• Non ci sono risultati.

Measurement of the cross-section for electroweak production of dijets in association with a Z boson in pp collisions at √

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the cross-section for electroweak production of dijets in association with a Z boson in pp collisions at √ "

Copied!
23
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the cross-section for electroweak production of dijets in association with a Z boson in pp collisions at √

s = 13 TeV with the ATLAS detector

.The ATLAS Collaboration



a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received2October2017

Receivedinrevisedform19October2017 Accepted19October2017

Availableonline27October2017 Editor:W.-D.Schlatter

The cross-section for the productionof two jetsinassociation with aleptonically decaying Z boson (Z jj)ismeasuredinproton–protoncollisionsatacentre-of-massenergyof13 TeV,usingdatarecorded with the ATLAS detector atthe LargeHadron Collider, corresponding to an integrated luminosity of 3.2 fb1. The electroweak Z jj cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell–Yan Z jj process, which is constrained using adata-drivenapproach. The measuredfiducialelectroweak cross-sectionis σEWZjj = 119±16 (stat.)± 20(syst.)±2(lumi.)fbfordijetinvariantmassgreaterthan250 GeV,and34.5.8(stat.)±5.5(syst.)± 0.7(lumi.)fbfordijetinvariantmassgreaterthan1 TeV.StandardModelpredictionsareinagreement withthemeasurements.TheinclusiveZ jj cross-sectionisalsomeasuredinsixdifferentfiducialregions withvaryingcontributionsfromelectroweakandDrell–YanZ jj production.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

AttheLargeHadronCollider(LHC)eventscontainingaZ boson andatleasttwojets( Z jj)areproducedpredominantlyviainitial- state QCD radiation from the incoming partons in the Drell–Yan process (QCD- Z jj), asshownin Fig. 1(a).Incontrast,the produc- tionofZ jj eventsviat-channelelectroweakgaugebosonexchange (EW- Z jj events),including the vector-bosonfusion (VBF) process showninFig. 1(b),isamuchrarerprocess.SuchVBFprocessesfor vector-bosonproductionareofgreatinterestasa‘standardcandle’

forother VBF processesatthe LHC: e.g.,the productionof Higgs bosons or thesearch forweakly interacting particles beyondthe StandardModel.

Thekinematicpropertiesof Z jj eventsallowsomediscrimina- tionbetweentheQCDandEWproductionmechanisms.Theemis- sionofavirtualW bosonfromthequarkinEW- Z jj eventsresults inthepresenceoftwohigh-energyjets,withmoderatetransverse momentum(pT),separatedbyalargeintervalinrapidity( y)1 and

 E-mailaddress:atlas.publications@cern.ch.

1 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal interaction point inthe centre ofthe detector and the z-axisalong the beam pipe.Inthetransverseplane,the x-axispointsfromtheinteractionpointtothe centreofthe LHCring,the y-axispoints upward,andφ isthe azimuthalangle aroundthe z-axis.Thepseudorapidityisdefinedintermsofthepolarangleθas η= −ln tan(θ/2).Therapidityisdefinedasy=0.5ln[(E+pz)/(Epz)],whereE andpzaretheenergyandlongitudinalmomentumrespectively.Anangularsepara-

thereforewithlargedijetmass(mj j)thatcharacterisestheEW- Z jj signal.AconsequenceoftheexchangeofavectorbosoninFig. 1(b) is that there is no colour connection between the hadronic sys- temsproducedbythebreak-upofthetwoincomingprotons.Asa result,EW- Z jj eventsarelesslikelytocontainadditionalhadronic activityintherapidityintervalbetweenthetwohigh-pT jetsthan correspondingQCD- Z jj events.

The first studies of EW- Z jj productionwere performed [1]in pp collisionsatacentre-of-massenergy(√

s)of7 TeVbytheCMS Collaboration,wherethebackground-onlyhypothesiswasrejected atthe2.6

σ

level.ThefirstobservationoftheEW- Z jj processwas performedbytheATLAS Collaborationatacentre-of-massenergy (√

s)of8 TeV[2].Thecross-sectionmeasurementisinagreement withpredictionsfromthe Powheg-box eventgenerator[3–5]and allowed limitsto beplaced onanomalous triplegauge couplings.

The CMS Collaboration has also observed and measured [6] the cross-sectionforEW- Z jj productionat8 TeV.ThisLetterpresents measurements ofthecross-section forEW- Z jj productionandin- clusive Z jj productionathighdijetinvariantmassinpp collisions at√

s=13 TeV usingdatacorrespondingtoanintegratedluminos- ityof3.2 fb1 collectedby theATLAS detectorattheLHC.These measurements allow the dependence of the cross-section on √

s

tionbetweentwoobjectsisdefinedasR=

(φ)2+ (η)2,whereand aretheseparationsinφandηrespectively.Momentuminthetransverseplaneis denotedbypT.

https://doi.org/10.1016/j.physletb.2017.10.040

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Examplesofleading-orderFeynmandiagramsforthetwoproductionmech- anismsforaleptonicallydecayingZ bosonandatleasttwojets( Z jj)inproton–

proton collisions: (a) QCD radiation from the incoming partons (QCD- Z jj) and (b) t-channelexchangeofanEWgaugeboson(EW- Z jj).

tobestudied.Theincreased√

s allowsexplorationofhigherdijet masses, where the EW- Z jj contribution to the total Z jj rate be- comesmorepronounced.

2. ATLASdetector

TheATLASdetectorisdescribed indetailinRefs. [7,8].Itcon- sistsofaninnerdetectorfortracking,surroundedbyathinsuper- conducting solenoid, electromagnetic and hadronic calorimeters, andamuonspectrometerincorporatingthreelargesuperconduct- ingtoroidalmagnetsystems.Theinnerdetectorisimmersedina 2 Taxial magneticfield and providescharged-particle trackingin therange|

η

|<2.5.

The calorimeters cover the pseudorapidity range |

η

|< 4.9.

Electromagnetic calorimetry is provided by barrel and end-cap lead/liquid-argon(LAr)calorimetersintheregion|

η

|<3.2.Within

|

η

|<2.47 the calorimeter is finely segmented in the lateral di- rection of the showers, allowing measurement of the energy and position of electrons, and providing electron identification in conjunction with the inner detector. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within |

η

|<1.7, and two hadronic end-cap calorimeters. A copper/LAr hadronic calorimeter covers the 1.5<|

η

| <3.2 region, and a forward copper/tungsten/LAr calorimeterwithelectromagnetic-showeridentificationcapabilities coversthe3.1<|

η

| <4.9 region.

The muon spectrometer comprises separate trigger and high- precisiontrackingchambers. The trackingchamberscoverthere- gion|

η

|<2.7 withthreelayersofmonitoreddrifttubes,comple- mentedby cathodestrip chambersinpartof theforwardregion, wherethehitrateishighest. Themuontriggersystemcoversthe range|

η

|<2.4 withresistiveplatechambersinthebarrelregion, andthingapchambersintheend-capregions.

A two-level trigger system is used to select events of inter- est[9]. TheLevel-1 triggeris implementedinhardware anduses a subset of the detectorinformation to reduce the event rateto around100 kHz.Thisisfollowedbythesoftware-basedhigh-level triggersystemwhichreducestheeventratetoabout1 kHz.

3. MonteCarlosamples

The production of EW- Z jj events was simulated at next- to-leading-order (NLO) accuracy in perturbative QCD using the Powheg-box v1 Monte Carlo (MC) event generator [4,5,10] and, alternatively, at leading-order (LO) accuracy in perturbative QCD usingthe Sherpa 2.2.0eventgenerator[11].Formodellingofthe partonshower,fragmentation,hadronisation andunderlyingevent (UEPS), Powheg-box wasinterfacedto Pythia 8[12] witha ded- icated set of parton-shower-generator parameters (tune) denoted AZNLO[13] andthe CT10 NLO partondistributionfunction (PDF) set[14].The renormalisation andfactorisationscales were set to

the Z boson mass. Sherpa predictions used the Comix [15] and OpenLoops [16] matrix elementevent generators,and theCKKW method was used to combine the various final-state topologies from the matrixelement andmatch them to the partonshower [17].The matrix elements were merged withthe Sherpa parton shower [18] using the ME+PS@LO prescription[19,20], andusing Sherpa’snativedynamicalscale-settingalgorithmtosettherenor- malisation and factorisation scales. Sherpa predictions used the NNPDF30NNLO PDFset[21].

The production of QCD- Z jj events was simulated usingthree event generators, Sherpa 2.2.1, Alpgen 2.14 [22] and MadGraph5_aMC@NLO 2.2.2 [23]. Sherpa provides Z+n-parton predictionscalculatedforup totwopartonsatNLO accuracyand up to four partons at LO accuracy in perturbative QCD. Sherpa predictionsusedthe NNPDF30NLO PDFsettogether withthetun- ingoftheUEPSparametersdevelopedbythe Sherpa authorsusing the ME+PS@NLO prescription[19,20]. Alpgen isanLOeventgener- atorwhichusesexplicitmatrixelementsforuptofivepartonsand was interfacedto Pythia 6.426[24] usingthe Perugia2011Ctune [25]andtheCTEQ6L1PDFset[26].Onlymatrixelementsforlight- flavourproductionin Alpgen areincluded,withheavy-flavourcon- tributionsmodelledbythepartonshower. MadGraph5_aMC@NLO 2.2.2(MG5_aMC)usesexplicitmatrixelementsforuptofourpar- tonsatLO,andwasinterfacedto Pythia 8withthe A14tune[27]

and using the NNPDF23LO PDF set [28]. Forreconstruction-level studies,total Z bosonproductionratespredictedbyallthreeevent generators used to produce QCD- Z jj predictions are normalised usingthenext-to-next-to-leading-order (NNLO)predictionscalcu- lated withthe FEWZ 3.1 program [29–31] using the CT10 NNLO PDF set [14]. However, when comparing particle-leveltheoretical predictionstodetector-correctedmeasurements,thenormalisation ofquotedpredictions isprovidedbytheeventgeneratorinques- tionratherthananexternalNNLOprediction.

TheproductionofapairofEWvectorbosons(diboson),where onedecaysleptonicallyandtheotherhadronically, orwhereboth decay leptonically and are produced in association with two or more jets, through W Z or Z Z production with at least one Z boson decaying to leptons, was simulated separately using Sherpa2.1.1andthe CT10 NLO PDFset.

Thelargestbackgroundtotheselected Z jj samplesarisesfrom tt and¯ single-top (W t) production. These were generated using Powheg-box v2and Pythia 6.428withthePerugia2012tune[25], andnormalisedusingthecross-section calculatedatNNLO+NNLL (next-to-next-to-leading log) accuracy using the Top++2.0 pro- gram[32].

All the above MC samples were fully simulated through the Geant4[33] simulationoftheATLAS detector[34].The effectof additional pp interactions (pile-up)in thesame ornearbybunch crossingswasalsosimulated,using Pythia v8.186withthe A2tune [35] and the MSTW2008LO PDF set [36]. The MC samples were reweightedsothatthedistributionoftheaveragenumberofpile- upinteractionsper bunchcrossingmatchesthat observedindata.

ForthedataconsideredinthisLetter,theaveragenumberofinter- actionsis 13.7.

4. Eventpreselection

The Z bosonsaremeasuredintheirdielectronanddimuonde- cay modes.Candidate eventsare selectedusingtriggers requiring atleastone identifiedelectronormuon withtransversemomen- tum thresholds of pT =24 GeV and 20 GeV respectively, with additional isolation requirements imposed in these triggers. At higher transverse momenta, the efficiency of selecting candidate events is improved through the use of additional electron and

(3)

muontriggerswithoutisolationrequirementsandwiththresholds ofpT=60 GeV and50 GeVrespectively.

Candidateelectronsarereconstructedfromclustersofenergyin the electromagneticcalorimeter matched toinner-detector tracks [37].TheymustsatisfytheMedium identificationrequirementsde- scribedinRef.[37]andhavepT > 25 GeV and|

η

| <2.47,exclud- ingthetransitionregionbetweenthebarrelandend-capcalorime- tersat1.37<|

η

| <1.52.Candidatemuonsareidentifiedastracks intheinner detectormatchedandcombinedwithtracksegments inthemuonspectrometer. TheymustsatisfytheMedium identifi- cationrequirementsdescribedinRef.[38],andhavepT > 25 GeV and|

η

| <2.4. Candidate leptons mustalso satisfya set ofisola- tioncriteriabasedonreconstructedtracksandcalorimeteractivity.

Events are required to contain exactly two leptons of the same flavour butof opposite charge.The dilepton invariant massmust satisfy81<m<101 GeV.

Candidate hadronic jets are required to satisfy pT > 25 GeV and|y| < 4.4. Theyare reconstructed fromclustersofenergy in the calorimeter[39] usingthe anti-kt algorithm [40,41] with ra- dius parameter R=0.4. Jet energies are calibrated by applying pT- and y-dependent correctionsderived from MonteCarlosim- ulationwithadditionalinsitucorrectionfactorsdetermined from data [42]. To reduce the impact ofpile-up contributions, all jets with |y|<2.4 and pT<60 GeV are required to be compatible withhaving originatedfromthe primary vertex (the vertexwith the highest sum of track p2T), as defined by the jet vertex tag- geralgorithm[43].Selected electronsandmuonsarediscarded if theylie within R=0.4 of areconstructedjet. Thisrequirement isimposed to removenon-prompt non-isolated leptons produced in heavy-flavourdecays orfrom thedecay in flight ofa kaon or pion.

5. MeasurementofinclusiveZ j j fiducialcross-sections 5.1. Definitionofparticle-levelcross-sections

Cross-sections are measured for inclusive Z jj production that includes the EW- Z jj and QCD- Z jj processes, as well as diboson events.Theparticle-levelproductioncross-sectionforinclusiveZ jj productioninagivenfiducialregion f isgivenby

σ

f

=

N

f

obs

Nbkgf

L

·

Cf

,

(1)

where Nobsf is the number of events observed in the data pass- ing theselection requirements ofthefiducial regionunder study at detectorlevel, Nbkgf is the corresponding number of expected background(non- Z jj)events,L istheintegratedluminositycorre- spondingtotheanalyseddatasample,andCf isacorrectionfactor appliedtotheobserveddatayields,whichaccountsforexperimen- tal efficiencyanddetector resolutioneffects, andis derived from MCsimulationwithdata-drivenefficiencyandenergy/momentum scalecorrections.Thiscorrectionfactoriscalculatedas:

Cf

=

N

f det

Nparticlef

,

where Ndetf is the numberof signal events that satisfy the fidu- cial selection criteriaatdetectorlevel in theMC simulation, and Nparticlef isthenumberofsignaleventsthatpasstheequivalentse- lectionbut atparticle level. These correction factors havevalues between0.63 and0.77,dependingonthefiducialregion.

Withtheexception ofbackgroundfrommultijetandW+jets processes(henceforthreferredtotogether simplyasmultijetpro- cesses),contributionsto Nbkgf areestimatedusingtheMonteCarlo

samples described in Section 3.Background from multijetevents is estimated fromthe data by reversing requirements on lepton identification or isolation to derive a template for the contribu- tion of jets mis-reconstructedas lepton candidates asa function ofdileptonmass.Non-multijet backgroundis subtractedfromthe template usingsimulation.The normalisationisderived byfitting thenominaldileptonmassdistributionineachfiducialregionwith the sumofthe multijettemplate andatemplate comprisingsig- nalandbackgroundcontributionsdeterminedfromsimulation.The multijetcontributionisfoundtobelessthan0.3%ineachfiducial region.ThecontributionfromW+jets processeswascheckedus- ing MC simulation andfound to be much smaller than the total multijetbackgroundasdeterminedfromdata.

At particlelevel,only final-stateparticles withproperlifetime c

τ

>10 mm areconsidered.Promptleptonsaredressedusingthe four-momentumcombinationofanelectronormuonandallpho- tons (not originating from hadron decays) within a cone of size

R=0.1 centred on the lepton. These dressed leptons are re- quiredto satisfy pT>25 GeV and |

η

|<2.47.Events arerequired tocontain exactlytwodressedleptons ofthesameflavourbutof oppositecharge,andthedileptoninvariantmassmustsatisfy81<

m<101 GeV. Jetsarereconstructed usingthe anti-kt algorithm with radius parameter R=0.4. Prompt leptons andthe photons used to dresstheseleptons are not includedin theparticle-level jet reconstruction. All remaining final-stateparticles are included in theparticle-leveljet clustering. Promptleptons witha separa- tionRj,<0.4 fromanyjetarerejected.

The cross-section measurements are performed in the six phase-space regions definedinTable 1. Theseregions arechosen tohavevaryingcontributionsfromEW- Z jj andQCD- Z jj processes.

5.2. Eventselection

Following Ref. [2], events are selected in sixdetector fiducial regions. Asfaraspossible,theseare definedwiththesamekine- matic requirements asthe six phase-space regions in which the cross-sectionismeasured(Table 1).Thisminimisessystematicun- certaintiesinthemodellingoftheacceptance.

Thebaselinefiducialregionrepresentsaninclusiveselectionof eventscontainingaleptonicallydecayingZ bosonandatleasttwo jetswithpT>45 GeV,atleastoneofwhichsatisfiespT>55 GeV.

The two highest-pT (leading and sub-leading) jets in a given event define the dijet system. The baseline region is dominated by QCD- Z jj events.The requirementof 81<m<101 GeV sup- presses other sources ofdileptonevents,such astt and¯ Z

τ τ

, aswellasthemultijetbackground.

Becausetheenergyscaleofthedijetsystemistypicallyhigher ineventsproducedbytheEW- Z jj processthaninthoseproduced bytheQCD- Z jj process,twosubsetsofthebaselineregionarede- fined which probe the EW- Z jj contribution in differentways: in thehigh-massfiducialregionahighvalueoftheinvariantmassof thedijetsystem(mj j>1 TeV)isrequired,andinthehigh-pTfidu- cialregiontheminimumpToftheleadingandsub-leadingjetsis increasedto85 GeVand75 GeVrespectively.TheEW- Z jj process typicallyproduces harderjettransversemomentaandresultsina harderdijetinvariantmassspectrumthantheQCD- Z jj process.

Three additional fiducial regions allow the separate contribu- tionsfromtheEW- Z jj andQCD- Z jj processestobemeasured.The EW-enriched fiducial region is designed to enhance the EW- Z jj contribution relative to that from QCD- Z jj, particularly at high mj j. The EW-enriched region is derived from the baseline re- gion requiring mj j>250 GeV, a dilepton transverse momentum of pT > 20 GeV,andthatthenormalisedtransverse momentum balance betweenthe twoleptons andthe two highesttransverse

(4)

Table 1

Summaryoftheparticle-levelselectioncriteriadefiningthesixfiducialregions(seetextfordetails).

Fiducial region

Object Baseline High-mass High-pT EW-enriched EW-enriched, QCD-enriched mj j>1 TeV

Leptons |η| <2.47, pT>25 GeV,Rj,>0.4

Dilepton pair 81<m<101 GeV

pT >20 GeV

Jets |y| <4.4

pTj1 >55 GeV pTj1>85 GeV pTj1>55 GeV pTj2 >45 GeV pTj2>75 GeV pTj2>45 GeV

Dijet system mj j>1 TeV mj j>250 GeV mj j>1 TeV mj j>250 GeV

Interval jets Nintervaljet(p

T>25 GeV)=0 Njetinterval(pT>25 GeV)1

Z jj system pbalanceT <0.15 pbalanceT ,3<0.15

momentumjetssatisfy pbalanceT <0.15.Thelatterquantityisgiven by

pbalanceT

=

 

pT1

+ 

pT2

+ 

pTj1

+ 

pTj2

 

 

pT1

  +  

pT2

  +  

pTj1

  +  

pTj2

  ,

(2)

where pTi is thetransversemomentum vector ofobjecti, 1 and

2labelthetwoleptonsthatdefinethe Z bosoncandidate,and j1 and j2 refer to the leading andsub-leading jets. These require- ments help remove events in which the jets arise from pile-up ormultiple partoninteractions. The requirementon pbalanceT also helps suppress events in which the pT of one or more jets is badlymeasured andit enhancesthe EW- Z jj contribution,where the lower probability of additional radiation causes the Z boson and the dijet system to be well balanced. The EW-enriched re- gion requires a veto [44] on any jets with pT>25 GeV recon- structed within the rapidity interval bounded by the dijet sys- tem(Njetinterval(p

T>25 GeV)=0). A second fiducial region,denoted EW- enriched(mj j>1 TeV),hasidenticalselectioncriteria,exceptfora raisedmj j thresholdof1 TeVwhichfurtherenhancestheEW- Z jj contributiontothetotal Z jj signalrate.

Incontrast,theQCD-enrichedfiducialregionisdesignedtosup- pressthe EW- Z jj contributionrelativetoQCD- Z jj byrequiringat leastonejetwith pT>25 GeV tobereconstructedwithinthera- pidityintervalboundedbythedijetsystem(Nintervaljet(p

T>25 GeV)1).

IntheQCD-enrichedregion,thedefinitionofthenormalisedtrans- versemomentumbalanceismodifiedfromthatgiveninEq.(2)to includeinthe calculationofthe numeratoranddenominator the pT of thehighest pT jet within therapidity interval bounded by thedijetsystem(pbalanceT ,3).Inallotherrespects,thekinematicre- quirements in the EW-enriched region and QCD-enriched region areidentical.

5.3.Detector-levelresults

Inthebaselineregion,30686 eventsareselectedinthedielec- tronchanneland36786 eventsareselected inthedimuonchan- nel.Thetotalobservedyieldsare inagreementwiththeexpected yieldswithinstatisticaluncertaintiesineachdileptonchannel.The largestdeviationacrossallfiducialregionsisa2

σ

(statistical)dif- ference between the expected to observed ratio in the electron versusmuonchannelinthehigh-pT region.

Theexpectedcomposition ofthe selecteddata samplesinthe sixZ jj fiducialregionsissummarisedinTable 2,averagingacross thedielectronanddimuonchannelsasthesecompositionsinthe

two dilepton channels are in agreement within statistical uncer- tainties.The numbersofselectedeventsindataandexpectations fromtotalsignalplusbackgroundestimatesarealsogivenforeach region. The largest discrepancy between observed and expected yieldsisseeninthehigh-massregion,andresultsfromamismod- elling ofthe mj j spectrum in the QCD- Z jj MC simulations used, whichisdiscussedbelowandaccountedforintheassessmentof systematicuncertainties inthemeasurement.

5.4. SystematicuncertaintiesintheinclusiveZ jj fiducialcross-sections

Experimentalsystematicuncertainties affectthe determination of the Cf correction factor and the background estimates. The dominantsystematicuncertaintyintheinclusiveZ jj fiducialcross- sections arises from the calibration of the jet energy scale and resolution. This uncertainty varies from around 4% in the EW- enriched region to around 12% in the QCD-enriched region. The largeruncertaintyintheQCD-enrichedregionisduetothehigher average jet multiplicity (an average of 1.7 additional jets in ad- dition to the leading and sub-leading jets) compared with the EW-enriched region (anaverage of0.4additionaljets). Other ex- perimentalsystematicuncertaintiesarisingfromleptonefficiencies relatedto reconstruction, identification, isolation andtrigger, and leptonenergy/momentumscaleandresolutionaswellasfromthe effectofpile-up,amounttoatotalofaround1–2%,depending on thefiducialregion.

The systematic uncertainty arising from the MC modelling of the mj j distributionin the QCD- Z jj and EW- Z jj signal processes is around 3% in theEW-enriched region, around 1% in theQCD- enriched region, 2% inthe high-mass region, andbelow1% else- where. This is assessed by comparing the correction factors ob- tained by usingthe differentMC event generators listed in Sec- tion3andbyperformingadata-drivenreweightingoftheQCD- Z jj MCsampletodescribethemj jdistributionoftheobserveddatain agivenfiducialregion.Additionalcontributionsarisefromvarying theQCDrenormalisationandfactorisationscalesupanddownby a factor of two independently, andfrom the propagation of un- certaintiesinthePDFsets.Thenormalisationofthedibosoncon- tribution isvaried accordingto PDF andscale variations inthese predictions[45],andresultsinuptoa0.1% effectonthemeasured Z jj cross-sections depending on the fiducial region. The uncer- taintyfromvaryingthenormalisationandshapeinmj joftheesti- matedbackgroundfromtop-quarkproductionisatmost1%(inthe high-massregion),arisingfromchangesintheextractedZ jj cross- sectionswhen usingmodified top-quarkbackground MC samples withPDFandscalevariations, suppressedorenhanced additional

(5)

Table 2

Estimatedcomposition(inpercent)ofthedatasamplesselectedinthesixZ jj fiducialregionsforthedielectronanddimuonchan- nelscombined,usingtheEW- Z jj samplefrom Powheg,andtheQCD- Z jj samplefrom Sherpa (normalisedusingNNLOpredictions fortheinclusiveZ cross-sectioncalculatedwith FEWZ).Uncertaintiesinthesamplecontributionsarestatisticalonly.Alsoshown arethetotalexpectedyieldsandthetotalobservedyieldsineachfiducialregion.Uncertaintiesinthetotalexpectedyieldsare statistical(first)andsystematic(second),seeSection5.4fordetails.

Process Composition [%]

Baseline High-mass High-pT EW-enriched EW-enriched, QCD-enriched

mj j>1 TeV

QCD-Z jj 94.2±0.4 86.8±1.6 92.3±0.4 93.4±0.9 72.9±2.1 95.4±0.8 EW-Z jj 1.5± <0.1 10.6±0.2 2.6± <0.1 4.8± <0.1 26.1±0.5 1.6± <0.1 Diboson 1.6± <0.1 1.5±0.7 2.0±0.5 1.0±0.5 0.8±0.4 1.8±0.4 t¯t 2.6± <0.1 1.1±0.1 3.1±0.1 0.7± <0.1 0.1±0.1 1.2±0.1

Single-t <0.2 <0.2 <0.2 <0.1 <0.1 <0.1

Multijet <0.3 <0.3 <0.3 <0.3 <0.3 <0.3

Total expected 64800 2220 21900 11100 640 7120

±130±5220 ±20±200 ±40±1210 ±50±520 ±10±40 ±30±880

Total observed 67472 1471 22461 11630 490 6453

radiation (generated with the Perugia2012radHi/Lo tunes [25]), or using an alternative top-quark production sample from Mad- Graph5_aMC@NLOinterfacedto Herwig++ v2.7.1[23,46].

Thesystematicuncertaintyintheintegratedluminosityis2.1%.

This is derived following a methodology similar to that detailed inRef. [47],froma calibration ofthe luminosity scaleusing x– y beam-separationscansperformedinJune2015.

5.5. InclusiveZ jj results

The measured cross-sections in the dielectron and dimuon channels are combined and presented here as a weighted aver- age(takingintoaccounttotaluncertainties)acrossboth channels.

Thesecross-sections aredetermined using each ofthe correction factors derived from the six combinations of the three QCD- Z jj (Alpgen, MG5_aMC, and Sherpa) and two EW- Z jj (Powheg and Sherpa)MCsamples.Foragivenfiducialregion(Table 1)thecross- section averaged over all six variations is presented in Table 3.

The envelope of variation betweenQCD- Z jj and EW- Z jj models isassignedasasourceofsystematicuncertainty(1%inallregions excepttheEW-enrichedregion wherethevariationis3% andthe high-massregionwherethevariationis2%).

The theoretical predictions from Sherpa (QCD- Z jj)+ Powheg (EW- Z jj), MG5_aMC (QCD- Z jj) + Powheg (EW- Z jj), and Alpgen (QCD- Z jj)+ Powheg (EW- Z jj)arefoundtobeinagreementwith themeasurementsinmostcases.Theuncertaintiesinthetheoreti- calpredictionsaresignificantlylargerthantheuncertaintiesinthe correspondingmeasurements.

The largestdifferences betweenpredictions andmeasurement are in the high-mass and EW-enriched (mj j >250 GeV and

>1 TeV) regions. Predictions from Sherpa (QCD- Z jj) + Powheg (EW- Z jj) and MG5_aMC (QCD- Z jj) + Powheg (EW- Z jj) exceed measurements in the high-mass region by 54% and 34% respec- tively,where the predictions have relative uncertainties withre- spect tothe measurement of 36% and32%. Forthe EW-enriched region, Sherpa (QCD- Z jj) + Powheg (EW- Z jj) describes the ob- served rates well, but MG5_aMC (QCD- Z jj) + Powheg (EW- Z jj) overestimatesmeasurementsby28%witharelativeuncertaintyof 11%. In the EW-enriched (mj j >1 TeV) region the same predic- tions overestimate measured ratesby 33% and57%, withrelative uncertaintiesof16%and15%.Someofthesedifferencesarisefrom a significant mismodellingofthe QCD- Z jj contribution, asinves- tigated and discussed in detail in Section 6.1. Predictions from

Alpgen(QCD- Z jj)+ Powheg (EW- Z jj)are inagreementwiththe data for the high-mass and EW-enriched (mj j >250 GeV and

>1 TeV)regions.

6. MeasurementofEW- Z j j fiducialcross-sections

The EW-enriched fiducial region (defined in Table 1) is used to measure the production cross-section of the EW- Z jj process.

The EW-enriched region has an overall expected EW- Z jj signal fraction of4.8% (Table 2) andthissignal fraction grows within- creasing mj j to 26.1% formj j>1 TeV. The QCD-enriched region has an overall expectedEW- Z jj signal fractionof 1.6%increasing to 4.4%formj j>1 TeV.The dominantbackgroundto theEW- Z jj cross-sectionmeasurementisQCD- Z jj production.Itissubtracted inthesamewayasnon- Z jj backgroundsintheinclusivemeasure- mentdescribedinSection5.Althoughdibosonproductionincludes contributionsfrompurelyEWprocesses,inthismeasurementitis consideredaspartofthebackgroundandisestimatedfromsimu- lation.

A particle-level production cross-section measurement of EW- Z jj productioninagivenfiducialregion f isthusgivenby

σ

EWf

=

N

f

obs

NQCD-Zjjf

Nbkgf

L

·

CEWf

,

(3)

with the samenotations asin Eq.(1) andwhere NQCD- Zjjf is the expectednumberofQCD- Z jj eventspassingtheselectionrequire- mentsofthefiducialregionatdetectorlevel,Nbkgf istheexpected number ofbackground(non- Z jj and diboson)events,and CEWf is acorrection factorappliedtotheobservedbackground-subtracted datayields that accountsforexperimental efficiencyanddetector resolutioneffects,andisderivedfromEW- Z jj MCsimulationwith data-drivenefficiencyandenergy/momentumscalecorrections.For the mj j>250 GeV (mj j >1 TeV) region this correction factor is determined to be 0.66 (0.67) when using the Sherpa EW- Z jj prediction,and 0.67 (0.68) whenusingthe Powheg EW- Z jj pre- diction.

Detector-levelcomparisonsofthemj j distributionbetweendata and simulation in (a) the EW-enriched region and(b) the QCD- enriched region are shown in Fig. 2. It can be seen in Fig. 2(a)

(6)

Table 3

Measuredand predictedinclusive Z jj productioncross-sectionsinthesixfiducialregionsdefinedinTable 1.Forthemeasuredcross-sections,the firstuncertaintygivenisstatistical,thesecondissystematicandthethirdisduetotheluminositydetermination.Forthepredictions,thestatistical uncertaintyisaddedinquadraturetothesystematicuncertaintiesarisingfromthePDFsandfactorisationandrenormalisationscalevariations.

Fiducial region Inclusive Z jj cross-sections [pb]

Measured Prediction

value ±stat. ±syst. ±lumi. Sherpa(QCD-Z jj) MG5_aMC (QCD-Z jj) Alpgen(QCD-Z jj) +Powheg (EW-Z jj) +Powheg (EW-Z jj) +Powheg (EW-Z jj)

Baseline 13.9 ±0.1 ±1.1 ±0.3 13.5±1.9 15.2±2.2 11.7±1.7

High-pT 4.77 ±0.05 ±0.27 ±0.10 4.7±0.8 5.5±0.9 4.2±0.7

EW-enriched 2.77 ±0.04 ±0.13 ±0.06 2.7±0.2 3.6±0.3 2.4±0.2

QCD-enriched 1.34 ±0.02 ±0.17 ±0.03 1.5±0.4 1.4±0.3 1.1±0.3

High-mass 0.30 ±0.01 ±0.03 ±0.01 0.46±0.11 0.40±0.09 0.27±0.06

EW-enriched (mj j>1 TeV) 0.118 ±0.008 ±0.006 ±0.002 0.156±0.019 0.185±0.023 0.120±0.015

Fig. 2. Detector-levelcomparisonsofthedijetinvariantmassdistributionbetweendataandsimulationin(a) theEW-enrichedregionand(b) theQCD-enrichedregion,forthe dielectronanddimuonchannelcombined.Uncertaintiesshownonthedataarestatisticalonly.TheEW- Z jj simulationsamplecomesfromthe Powheg eventgeneratorand theQCD- Z jj MCsamplecomesfromthe Sherpa eventgenerator.ThelowerpanelsshowtheratioofsimulationtodataforthreeQCD- Z jj models,from Alpgen, MG5_aMC, and Sherpa.Thehatchedbandcentredatunityrepresentsthesizeofstatisticalandexperimentalsystematicuncertaintiesaddedinquadrature.

that in the EW-enriched region the EW- Z jj component becomes prominentatlargevaluesofmj j.However, Fig. 2(b)demonstrates that the shape ofthe mj j distribution for QCD- Z jj productionis poorlymodelledinsimulation.Thesametrendisseenforallthree QCD- Z jj eventgeneratorslistedinSection3. Alpgen providesthe best description of the data over the whole mj j range. In com- parison, MG5_aMCand Sherpa overestimatethedataby 80%and 120%respectively, formj j=2 TeV, well outsidethe uncertainties onthesepredictionsdescribedinTable 3.Thesediscrepancieshave beenobserved previously in Z jj [2,48] and Wjj [49–51] produc- tionathighdijetinvariant massandathighjetrapidities.Forthe purposeofextractingthecross-sectionforEW- Z jj production,this mismodellingofQCD- Z jj iscorrected forusinga data-drivenap- proach,asdiscussedinthefollowing.

6.1.CorrectionsformismodellingofQCD- Z jj productionandfitting procedure

ThenormalisationoftheQCD- Z jj backgroundisextractedfrom a fit of the QCD- Z jj and EW- Z jj mj j simulated distributions to thedata in the EW-enriched region, aftersubtraction ofnon- Z jj anddibosonbackground,usingalog-likelihoodmaximisation[52].

FollowingtheprocedureadoptedinRef.[2],thedataintheQCD-

enriched region are used toevaluate detector-level shape correc- tion factors for the QCD- Z jj MC predictions bin-by-bin in mj j. Thesedata-to-simulationratiocorrectionfactorsareappliedtothe simulation-predicted shapeinmj j oftheQCD- Z jj contribution in the EW-enriched region.This procedure ismotivated by two ob- servations:

(a) theQCD-enrichedregionandEW-enrichedregionaredesigned tobe kinematicallyverysimilar, differingonlywithregardto thepresence/absenceofjetsreconstructedwithintherapidity intervalboundedbythedijetsystem,

(b) the contributionofEW- Z jj totheregion ofhighmj j issup- pressedintheQCD-enrichedregion(4.4%formj j>1 TeV)rel- ativetothatintheEW-enrichedregion(26.1%formj j>1 TeV) (also illustratedin Fig. 2);the impactofthe residualEW- Z jj contamination in the QCD-enriched region is assigned as a componentofthesystematicuncertaintyintheQCD- Z jj back- ground.

The shape correction factors in mj j obtained using the three different QCD- Z jj MC samplesare shown in Fig. 3(a). These are derived asthe ratio ofthe data to simulation in bins of mj j af- ternormalisationofthetotalyieldinsimulationtothatobserved

(7)

Fig. 3. Binneddata-to-simulationnormalisedratioshapecorrectionfactorsasafunctionofdijetinvariantmassintheQCD-enrichedregion.(a) Ratioforthreedifferent QCD- Z jj MCsampleswithuncertaintiescorrespondingtothecombinedstatisticaluncertaintiesinthedataandQCD-ZjjMCsamplesaddedinquadrature.ScaleandPDF uncertaintiesin Sherpa predictionsareindicatedbytheshadedbands.Linesrepresentfitstotheratiosusingalinearfit.(b) RatioforsubregionsoftheQCD-enrichedregion forthe Alpgen MCsample.Curvesrepresenttheresultoffitswithaquadraticfunctionforthevarioussubregions.

indataintheQCD-enrichedregion.Abinnedfittothecorrection factorsderived indijetinvariant mass isperformedwithalinear fit function(and also witha quadratic fitfunction) toproduce a continuouscorrectionfactor.Thelinearfitisillustratedoverlaidon thebinnedcorrectionfactorsinFig. 3(a).Thenominalvalueofthe EW- Z jj cross-section correspondingtoaparticularQCD- Z jj event generatortemplateisdeterminedusingthecorrectionfactorsfrom the linearfit. The change inresultant EW- Z jj cross-section from using binned correction factors directly is assessed asa system- aticuncertainty.ThechangeintheextractedEW- Z jj cross-section when usinga quadraticfit was found tobe negligible.The vari- ations observed betweenevent generators may be partlydue to differencesinthemodelling ofQCD radiationwithin therapidity interval bounded by the dijet system, which affects the extrap- olationfrom thecentral-jet-enriched QCD-enrichedregion to the central-jet-suppressedEW-enrichedregion.The variationbetween eventgenerators ismuch larger than theeffect ofPDF andscale uncertaintiesinaparticularprediction(indicatedinFig. 3(a)bya shadedband onthepredictionsfrom Sherpa).Estimatingtheun- certainties associated with QCD- Z jj mismodelling from PDF and scale variations around a single generator predictionwould thus resultinan underestimate ofthe truetheoretical uncertaintyas- sociated with this mismodelling. In this measurement, the span ofresultantEW- Z jj cross-sectionsextractedfromtheuseofeach ofthethreeQCD- Z jj templates isassessedasasystematicuncer- tainty.ThevariationintheEW- Z jj cross-sectionmeasurementdue toa changeintheEW- Z jj signaltemplate usedinthederivation ofthemj j correctionfactors(from Powheg to Sherpa)isfoundto benegligible.

To test the dependence of the QCD- Z jj correction factors on the modelling of any additional jet emitted in the dijet rapidity interval, theQCD-enriched control region isdivided into pairs of mutuallyexclusivesubsetsaccordingto the |y| ofthehighest pT jet within the rapidity interval bounded by the dijetsystem, the pT ofthatjet,orthevalueofNjetinterval(p

T>25 GeV).Thecontinuouscor- rectionfactors are determined fromeach subregion usingboth a linearandaquadraticfittothedata.Correctionfactorsderived in the subregions usingquadratic fits result inthe largest variation in the extractedcross-sections. These fits are shown in Fig. 3(b) forthe Alpgen QCD- Z jj sample, which displays the largest vari- ation between subregions of the three event generators used to produce QCD- Z jj predictions. Within statistical uncertainties the measuredEW- Z jj cross-sectionsarenotsensitivetothedefinition ofthecontrolregionused.

ThenormalisationsofthecorrectedQCD- Z jj templatesandthe EW- Z jj templatesareallowedtovaryindependentlyinafittothe background-subtractedmj j distributionintheEW-enrichedregion.

Themeasured electroweakproductioncross-sectionisdetermined from the data minus the QCD- Z jj contribution determined from thesefits(Eq.(3)).AsthechoiceofEW- Z jj templatecaninfluence the normalisation of the QCD- Z jj template in the EW-enriched regionfit,themeasuredEW- Z jj cross-sectiondeterminationisre- peated for each QCD- Z jj template using either the Powheg or SherpaEW- Z jj templateinthefit.Thecentralvalue oftheresult quoted isthe averageofthe measured EW- Z jj cross-sections de- terminedwitheachofthesixcombinationsofthethreeQCD- Z jj and two EW- Z jj templates, with the envelope of measured re- sultsfromthesevariationstakenasanuncertaintyassociatedwith the dependence on the modelling of the templates in the EW- enriched region.Separate uncertaintiesareassignedforthedeter- mination of the QCD- Z jj correction factors in the QCD-enriched region and their propagation into the EW-enriched region. The measurement ofthe EW- Z jj cross-sectionintheEW-enrichedre- gionformj j>1 TeV isextractedfromthesamefitprocedure,with dataandQCD- Z jj yieldsintegratedformj j>1 TeV.

Fig. 4(a) shows a comparison in the EW-enriched region of the fittedEW- Z jj and mj j-reweighted QCD- Z jj templates to the background-subtracted data, from which the measured EW- Z jj cross-section isextracted. Fig. 4(b)demonstrateshow thedatain the EW-enriched region is modelled with the fitted EW- Z jj and mj j-reweightedQCD- Z jj templates,forthethreedifferentQCD- Z jj event generators (and their corresponding correction factors de- rived in the QCD-enriched region shown in Fig. 3(a)). Despite significantly different modelling of the mj j distribution between event generators, anddifferent models for additional QCD radia- tion,theresultsofthecombinedcorrectionandfitproceduregive aconsistentdescriptionofthedata.

6.2. SystematicuncertaintiesintheEW- Z jj fiducialcross-section

Thetotalsystematicuncertaintyinthecross-sectionforEW- Z jj production intheEW-enriched fiducialregion is17% (16%inthe EW-enriched mj j>1 TeV region). The sources and size of each systematicuncertaintyaresummarisedinTable 4.

Systematic uncertainties associated with the EW- Z jj signal templateusedinthefitandEW- Z jj signalextractionareobtained from thevariation in the measured cross-section whenusing ei- ther ofthe individual EW- Z jj MC samples(Powheg and Sherpa)

(8)

Fig. 4. (a) ComparisonintheEW-enrichedregionofthesumofEW- Z jj andmj j-reweightedQCD- Z jj templatestothedata(minusthenon- Z jj backgrounds).Thenormal- isationofthetemplatesisadjustedtotheresultsofthefit(seetextfordetails).TheEW- Z jj MCsamplecomesfromthe Powheg eventgeneratorandtheQCD- Z jj MC samplecomesfromthe Alpgen eventgenerator.(b) TheratioofthesumoftheEW- Z jj andmj j-reweightedQCD- Z jj templatestothebackground-subtracteddatainthe EW-enrichedregion,forthreedifferentQCD- Z jj MCpredictions.Thenormalisationofthetemplatesisadjustedtotheresultsofthefit.Errorbarsrepresentthestatistical uncertaintiesinthedataandcombinedQCD- Z jj plusEW- Z jj MCsamplesaddedinquadrature.Thehatchedbandrepresentsexperimentalsystematicuncertaintiesinthe mj jdistribution.

Table 4

SystematicuncertaintiescontributingtothemeasurementoftheEW- Z jj cross-sectionsformj j>250 GeVand mj j>1 TeV.UncertaintiesaregroupedintoEW- Z jj signalmodelling,QCD- Z jj backgroundmodelling,QCD-EW interference,non- Z jj backgrounds,andexperimentalsources.

Source Relative systematic uncertainty [%]

σEWmj j>250 GeV σEWmj j>1 TeV

EW-Z jj signal modelling (QCD scales, PDF and UEPS) ±7.4 ±1.7

EW-Z jj template statistical uncertainty ±0.5 ±0.04

EW-Z jj contamination in QCD-enriched region0.10.2

QCD-Z jj modelling (mj jshape constraint / third-jet veto) ±11 ±11

Stat. uncertainty in QCD control region constraint ±6.2 ±6.4

QCD-Z jj signal modelling (QCD scales, PDF and UEPS) ±4.5 ±6.5

QCD-Z jj template statistical uncertainty ±2.5 ±3.5

QCD-EW interference ±1.3 ±1.5

¯

tt and single-top background modelling ±1.0 ±1.2

Diboson background modelling ±0.1 ±0.1

Jet energy resolution ±2.3 ±1.1

Jet energy scale +5.3/−4.1 +3.5/−4.2

Lepton identification, momentum scale, trigger, pile-up +1.3/−2.5 +3.2/−1.5

Luminosity ±2.1 ±2.1

Total ±17 ±16

comparedtotheaverageofthetwo,takenasthecentralvalue.Un- certaintiesinthe EW- Z jj templates duetovariations ofthe QCD scales,ofthePDFs,andoftheUEPSmodelarealsoincludedasare statisticaluncertaintiesinthetemplatesthemselves.

FollowingtheextractionoftheEW- Z jj cross-sectionintheEW- enrichedregions,thenormalisationsoftheEW- Z jj MCsamplesare modified to agree with the measurements and the potential EW contamination of the QCD-enrichedregion is recalculated, which leads to a modification of the QCD- Z jj correction factors. The EW- Z jj cross-section measurement is repeatedwith these mod- ified QCD- Z jj templates and the change in the resultant cross- sections is assigned as a systematic uncertainty associated with theEW- Z jj contaminationoftheQCD-enrichedregion.

Asdiscussed inSection 6.1, theuse ofa QCD-enrichedregion provides away to correctforQCD- Z jj modelling issues andalso constrains theoretical and experimental uncertainties associated withobservablesconstructedfromthetwoleadingjets.Neverthe-

less, the largest contribution to the total uncertaintyarises from modelling uncertainties associated with propagation of the mj j correctionfactorsforQCD- Z jj intheQCD-enrichedregionintothe EW-enriched region, andthese correction factors depend on the modellingoftheadditionaljetactivityintheQCD- Z jj MCsamples used inthemeasurement. Theuncertainty isassessed byrepeat- ing the EW- Z jj cross-section measurement with mj j-reweighted QCD- Z jj MCtemplates from Alpgen, MG5_aMC,and Sherpa, and assigning the variation of the measured cross-sections from the central EW- Z jj result as a systematic uncertainty. Statistical un- certaintiesfromdataandsimulationinthemj j correction factors derived inthe QCD-enriched region are also propagated through tothemeasuredEW- Z jj cross-sectionasasystematicuncertainty.

Uncertainties associated with QCD renormalisation and factori- sation scales, PDF error sets, and UEPS modelling are assessed by studying the change in the extracted EW- Z jj cross-sections whenrepeating themeasurement procedure,includingrederiving

Riferimenti

Documenti correlati

Finden Sie alle Bücher von Francesco Mammoliti - Andrés Segovia. Il chitarrista del XX secolo. Bei der Büchersuchmaschine eurobuch.com können Sie antiquarische und Neubücher

The analysis of the two Gramscian concepts of cultural hegemony and interdependency of content and form has shown that the function of Gramsci’s philosophy, in

Un approfondimento del pensiero religioso di Colonna, difficile da cogliere nella sua adesione allo spiritualismo viterbese e pre-tridentino, si trova nella quarta sezione,

A questa copertura mediatica negativa Our city contrappone un’immagine più variegata della città; non si sofferma soltanto sulle difficoltà che vive la città, ma va anche

Channel) onboard the Rosetta spacecraft (10) to detected a carbon dioxide ice-rich area in

Cribriform pattern in lung adenocarcinoma Histology-based 2015 World Health Organization (WHO) classification of lung tumours identifies five histotypes: e.g., lep- idic,