• Non ci sono risultati.

Connection Design Joints resistance according to EC.3

N/A
N/A
Protected

Academic year: 2021

Condividi "Connection Design Joints resistance according to EC.3"

Copied!
62
0
0

Testo completo

(1)

Connection Design

Joints resistance according to EC.3 – 1 – 8

Edit by Dott. Ing. Simone Caffè

(2)

FIN PLATE CONNECTION

Shear resistance per shear plane §Table 3.4:

,

2 v s ub v Rd

M

FA f

 

v

 0.6 for classes 8.8

v

 0.5 for classes 10.9 A

s

area of the bolts

f

ub

ultimate tensile strength

M2

 1.25 safety factor

Shear bolt resistance §3.6.1:

,

,1 2 2

max max

1

v Rd

Rd Ed

x x

b b b

V F V

e x e y

n J J

 

     

 

   

   

e

x

eccentricity between the centroid of the bolts and the supporting beam web or supporting column flange.

n number of bolts.

(3)

Shear force in “y” direction per shear plane due to external shear:

,

V Ed

y Ed b

V V

n

Shear force in “y” direction per shear plane due to torsion:

 

 

 

max

,

Ed x T

y Ed

b

V e x

V J

Shear force in “x” direction per shear plane due to torsion:

 

 

 

max

,

Ed x T

x Ed

b

V e y

V J

Total shear force per shear plane due to shear and torsion:

     

        

   

2 2

max max

,

1

x x

b Ed v Rd

b b b

e x e y

R V F

n J J

Bolts polar moment calculated in the centroid of the bolts:

 

 

2

2

b i i

i

J x y

Axial resistance for the bolts in shear §3.6.1:

Shear bearing resistance of beam web §Table 3.4:

,2 2 2

max max

, , , ,

1

Rd

1

Ed

x x

b b b

y b Rd x b Rd

V V

e x e y

n J J

F F

 

 

   

    

    

   

   

   

,1 ,

Rd b v Rd Ed

Nn F   N

(4)

Bearing resistance in “y” direction:

, ,

2

y y bw u

y b Rd

M

k d t f

F

   

Without notch Single notch Double notch

1 1

min ; 1

3 1 4

y pd

   

  

 

1 1 1

min ; ; 1

3 0 3 0 4

e p

y d d

      

1,min 1 1

min ; ; 1

3 0 3 0 4

e p

y d d

 

 

 

 

 

 

 

2 2

min 2.8 1.7 ; 1.4 1.7 ; 2.5

0 0

e p

ky d d

 

 

      

 

 

y

bearing coefficient in the direction of load transfer.

k

y

bearing coefficient perpendicular to the direction of load transfer.

e

1

end distance from the center of fastener hole, to the adjacent end of any part measured in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

e

2

edge distance from the center of fastener hole, to the adjacent edge of any part measured at right angles to direction of load transfer (Figure 3.1 – EC3-1- 8 : 2005).

p

1

spacing between centers of fasteners in a line in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

p

2

spacing measured perpendicular to load transfer direction between adjacent line of fasteners (Figure 3.1 – EC3-1-8 : 2005).

d diameter of the fastener.

d

0

diameter of the hole.

t

bw

thickness of the beam web.

f

u

ultimate tensile strength Bearing resistance in “x” direction:

, ,

2

x x bw u

x b Rd

M

k d t f

F

   

Without notch Single notch Double notch

2 2 1

min ; ; 1

3 0 3 0 4

e p

x d d

      

min 1.4 1 1.7 ; 2.5 0

kx dp

 

 

 

  

 

 

1 1

min 2.8 1.7 ; 1.4 1.7 ; 2.5

0 0

e p

kx d d

 

 

      

 

 

1,min 1

min 2.8 1.7 ; 1.4 1.7 ; 2.5

0 0

e p

kx d d

 

 

 

    

 

 

(5)

Bearing check:

         

        

   

   

      

   

   

   

2 2

max max

, , , ,

1

1

x x

b b b

Ed

y b Rd x b Rd

e x e y

n J J

V F F

Shear bearing resistance of fin plate §Table 3.4:

,3 2 2

max max

, , , ,

1

Rd

1

Ed

x x

b b b

y b Rd x b Rd

V V

e x e y

n J J

F F

 

 

    

   

    

   

   

   

Bearing resistance in “y” direction:

, ,

2 y

y p u

y b Rd

M

k d t f

F

   

Bearing coefficient in the direction of load transfer:

          

1 1

0 0

min ; 1 ; 1

3 3 4

y

e p

d d

Bearing coefficient perpendicular to the direction of load transfer:

 

 

      

 

 

2 2

0 0

min 2.8 1.7 ; 1.4 1.7 ; 2.5

y

e p

k d d

e

1

end distance from the center of fastener hole, to the adjacent end of any part measured in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

e

2

e distance from the center of fastener hole, to the adjacent edge of any

part measured at right angles to direction of load transfer (Figure 3.1 – EC3-1-

8 : 2005).

(6)

p

1

spacing between centers of fasteners in a line in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

p

2

spacing measured perpendicular to load transfer direction between adjacent line of fasteners (Figure 3.1 – EC3-1-8 : 2005).

d diameter of the fastener.

d

0

diameter of the hole.

t

p

thickness of the fin plate.

Bearing resistance in “x” direction:

, ,

2

x x p u

x b Rd

M

k d t f

F

   

Bearing coefficient in the direction of load transfer:

          

2 2

0 0

min ; 1 ; 1

3 3 4

x

e p

d d

Bearing coefficient perpendicular to the direction of load transfer:

 

 

      

 

 

1 1

0 0

min 2.8 1.7 ; 1.4 1.7 ; 2.5

x

e p

k d d

Axial bearing resistance of beam web §Table 3.4:

,2 , ,

Rd b x b Rd Ed

Nn F   N

Axial bearing resistance of fin plate §Table 3.4:

,3 x b Rd, ,

Rd b Ed

Nn F   N

(7)

Beam web in shear (gross section):

  

,4

 3

0

v y

Rd Ed

M

V A f V

Without notch Single notch Double notch

 

0.9

 

 2   bw 2b

 

v b b bf bf

A A b t t r t Av 0.9

 

Ab  2 bbtbf

dnttbf

tbw

 

Av 0.9

  

h dbntdnb

tbw

 

A

b

cross – sectional area of the beam.

h

b

height of the beam.

b

b

flange width of the beam.

t

bf

thickness of the beam flange.

t

bw

thickness of the beam web.

d

nt

depth of the top notch.

d

nb

depth of the bottom notch.

Beam web in shear (net section):

, ,5

3

2 v net u

Rd Ed

M

A f

V V

  

Shear net area: A

v net,

A

v

n

b v,

t

bw

d

0

,

n

b v

number of bolts in a single vertical line.

f

u

ultimate tensile strength.

Fin plate in shear (gross section):

,6

1.27 3

0

p p y

Rd Ed

M

h t f

V V

   

 

h

p

height of the fin plate.

t

p

thickness of the fin plate.

The coefficient 1.27 takes in to account the redaction of shear resistance, due to the

presence of bending moment.

(8)

Fin plate in shear (net section):

, 0

,7

3

2

p b v p u

Rd Ed

M

h n d t f

V V

   

 

h

p

height of the fin plate.

t

p

thickness of the fin plate.

Fin plate in bending:

2

, ,8

0 0

6

p p

y el p y

Rd Ed

x M x M

t h f W f

V V

ee

  

  

    

  

 

,

W

el p

elastic fin plate modulus.

Beam web in bending:

, ,9

0 el b y

Rd Ed

n M

W f

V V

e

  

Without notch Single notch Double notch

,

Wel b

Wel b, ,min

of the “T” shape

2

, 6

bw nt nb

el b

t h d d W     

e

n

eccentricity between the shear force and the notch end.

(9)

Fin plate in shear (Block tearing):

, ,

,10

2 0

0.5

3

nt p u nv p y

Rd Ed

M M

A f A f

V V

 

  

  

,

A

nt p

net area subjected to tension:

   

0

, 2

, 2 , 2 , 0

2

1 0.5

nt p p

nt p b h b h p

A e d t

A e n p n d t

  

  

  

 

             

for a single vertical line of bolts

for more than one vertical line of bolts

,

A

nv p

net area subjected to shear:

 

, 1 ,

0.5

0

nv p p b v p

A    hen   d    t

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Beam web in shear (Block tearing):

, , ,11

2 0

0.5

3

nv b y nt b u

Rd Ed

M M

A f A f

V V

 

  

  

,

A

nt p

net area subjected to tension:

   

0

, 2

, 2 , 2 , 0

2

1 0.5

nt b bw

nt b b h b h bw

A e d t

A e n p n d t

  

  

  

 

             

for a single vertical line of bolts

for more than one vertical line of bolts

,

A

nv b

net area subjected to shear:

Without notch Single notch Double notch

   

1 , 1 , 0

, b v 1 b v 0.5

nv b bw

A en   p n  dt Anv b, e1

nb v,   1

 

p1 nb v, 0.5

d0tbw Anv b, e1,min

nb v,   1

 

p1 nb v, 0.5

d0tbw

(10)

Fin plate in tension (Block tearing):

 

,

, ,4

2 0

0.5

3

nt p u nv p y

Rd Ed

M M

A f A f

N N

 

  

  

nt p,

A net area subjected to tension:

nt p,

b v,

1 

1

b v,

1 

0 p

A    n   pn   d    t

nv p,

A net area subjected to shear:

    

, 2 0

, 2 , 2 , 0

2 2

2 1 0.5

nv p p

nv p b h b h p

A e d t

A e n p n d t

      

  

  

            

  

for a single vertical line of bolts

for more than one vertical line of bolts

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Beam web in tension (Block tearing):

,

,

,5

2 0

0.5

3

nt b u nv b y

Rd Ed

M M

A f A f

N N

 

  

  

nt b,

A net area subjected to tension:

nt b,

b v,

1 

1

b v,

1 

0 bw

A    n   pn   d    t

nv b,

A net area subjected to shear:

    

, 2 0

, 2 , 2 , 0

2 2

2 1 0.5

nv b bw

nv b b h b h bw

A e d t

A e n p n d t

  

   

  

 

              

for a single vertical line of bolts

for more than one vertical line of bolts

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Fin plate in tension (net section):

, 0

,6

2

0.9

p b v p u

Rd Ed

M

h n d t f

N N

    

 

(11)

Beam web in tension (net section):

, 0

,7

2

0.9

p b v bw u

Rd Ed

M

h n d t f

N N

    

 

h

p

height of the fin plate (conservatively).

Joint resistance:

, pl Rd

V design plastic resistance of the beam

If V

Ed

 0.5  V

pl Rd,

then  

 

, ,1 ,11

, ,1 ,7

min ; ; min ; ;

j Rd Rd Rd Ed

j Rd Rd Rd Ed

V V V V

N N N N

 

 

 



If V

Ed

 0.5  V

pl Rd,

then

   

 

   

2

§6.2.10

2 2

,1 ,2 ,3 ,1 ,2 ,3

, ,4 ,11

, ,4

EC.3 ,

,7

min ; ; min ; ; 1.00

min ; ;

mi

2 1

n ; ; 1

Ed Ed

Rd Rd Rd Rd Rd Rd

j Rd Rd R

Ed

d Ed

j Rd

pl

d

d R

R

Rd Ed

V V

N V

N N N V V V

V V V V

N N NN

 

 

 

 

   

 

  

   

   

 

   

   

   

 

 

(12)

WEB COVER PLATE CONNECTION

Shear resistance per shear plane §Table 3.4:

,

2 v s ub v Rd

M

FA f

 

v

 0.6 for classes 8.8

v

 0.5 for classes 10.9 A

s

Area of the bolts

f

ub

Ultimate tensile strength

M2

 1.25 Safety factor

Shear bolt resistance §3.6.1:

,

,1 2 2

max max

1

v Rd

Rd Ed

x x

b b b

V n F V

e x e y

n J J

  

     

 

   

   

e

x

eccentricity between the centroid of the bolts and the beam end.

n

b

number of bolts.

2

n  number of shear plane.

(13)

Shear force in “y” direction per shear plane due to external shear:

,

V Ed

y Ed

b

V V

n n

Shear force in “y” direction per shear plane due to torsion:

max ,

Ed x T

y Ed

b

V e x

V n J

 

 

 

 

Shear force in “x” direction per shear plane due to torsion:

max ,

Ed x T

x Ed

b

V e y

V n J

 

 

 

 

Total shear force per shear plane due to shear and torsion:

2 2

max max

,

Ed

1

x x

b v Rd

b b b

V e x e y

R F

n n J J

     

        

   

Bolts polar moment calculated in the centroid of the bolts:

 

 

2

2

b i i

i

J x y

Axial resistance for the bolts in shear §3.6.1:

Shear bearing resistance of beam web §Table 3.4:

,2 2 2

max max

, , , ,

1

Rd

1

Ed

x x

b b b

y b Rd x b Rd

V V

e x e y

n J J

F F

 

 

    

   

    

   

   

   

Bearing resistance in “y” direction:

, ,

2

y y bw u

y b Rd

M

k d t f

F

   

,1 ,

Rd b v Rd Ed

N   n n F   N

(14)

Bearing coefficients

1 1

min ; 1

3 1 4 p

y d

   

  

 

2 2

min 2.8 1.7 ; 1.4 1.7 ; 2.5

0 0

e p

ky d d

 

 

      

 

 

y

bearing coefficient in the direction of load transfer.

k

y

bearing coefficient perpendicular to the direction of load transfer.

e

1

end distance from the center of fastener hole, to the adjacent end of any part measured in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

e

2

edge distance from the center of fastener hole, to the adjacent edge of any part measured at right angles to direction of load transfer (Figure 3.1 – EC3-1- 8 : 2005).

p

1

spacing between centers of fasteners in a line in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

p

2

spacing measured perpendicular to load transfer direction between adjacent line of fasteners (Figure 3.1 – EC3-1-8 : 2005).

d diameter of the fastener.

d

0

diameter of the hole.

t

bw

thickness of the beam web.

f

u

ultimate tensile strength Bearing resistance in “x” direction:

, ,

2

x x bw u

x b Rd

M

k d t f

F

   

Bearing coefficients

2 2 1

min ; ; 1

3 0 3 0 4

e p

x d d

      

min 1.4 1 1.7 ; 2.5 0

kx dp

 

 

 

  

 

 

(15)

Bearing check:

2 2

max max

, , , ,

1

1

x x

b b b

Ed

y b Rd x b Rd

e x e y

n n

n n n J n J

V F F

         

  

              

   

      

   

   

   

Shear bearing resistance of cover plates §Table 3.4:

,3 2 2

max max

, , , ,

1

Rd

1

Ed

x x

b b b

y b Rd x b Rd

V V

e x e y

n J J

F F

 

 

    

   

    

   

   

   

Bearing resistance in “y” direction:

 

, ,

2

2

y y p u

y b Rd

M

k d t f

F

    

Bearing coefficient in the direction of load transfer:

          

1 1

0 0

min ; 1 ; 1

3 3 4

y

e p

d d

Bearing coefficient perpendicular to the direction of load transfer:

 

 

      

 

 

2 2

0 0

min 2.8 1.7 ; 1.4 1.7 ; 2.5

y

e p

k d d

e

1

end distance from the center of fastener hole, to the adjacent end of any part measured in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

e

2

edge distance from the center of fastener hole, to the adjacent edge of any

part measured at right angles to direction of load transfer (Figure 3.1 – EC3-1-

8 : 2005).

(16)

p

1

spacing between centers of fasteners in a line in the direction of load transfer (Figure 3.1 – EC3-1-8 : 2005).

p

2

spacing measured perpendicular to load transfer direction between adjacent line of fasteners (Figure 3.1 – EC3-1-8 : 2005).

d diameter of the fastener.

d

0

diameter of the hole.

t

p

thickness of a single plate.

Bearing resistance in “x” direction:

 

, ,

2

2

x

x p u

x b Rd

M

k d t f

F

    

Bearing coefficient in the direction of load transfer:

          

2 2

0 0

min ; 1 ; 1

3 3 4

x

e p

d d

Bearing coefficient perpendicular to the direction of load transfer:

 

 

      

 

 

1 1

0 0

min 2.8 1.7 ; 1.4 1.7 ; 2.5

x

e p

k d d

Axial bearing resistance of beam web §Table 3.4:

,2 , ,

Rd b x b Rd Ed

Nn F   N

Axial bearing resistance of cover plates §Table 3.4:

,3 x b Rd, ,

Rd b Ed

Nn F   N

Beam web in shear (gross section) :

,4

0

0.9 3

v y

Rd Ed

M

V A f V

 

 

 

2 2

v b b bf bw b bf

AA   b t   t   rt

(17)

A

b

cross – sectional area of the beam.

h

b

height of the beam.

b

b

flange width of the beam.

t

bf

thickness of the beam flange.

t

bw

thickness of the beam web.

Beam web in shear (net section):

, ,5

3

2 v net u

Rd Ed

M

A f

V V

  

Shear net area: A

v net,

A

v

n

b v,

t

bw

d

0

,

n

b v

number of bolts in a single vertical line.

f

u

ultimate tensile strength Cover plates in shear (gross section):

 

,6

0

2 1.27 3

p p y

Rd Ed

M

h t f

V V

  

 

 

h

p

height of the double plate.

t

p

thickness of a single plate.

The coefficient 1.27 takes in to account the redaction of shear resistance, due to the presence of bending moment.

Cover plates in shear (net section):

, 0

  

,7

2

2 3

p b v p u

Rd Ed

M

h n d t f

V V

    

 

h

p

height of the double plate.

t

p

thickness of a single plate.

Cover plates in shear (Block tearing):

, ,

,8

2 0

0.5

3

nt p u nv p y

Rd Ed

M M

A f A f

V V

 

  

  

(18)

,

A

nt p

net area subjected to tension:

 

     

, 2 0

, 2 , 2 , 0

2 2

1 0.5 2

nt p p

nt p b h b h p

A e d t

A e n p n d t

  

   

  

 

              

for a single vertical line of bolts

for more than one vertical line of bolts

,

A

nv p

net area subjected to shear:

   

, 1 ,

0.5

0

2

nv p p b v p

A    hen   d     t

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Beam web in shear (Block tearing):

, , ,9

2 0

0.5

3

nv b y nt b u

Rd Ed

M M

A f A f

V V

 

  

  

,

A

nt p

net area subjected to tension:

   

, 2 0

, 2 , 2 , 0

2

1 0.5

nt b bw

nt b b h b h bw

A e d t

A e n p n d t

     

  

 

             

for a single vertical line of bolts

for more than one vertical line of bolts

,

A

nv b

net area subjected to shear:

   

, 1 ,

1

1 ,

0.5

0

nv b b v b v bw

A    en   pn   d    t

Cover plates in tension (Block tearing):

 

,

, ,4

2 0

0.5

3

nt p u nv p y

Rd Ed

M M

A f A f

N N

 

  

  

nt p,

A net area subjected to tension:

nt p,

b v,

1 

1

b v,

1 

0

 2

p

A    n   pn   d     t

nv p,

A net area subjected to shear:

(19)

  

      

, 2 0

, 2 , 2 , 0

2 2

2

2 1 0.5 2

nv p p

nv p b h b h p

A e d t

A e n p n d t

       

  

  

             

  

for a single vertical line of bolts

for more than one vertical line of bolts

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Beam web in tension (Block tearing):

 

,

, ,5

2 0

0.5

3

nt b u nv b y

Rd Ed

M M

A f A f

N N

 

  

  

nt b,

A net area subjected to tension:

nt b,

b v,

1 

1

b v,

1 

0 bw

A    n   pn   d    t

nv b,

A net area subjected to shear:

    

, 2 0

, 2 , 2 , 0

2 2

2 1 0.5

nv b bw

nv b b h b h bw

A e d t

A e n p n d t

  

   

  

 

              

for a single vertical line of bolts

for more than one vertical line of bolts

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Cover plates in tension (net section):

, 0

  

,6

2

0.9

p b v

2

p u

Rd Ed

M

h n d t f

N N

     

 

Beam web in tension (net section):

, 0

,7

2

0.9

p b v bw u

Rd Ed

M

h n d t f

N N

    

 

h

p

height of double plate (conservatively).

(20)

Joint resistance:

, pl Rd

V design plastic resistance of the beam

If V

Ed

 0.5  V

pl Rd,

then  

 

, ,1 ,9

, ,1 ,7

min ; ; min ; ;

j Rd Rd Rd Ed

j Rd Rd Rd Ed

V V V V

N N N N

 

 

 



If V

Ed

 0.5  V

pl Rd,

then

   

 

   

2 2

,1 ,2 ,3 ,1 ,2

2

§6.2.10 EC.3

,3

, ,4 ,9

, ,7

,

,4

min ; ; min ; ; 1.00

min ; ;

min ; ; 1

2 1

Ed Ed

Rd Rd Rd Rd Rd Rd

j Rd Rd R

Ed

d Ed

j Rd

pl

d

d R

R

Rd Ed

V V

N V

N N N V V V

V V V V

N N NN

 

 

 

 

   

 

  

   

   

 

   

   

   

 

 

(21)

SPLICE CONNECTION – Bracing

Shear resistance per shear plane §Table 3.4:

, ,

2

0.75 1 15 1.00

200

v fb ub v fb Rd

M

j fb

fb

F A f

L d

d

 

 

  

 

  

    

 

, ,

2

v wb ub

v wb Rd

M

A f

F

 

v

0.6

  for classes 8.8

v

 0.5 for classes 10.9

A

fb

area of the flange bolts A

wb

area of the web bolts f

ub

ultimate tensile strength

M2

 1.25 safety factor

Bolt resistance of the beam flange:

, ,1 , ,

f Rd fsp fb v fb Rd

Nnn F

n

fsp

number of flange shear plane 1 for a single cover plate 2 for double cover plate

fsp fsp

n n

 

 



n

fb

number of flange bolts

(22)

Bearing resistance of the beam flange:

, ,2 , ,

f Rd fb b bf Rd

Nn F

Bearing resistance in “x” direction:

, ,

2

bf bf fb bf u b bf Rd

M

k d t f

F

   

Bearing coefficient in the direction of load transfer:

1, 1,

0, 0,

min ; 1 ; 1

3 3 4

bf bf

bf

fb fb

e p

d d

          

Bearing coefficient perpendicular to the direction of load transfer:

2, 2,

0, 0,

min 2.8

bf

1.7 ; 1.4

bf

1.7 ; 2.5

bf

fb fb

e p

k d d

 

 

      

 

 

d

fb

diameter of the flange bolt.

d

0,fb

hole diameter of the flange bolt.

t

bf

thickness of the beam flange.

(23)

Bearing resistance of the flange cover plates:

, ,3 , ,

f Rd fb b fcp Rd

Nn F

Bearing resistance in “x” direction:

 

, ,

2

fcp fcp fb fsp fcp u

b fcp Rd

M

k d n t f

F

    

Bearing coefficient in the direction of load transfer:

1, 1,

0, 0,

1, 1,

min ; 1 ; 1

3 3 4

fcp fcp

fcp

fb fb

fcp bf

e p

d d

p p

       

      

  

 

Bearing coefficient perpendicular to the direction of load transfer:

 

2, ,min 2,

0, 0,

2, 2,

2, ,min 2, 2,

min 2.8 1.7 ; 1.4 1.7 ; 2.5

min ; e

fcp fcp

fcp

fb fb

fcp bf

fcp fcp fcp

e p

k d d

p p

e e

         

  

 

  

 

 

 

 

t

fcp

thickness of a single flange cover plate.

Beam flange in tension (gross section):

 

, ,4

0 bf bf y f Rd

M

b t f

N

 

b

bf

flange width of the beam.

t

bf

thickness of the beam flange.

(24)

Beam flange in tension (net section):

0,

, ,5

2

0.9

bf

2

fb bf u

f Rd

M

b d t f

N

    

Flange cover plates in tension (gross section):

 

, ,6

0 fcp fcp y f Rd

M

b t f

N

 

 for a single top flange cover plate

 

, ,6 , ,6

0

2

fcp fcp y f Rd f Rd

M

b t f

N N

  

  for double flange cover plate

b

fcp

top flange cover plate width.

b

fcp

bottom flange cover plate width.

Flange cover plates in tension (net section):

0,

, ,7

2

0.9

fcp

2

fb fcp u

f Rd

M

b d t f

N

    

 for a single top flange cover plate

0,

, ,7 , ,7

2

0.9 2

fcp

2

fb fcp u f Rd f Rd

M

b d t f

N N

     

  for double flange cover plate

b

fcp

top flange cover plate width.

b

fcp

bottom flange cover plate width.

(25)

Beam flange in tension (Block tearing):

 

,

, , ,8

2

3

0

nv bf

nt bf u y

f Rd

M M

A f

A f

N  

 

 

Net area subjected to tension:

,

2, 0,

2

nt bf bf fb bf

A     ed    t

Net area subjected to shear:

nv bf,

2

1,bf

b h,

1 

1,bf

b h,

0.5 

0,fb bf

A     en   pn   d    t

,

n

b h

number of bolts in a single horizontal line.

Flange cover plates in tension (Block tearing):

 

,

, , ,9

2

3

0

nv fcp

nt fcp u y

f Rd

M M

A f

A f

N  

 

 

 for a single top flange cover plate

, ,

, ,9 , ,9

2

3

0

nv fcp

nt fcp u y

f Rd f Rd

M M

A f

A f

N N

 

 

  

 for double flange cover plate

nt fcp,

A net area subjected to tension:

(26)

Net area subjected to tension:

,

2, 0,

nt fcp fcp fb fcp

A    pd    t

,

2

2, 0,

nt fcp fcp fb fcp

A     ed    t

Net area subjected to shear:

nv fcp, nv fcp,

2

1,fcp

b h,

1 

1,fcp

b h,

0.5 

0,fb fcp

AA     en   pn   d    t

Joint flange resistance:

 

, ,

min

, ,1

;...;

, ,9

j f Rd f Rd f Rd

NN N

(27)

Shear bolt resistance of the beam web:

, ,1

2

, ,

w Rd wb v wb Rd

N   nF

n

wsp

number of web shear plane

wb

2

n  number of web bolts

Bearing resistance of the beam web:

, ,2 , ,

w Rd wb b wb Rd

NnF

Bearing resistance in “x” direction:

, ,

2

bw bw wb bw u

b bw Rd

M

k d t f

F

   

Bearing coefficient in the direction of load transfer:

1, 1,

0, 0,

min ; 1 ; 1

3 3 4

bw bw

bw

wb wb

e p

d d

          

Bearing coefficient perpendicular to the direction of load transfer:

2, 0,

min 1.4

bw

1.7 ; 2.5

bw

wb

k p

d

 

 

    

 

 

t

bw

thickness of the beam web.

d

wb

diameter of the web bolts.

d

0,wb

hole diameter of the web bolts.

(28)

Bearing resistance of the web cover plates:

, ,3 , ,

w Rd wb b wcp Rd

NnF

Bearing resistance in “x” direction:

 

, ,

2

wcp wcp wb

2

wcp u

b wcp Rd

M

k d t f

F

    

Bearing coefficient in the direction of load transfer:

1, 1,

0, 0,

min ; 1 ; 1

3 3 4

wcp wcp

wcp

wb wb

e p

d d

          

Bearing coefficient perpendicular to the direction of load transfer:

2, 2,

0, 0,

min 2.8

wcp

1.7 ; 1.4

wcp

1.7 ; 2.5

wcp

wb wb

e p

k d d

 

 

      

 

 

t

wcp

thickness of a single web cover plate.

Cover plates in tension (gross section):

 

, ,4

0

wcp

2

wcp y

w Rd

M

h t f

N

  

Cover plates in tension (net section):

, 0,

  

, ,5

2

0.9

wcp b v wb

2

wcp u

w Rd

M

h n d t f

N

     

(29)

Beam web in tension (net section):

, ,6

0 wcp bw y w Rd

M

h t f

N

 

h

wcp

height of the web cover plate (conservatively).

Beam web in tension (net section):

, 0,

, ,7

2

0.9

wcp b v wb bw u

w Rd

M

h n d t f

N

    

h

wcp

height of the web cover plate (conservatively).

Cover plates in tension (Block tearing):

,

,

, ,8

2

3

0

nv wcp

nt wcp u y

w Rd

M M

A f

A f

N  

 

 

nt wcp,

A net area subjected to tension:

nt wcp,

b v,

1 

2,wcp

b v,

1 

0,wb

 2

wcp

A    n   pn   d     t

nv wcp,

A net area subjected to shear:

nv wcp,

2

1,wcp

b h,

1 

1,wcp

b h,

0.5 

0,wb

 2

wcp

A     en   pn   d     t

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

(30)

Beam web in tension (Block tearing):

,

,

, ,9

2

3

0

nv bw

nt bw u y

w Rd

M M

A f

A f

N  

 

 

nt bw,

A net area subjected to tension:

nt bw,

b v,

1 

2,bw

b v,

1 

0,wb bw

A    n   pn   d    t

nv bw,

A net area subjected to shear:

nv bw,

2

1,bw

b h,

1 

1,bw

b h,

0.5 

0,wb bw

A     en   pn   d    t

,

n

b h

number of bolts in a single horizontal line.

,

n

b v

number of bolts in a single vertical line.

Joint web resistance:

 

, ,

min

, ,1

;...;

, ,9

j w Rd w Rd w Rd

NN N

Joint resistance:

,

2

, , , ,

j Rd j f Rd j w Rd

N   NN

(31)

SPLICE CONNECTION – N+M+V

Shear resistance per shear plane §Table 3.4:

, ,

2

0.75 1 15 1.00

200

v fb ub v fb Rd

M

j fb

fb

F A f

L d

d

 

 

  

 

  

    

 

, ,

2

v wb ub

v wb Rd

M

A f

F

 

v

0.6

  for classes 8.8

v

 0.5 for classes 10.9

A

fb

area of the flange bolts A

wb

area of the web bolts f

ub

ultimate tensile strength

M2

 1.25 safety factor

Bolt resistance of the beam flange:

,1 , ,

Rd fsp fb v fb Rd

Fnn F

n

fsp

number of flange shear plane 1 for a single cover plate 2 for double cover plate

fsp fsp

n n

 

 



n

fb

number of flange bolts

Riferimenti

Documenti correlati

Meanwhile, reconnaissance research of the paper authors has shown that the coefficient α depends on many other factors, such as type of insulating liquids (mineral oil,

The flow of air masses along the wall surfaces of buildings and structures occur with different speed, which depends on the efficiency of geometrical forms and their structural

Several studies have shown that: changes in the activities of various purine and pyrimidine biosynthe- tic enzymes may occur in lymphocytes of HIV-infec- ted patients;

The analyses shown in this study make it possible to conclude that with the bolt joints made properly (variant v.1) the maximum values of total reduced stresses - from the loads of

The article first developed a mathematical model of optimization of the power supply system for connection of the end user to electric grids according to the scheme of the

The scheme of the loading, formed on the rigid ( r ) and yielding ( y ) components of the general fastening system in the mine working: 1 and d f 1

IPADeP has been adopted as methodology to address the early conceptual design stage of a subsystem of the DEMOnstration fusion power plant (DEMO) [11]: the divertor cassette

L’analisi dei risultati del primo triennio di applicazione del nuovo sistema di monitoraggio (2009-2011) e classificazio- ne dello stato di qualità delle acque sotterranee, ai