife cy-cle,couldbetransformedinenergyoreventuallyreturntothesoil.The latterusewouldbeparticularlyfeasibleforbiocatalystsappliedinthe foodsector,wherenontoxicsubstratesareprocessed.

Conclusions

DataherereporteddemonstratethatRHisaversatilenatural com-positematerialthatcanbeusedbothforthecovalentandphysical im-mobilizationoflipases.Thecovalentimmobilizationwasperformedby anchoringtheproteindirectlyonthefunctionalizedcarrier,withoutthe needofspacersorglutaraldehyde,leadingtostableformulationsofTLL andCaLB,retaining>70%ofactivityafter10cyclesofhydrolysis.These biocatalysts,becauseoftheirstabilityandrobustness,areapplicablein variousreactionmediaandundermechanicalstress.The

functionaliza-tionofRHwasachievedbymeansoflaccasesinthepresenceofTEMPO mediatorandthelaccasewasreusedfordifferentoxidativecycles.The nextoptimizationstepswillbefocusedonthereplacementofTEMPO withrenewablemediatormolecules.

TheinexpensiveandeasilyscalableimmobilizationoflipaseTLLwas achieved usingafluid-bedgranulatorandwater-solublebinders. Be-causeofthelowtoxicityofthematerialsandthepossibilityofreusing theRHattheendofthebiocatalystlifecycle,thismethodappears ap-propriateforindustrialapplicationsinlow-aqueousmediarequesting low-toxic,inexpensiveandsustainablesolutions.

Overall,themethodsherepresentedintendtoprovideacontribution tothedevelopmentofanewwaveofrenewableindustrialcarriersfor enzymeimmobilization,abletoreplacepetrol-basedmaterialsandto overcometheirnaturalcapitalcost(RaynaudJ.,2014).

Authors contribution

Conceptualization:LuciaGardossi,MariachiaraSpennato Methodology:MariachiaraSpennato,LiviaCorici

Validation:MariachiaraSpennato,AnamariaTodea,FiorettaAsaro Investigation: Mariachiara Spennato, Nicola Cefarin, Gilda Savonitto,CaterinaDeganutti

Writing -Original Draft Preparation:Mariachiara Spennato, Ana-mariaTodea,LuciaGardossi,LiviaCorici,CaterinaDeganutti

Writing-Review&Editing:MariachiaraSpennato,AnamariaTodea, LuciaGardossi,FiorettaAsaro

SupervisionLuciaGardossi FundingacquisitionLuciaGardossi Declaration of Competing Interest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgment

(9)

Supplementary materials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bioeco.2021.100008.

References

Adlercreutz, P. , 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev 42, 6406–6436 .

Basso, A. , De Martin, L. , Ebert, C. , Gardossi, L. , Linda, P. , Zlatev, V. , 2001. Activity of covalently immobilised PGA in water miscible solvents at controlled a w. . J. Mol. Catal. B: Enzym 11, 851–855 .

Basso, A. , Braiuca, P. , Cantone, S. , Ebert, C. , Linda, P. , Spizzo, P. , Caimi, P. , Hanefeld, U. , Degrassi, G. , Gardossi, L. , 2007. In silico analysis of enzyme surface and glycosylation effect as a tool for efficient covalent immobilization of CalB and PGA on Sepabeads®. Adv. Synth. Catal 349, 877–886 .

Batistella, L. , Ustra, M.K. , Richetti, A. , Pergher, S.B. , Treichel, H. , Oliveira, J.V. , Lerin, L. , de Oliveira, D. , 2012. Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Biopro- cess. Biosyst. Eng. 35 (3), 351–358 .

Cañas, A.I. , Camarero, S. , 2010. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv 28, 694–705 . Cantone, S. , Spizzo, P. , Fattor, D. , Ferrario, V. , Ebert, C. , Gardossi, L. , 2012. Lipases for

bio-based chemistry: efficient immobilised biocatalysts for competitive biocatalysed processes. Chim. Oggi 30 (3), 10–14 .

Cantone, S. , Ferrario, V. , Corici, L. , Ebert, C. , Fattor, D. , Spizzo, P. , Gardossi, L. , 2013. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the se- lection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev 42, 6262–6276 .

Cespugli, M. , Lotteria, S. , Navarini, L. , Lonzarich, V. , Del Terra, L. , Vita, F. , Zweyer, M. , Baldini, G. , Ferrario, V. , Ebert, C. , Gardossi, L. , 2018. Rice husk as an inexpensive renewable immobilization carrier for biocatalysts employed in the food, cosmetic and polymer sectors. Catalysts 8, 471 .

CCIAA 2021, https://www.paviaprezzi.it/ingrosso/pavia/index?screen = medie Claus, H. , 2004. Laccases: structure, reactions, distribution. Micron 35, 93–96 . Coletta, V.C. , Rezende, A.C. , da Conceição, R. , Polikarpov, I. , Guimarães, F.E.G. , 2013.

Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and flu- orescence lifetime imaging microscopy. Biotechnol. Biofuels 6, 43 .

Contreras, L.M. , Schelle, H. , Sebrango, C.R. , Pereda, I. , 2012. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying. Water Sci. Technol. 65, 1142–1149 .

Corici, L. , Ferrario, V. , Pellis, A. , Ebert, C. , Lotteria, S. , Cantone, S. , Voinovich, D. , Gar- dossi, L. , 2016. Large scale applications of immobilized enzymes call for sustainable and inexpensive solutions: rice husks as renewable alternatives to fossil-based organic resins. RSC Adv. 6, 63256–63270 .

Di Giuseppe E., Analogue materials in experimental tectonics. 2018, 10.1016/B978-0-12- 409548-9.10909-1.

DiCosimo, R. , McAuliffe, J. , Pouloseb, A.J. , Bohlmann, G. , 2013. Industrial use of immo- bilized enzymes. Che. Soc. Rev. 42 (15), 6437–6474 .

EFSA, 2011, https://www.efsa.europa.eu/sites/default/files/consultation/110712a.pdf Ferrario, V. , Ebert, C. , Knapic, L. , Fattor, D. , Basso, A. , Spizzo, P. , Gardossi, L. , 2011.

Conformational changes of lipases in aqueous media: a comparative computational study and experimental implications. Adv. Synth. Catal. 353, 2466–2480 . Ferrario, V., Chernykh, A., Fiorindo, F., Kolomytseva, M., Sinigoi, L., Myasoedova, N.,

Fattor, D., Ebert, C., Golovleva, L., Gardossi, L., 2015. Investigating the role of con- formational effects on laccase stability and hyperactivation under stress conditions. ChemBioChem 6, 2365–2372. doi: 10.1002/cbic.201500339 .

Ferrer, M. , Plou, F.J. , Fuentes, G. , Cruces, M.A. , Andersen, L. , Kirk, O. , Christensen, M. , Ballesteros, A. , 2002. Effect of the immobilization method of lipase from Thermomyces

lanuginosus on sucrose acylation. Biocatal Biotransform 20 (1), 63–71 .

Gardossi L., Sinigoi L., Spizzo D., Fattor D. Method for covalent immobilization of enzymes on functionalized solid polymeric supports. 2012, WO2012085206 (A1); EP2655611 (A1).

Girelli, A.M. , Astolfi, M.L. , Scuto, F.R. , 2020. Agro-industrial wastes as potential carriers for enzyme immobilization: a review. Chemosphere 244, 125368 .

Guigo, N. , Mazeau, K. , Putaux, J.L. , Heux, L. , 2014. Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzy- lamine: a topochemical study. Cellulose 21, 4119–4133 .

Hanefeld, U. , Gardossi, L. , Magner, E. , 2009. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 38, 453–468 .

Higashiyama K., Sumida M., Process for production of transesterified oils/fats or triglyc- erides, 2004, WO04/024930.

Hilterhaus, L. , Minow, B. , Mller, J. , Berheide, M. , Quitmann, H. , Katzer, M. , Thum, O. , Antranikian, G. , Zeng, A.P. , Liese, A. , 2008. Practical application of different enzymes immobilized on sepabeads. Bioprocess Biosyst. Eng. 31, 163–171 .

Kim, S. , Jiménez-González, C. , Dale, B.E. , 2009. Enzymes for pharmaceutical application- s-a cradle-to-gate life cycle assessment. Int J. Life Cycle Assess 14, 392–400 . Korupp, C. , Weberskirch, R. , Müller, J.J. , Liese, A. , Hilterhaus, L. , 2010. Scaleup of lipase–

catalyzed polyester synthesis. Org. Process Res. Dev. 14, 1118–1124 .

Martins, A.B. , Friedrich, J.L.R. , Cavalheiro, J.C. , Garcia-Galan, C. , Barbosa, O. , Ayub, M.A.Z. , Fernandez-Lafuente, R. , Rodrigues, R.C. , 2013a. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene– divinylbenzene beads. Bioresour. Technol. 134, 417–422 .

Martins, A.B. , Friedrich, J.L. , Rodrigues, R.C. , Garcia-Galan, C. , Fernandez-Lafuente, R. , Ayub, M.A. , 2013b. Optimized butyl butyrate synthesis catalysed by Thermomyces

lanuginosus lipase. Biotechnol Prog 29 (6), 1416–1421 .

Medina, F. , Aguila, S. , Baratto, M.C. , Martorana, A. , Basosi, R. , Alderete, J.B. , Vazquez– Duhalt, R. , 2013. Prediction model based on decision tree analysis for laccase medi- ators. Enzyme Microb. Technol. 52 (1), 68–76 .

Park, B. , Wi, G.S. , Lee, H.K. , Singh, P.A. , Yoon, T. , Kim, S.Y. , 2003. Characterization of anatomical features and silica distribution in rice husk using microscopic and micro– analytical techniques. Biomass Bioenergy 25, 319–327 .

Patel, I. , Ludwig, R. , Haltrich, R. , Rosenau, T. , Potthast, A. , 2011. Studies of the chemoen- zymatic modification of cellulosic pulps by the laccase-TEMPO system. Holzforschung 65, 475–481 .

Pellis, A. , Corici, L. , Sinigoi, L. , D’Amelio, N. , Fattor, D. , Ferrario, V. , Ebert, C. , Gardossi, L. , 2015. Towards feasible and scalable solvent-free enzymatic polycondensations: inte- grating robust biocatalysts with thin film reactions. Green Chem. 17, 1756–1766 . Pellis, A. , Ferrario, V. , Zartl, B. , Brandauer, M. , Gamerith, C. , Herrero Acero, E. , Ebert, C. ,

Gardossi, L. , Guebitz, G.M. , 2016. Enlarging the tools for efficient enzymatic polycon- densation: structural and catalytic features of cutinase 1 from Thermobifida cellulosi-

lytica . Catal. Sci. Technol. 6, 3430–3442 .

Pellis, A. , Ferrario, V. , Cespugli, M. , Corici, L. , Guarneri, A. , Zartl, B. , Herrero Acero, E. , Ebert, C. , Guebitz, Ebert C. , Guebitz, G.M. , Gardossi, L , 2017. Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach. Green Chem. 19, 490–502 .

Persson, M. , Wehtje, E. , Adlercreutz, P. , 2002. Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents. ChemBioChem 3 (6), 566–571 3 .

Raynaud, J., 2014. Valuing plastics: the business case for measuring, managing and dis- closing plastic use in the consumer goods industry. United Nations Environ. Program. (UNEP). https://www.oceanrecov.org/pdp/valuing-plastic-report.html .

Reddy, R.D.P. , Sharma, V. , 2020. Additive manufacturing in drug delivery applications: a review. Int. J. Pharma. 589, 119820 .

Schmid, R.D. , Verger, R. , 1998. Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed 37, 1608–1633 .

Sekifuji, R. , Tateda, M. , 2019. Study of the feasibility of a rice husk recycling scheme in Japan to produce silica fertilizer for rice plants. Sustain. Environ. Res. 29 (11), 1–9 . Sven P., Morkeberg L.A., Per A., Method of enzyme immobilization on a particulate silica

carrier for synthesis inorganic media. 1996.US19960676367.

Takigawa, T. , Endo, Y. , 2006. Effects of Glutaraldehyde exposure on human health. J. Occup. Health 48, 75–87 .

Toxicological Profile, 2015, https://www.atsdr.cdc.gov/sites/peer_review/tox_profile_ glutaraldehyde.html .

Trastullo, R. , Dolci, L.S. , Passerini, N. , Albertini, B. , 2015. Development of flexible and dis- persible oral formulations containing praziquantel for potential schistosomiasis treat- ment of pre-school age children. Int. J. Pharm. 495 (1), 536–550 .

Tuck, C.O. , Perez, E. , Horvath, I.T. , Sheldon, R.A. , Poliakoff, M. , 2012. Valorization of biomass: deriving more value from waste. Science 337, 695–699 .

Tufvesson, P. , Lima-Ramos, J. , Nordblad, M. , Woodley, M.J. , 2011. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process. Res. Dev. 15, 266–274 .

Velásquez-Cock, J. , Gañán, P. , Gómez H., C. , Posada, P. , Castro, C. , Dufresne, A. , Zulu- aga, R. , 2018. Improved redispersibility of cellulose nanofibrils in water using mal- todextrin as a green, easily removable and non-toxic additive. Food Hydrocoll. 79, 30–39 .

Xin, F. , Basu, A. , Yang, K.-.L. , He, J. , 2016. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour. Technol. 202, 214–219 .

Riferimenti

Documenti correlati

the total number of nuclei per area unit of C2C12 cells grown on glass or on 13 kPa gelatin-GP

2 disasters in 2012 has the highest percentage of global disaster victims – namely Asia – is also the one having the largest share of the world population with increasing

a) A state transition occurs once per major computa- tion and can have useful mathematical properties. State transitions are not involved in the tiniest details of a

Figure S8: 1 H-NMR spectrum (CDCl3, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on rice husk after

Ciceri, S.; Ferraboschi, P.; Grisenti, P.; Reza Elahi, S.; Castellano, C.; Mori, M.; Meneghetti,

Yi (i = 3, 7 and 28) - the compressive strength of the samples HPC (R HPC , MPa) at the ages of 3, 7 and 28 days are considered as an objective functions of the experimental model.

The quantification of quantumness is necessary to assess how much a physical system departs from a classical behaviour and thus gauge the quantum enhancement in opera- tional tasks

Complexity, sophistication, and rate of growth of modern networks, coupled with the depth, continuity, and pervasiveness of their role in our everyday lives, stress the importance