• Non ci sono risultati.

Games in Logic

N/A
N/A
Protected

Academic year: 2021

Condividi "Games in Logic"

Copied!
154
0
0

Testo completo

(1)

Games in Logic

97

Goal: check which properties / languages are definable in a logic (e.g. FO)

(2)

Games in Logic

97

Goal: check which properties / languages are definable in a logic (e.g. FO)

Examples

• Is the property “Universe has even cardinality” definable in FO(E) ?

• Is the class of “Strongly connected graphs” definable in FO(E) ?

• Is the language L=(AA)* definable in FO(≤,A,B) ?

(3)

Warmup — The evaluation game

98

Goal: check whether M ⊨ φ

Model-check(φ, M)

if φ = R(x1,…,xk) then

if (x1M,…,xkM) ∈ RM then return true

else

return false

else if φ = φ1 ∨ φ2 then

return Model-check(φ1, M) OR Model-check(φ2, M)

else if …

else if φ = ∃x φ’ then for u ∈ UM do

if Model-check(φ’, M[x:=u]) then return true

return false

else if φ = ∀x φ’ then for u ∈ UM do

if NOT Model-check(φ’, M[x:=u]) then return false

return true

(4)

Warmup — The evaluation game

98

Goal: check whether M ⊨ φ

Model-check(φ, M)

if φ = R(x1,…,xk) then

if (x1M,…,xkM) ∈ RM then return true

else

return false

else if φ = φ1 ∨ φ2 then

return Model-check(φ1, M) OR Model-check(φ2, M)

else if …

else if φ = ∃x φ’ then for u ∈ UM do

if Model-check(φ’, M[x:=u]) then return true

return false

else if φ = ∀x φ’ then for u ∈ UM do

if NOT Model-check(φ’, M[x:=u]) then return false

return true

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

(5)

Warmup — The evaluation game

99

Goal: check whether M ⊨ φ

Players: Eve, Adam

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

(6)

Warmup — The evaluation game

99

Goal: check whether M ⊨ φ

Players: Eve, Adam

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

(7)

Recall: negations pushed inside

¬∀φ ⇝ ∃¬φ ¬∃φ ⇝ ∀¬φ

¬(φ ⋀ ψ) ⇝ ¬φ ⋁ ¬ψ …

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

(8)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

(9)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

• if α = α1 ∨ α2 then Eve can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

(10)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

• if α = α1 ⋀ α2 then Adam can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

• if α = α1 ∨ α2 then Eve can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

(11)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

• if α = ∃x α’(x) then Eve can choose any element u ∈ UM to be bound to x, game continues at position (α’, λ’) where λ’=λ[x:=u]

• if α = α1 ⋀ α2 then Adam can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

• if α = α1 ∨ α2 then Eve can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

(12)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

• if α = ∃x α’(x) then Eve can choose any element u ∈ UM to be bound to x, game continues at position (α’, λ’) where λ’=λ[x:=u]

• if α = ∀x α’(x) then Adam can choose any element u ∈ UM to be bound to x, game continues at position (α’, λ’) where λ’=λ[x:=u]

• if α = α1 ⋀ α2 then Adam can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

Construct a two-player game Gφ,M

whose winner determines whether M ⊨ φ

Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

• if α = α1 ∨ α2 then Eve can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

(13)

At each position (α, λ) of the arena

• if α = R(x1,…,xk) then game ends, Eve wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Adam wins

• if α = ¬R(x1,…,xk) then game ends, Adam wins if (λ(x1),…,λ(xk)) ∈ RM, otherwise Eve wins

Warmup — The evaluation game

99

(assume w.l.o.g. that φ is in Negation Normal Form)

Goal: check whether M ⊨ φ

Players: Eve, Adam

• if α = ∃x α’(x) then Eve can choose any element u ∈ UM to be bound to x, game continues at position (α’, λ’) where λ’=λ[x:=u]

• if α = ∀x α’(x) then Adam can choose any element u ∈ UM to be bound to x, game continues at position (α’, λ’) where λ’=λ[x:=u]

• if α = α1 ⋀ α2 then Adam can choose α’ ∈ {α1, α2}, game continues at position (α’, λ) Arena: subformulas α of φ

+ binding λ : FreeVars(α) → UM

• if α = α1 ∨ α2 then Eve can choose α’ ∈ {α1, α2}, game continues at position (α’, λ)

Lemma

M ⊨ φ iff Eve has a strategy to win Gφ,M

(14)

Definability vs elementary equivalence vs n-equivalence

100

Notation P : property (i.e. set of models), M : model, φ : FO formula

(15)

Definability vs elementary equivalence vs n-equivalence

100

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Notation P : property (i.e. set of models), M : model, φ : FO formula

(16)

Definability vs elementary equivalence vs n-equivalence

100

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Notation P : property (i.e. set of models), M : model, φ : FO formula

intuitively,

no formula can distinguish M from M’

(17)

Definability vs elementary equivalence vs n-equivalence

100

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is not definable in FO elementary

Notation P : property (i.e. set of models), M : model, φ : FO formula

there are M,M’ such that

equivalent

intuitively,

no formula can distinguish M from M’

(18)

Definability vs elementary equivalence vs n-equivalence

101

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is there are M,M’ such thatnot definable in FO elementary

equivalent

(19)

Definability vs elementary equivalence vs n-equivalence

101

φ has quantifier rank n if it has at most n nested quantifiers 3)

Example φ = ∀x∀y (¬E(x,y) ⋁ (∃z E(x,z)) ⋁ (∃t E(t,y)) )

has quantifier rank 3 (q.r. can be ≪ # quantifiers) M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ

2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is there are M,M’ such thatnot definable in FO elementary

equivalent

(20)

Definability vs elementary equivalence vs n-equivalence

101

φ has quantifier rank n if it has at most n nested quantifiers 3)

M,M’ are n-equivalent if for every φ with q.r. n M ⊨ φ iff M’ ⊨ φ 4)

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is there are M,M’ such thatnot definable in FO elementary

equivalent

(21)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is not definable in FO

Definability vs elementary equivalence vs n-equivalence

102

φ has quantifier rank n if it has at most n nested quantifiers 3)

M,M’ are n-equivalent if for every φ with q.r. n M ⊨ φ iff M’ ⊨ φ 4)

for every n

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

there are M,M’ such thatn-

equivalent

(22)

Lemma If

M ∈ P, M’ ∉ P, and M,M’

then P is not definable in FO

Definability vs elementary equivalence vs n-equivalence

102

φ has quantifier rank n if it has at most n nested quantifiers 3)

M,M’ are n-equivalent if for every φ with q.r. n M ⊨ φ iff M’ ⊨ φ 4)

for every n

M,M’ elementary equivalent if for every φ M ⊨ φ iff M’ ⊨ φ 2)

P defined by φ if for every M M ∈ P iff M ⊨ φ 1)

there are M,M’ such thatn-

equivalent

New goal: check whether

M,M' are n-equivalent

Construct a new game GM,M’

whose winner determines whether M,M’ are n-equivalent

(23)

Ehrenfeucht-Fraïssé games

103

Spoiler Duplicator

(24)

Ehrenfeucht-Fraïssé games

103

Spoiler Duplicator

M, M’ are n-equivalent!

(25)

Ehrenfeucht-Fraïssé games

103

Spoiler Duplicator

No they’re NOT!!!!

M, M’ are n-equivalent!

(26)

Ehrenfeucht-Fraïssé games

103

Spoiler Duplicator

No they’re NOT!!!!

Play for n rounds on the arena whose positions are tuples

(u1,…,ui ,v1,…,vi) ∈ UM × … × UM × UM’ × … × UM’

At each round i

Spoiler chooses an element ui from UM (or vi from UM’)

Duplicator responds with an element vi from UM’ (resp. ui from UM) Duplicator survives if M | {u1,…,ui} and M’ | {v1,…,vi} are isomorphic

M, M’ are n-equivalent!

(27)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

(28)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

1

(29)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

1 1

(30)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

1

2 1

(31)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

2

1

2 1

(32)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

2

3 1

2 1

(33)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

2

3 1

2 3

1

(34)

M’

M

Ehrenfeucht-Fraïssé games

104

Example How many rounds can Duplicator survive ?

2

3 1

2 3

1

(35)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <)

(36)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <) 1

(37)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <) 1

1

(38)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <) 1

1 2

(39)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <)

1 2

1 2

(40)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <)

1 3 2

1 2

(41)

M = (ℤ, <)

Ehrenfeucht-Fraïssé games

105

Example How many rounds can Duplicator survive ?

M’ = (ℝ, <)

1 3 2

1 2

(42)

Ehrenfeucht-Fraïssé games

106

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

(43)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

Ehrenfeucht-Fraïssé games

106

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

(44)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

Ehrenfeucht-Fraïssé games

106

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1

(45)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

Ehrenfeucht-Fraïssé games

106

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 1

(46)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 1

(47)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

2

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 1

(48)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

2

On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(49)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(50)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex)

2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(51)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1

2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(52)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1

2

1

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(53)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2

2

1

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(54)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2

2

1 2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

1 3

1

(55)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2

2

1 2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

3

3 1

1

(56)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2

2

1 2

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

3

3 3

1 1

(57)

2n - 1 nodes 2n nodes

…and he often wins very quickly!

2

Ehrenfeucht-Fraïssé games

106

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2

2

1 2

Given n,

at each round i = 1, …, n,

pairs of marked nodes in M and M’

must be either at equal distance or at distance ≥ 2n - i

But there are non-isomorphic infinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!) On non-isomorphic finite models, Spoiler always wins, eventually… Why?

3

3 3

1 1

(58)

Ehrenfeucht-Fraïssé games

107

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2 1 2

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

3 3

(59)

Ehrenfeucht-Fraïssé games

107

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2 1 2

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

3 3

(60)

Ehrenfeucht-Fraïssé games

107

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé '50, Ehrenfeucht '60]

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2 1 2

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

3 3

(61)

Ehrenfeucht-Fraïssé games

107

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé '50, Ehrenfeucht '60]

In particular, P = {discrete orders} is not definable in FO, since ℤ ∈ P and {1,2}×ℤ ∉ P

M = (ℤ, <) M’ = ({1,2}×ℤ, <lex) 1 2 1 2

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

3 3

(62)

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

(63)

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

(64)

M

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

(65)

M

M’

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

(66)

M

M’

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1

(67)

M

M’

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1 1

(68)

M

M’

2

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1 1

(69)

M

M’

2

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1 1

2

(70)

M

M’

2

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1 1

2

3

(71)

M

3

M’

2

Ehrenfeucht-Fraïssé games

108

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

1 1

2

3

(72)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(73)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(74)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

1 1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(75)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

2 1 1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(76)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

2

2 1 1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(77)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

3 2

2 1 1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(78)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

3 2 3

2 1 1

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(79)

Ehrenfeucht-Fraïssé games

109

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. Given n, find M∈P, M’∉P where Duplicator survives n rounds

2n 2n+1

3 2 3

2 1 1

Rule of thumb If Spoiler plays “close” to previous pebbles,

then Duplicator responds isomorphically within the corresponding neighbourhoods otherwise Duplicator plays “far” but has freedom of choice

Lemma If for every n there are M,M’ such that

M ∈ P, M’ ∉ P, and M,M’ n-equivalent then P is not definable in FO

(80)

Ehrenfeucht-Fraïssé games

110

(81)

Several properties can be proved to be not definable in FO:

• connectivity

• parity (i.e. even / odd)

• 2-colorability

• finiteness

• acyclicity …

Ehrenfeucht-Fraïssé games

110

(82)

Your turn now!

Several properties can be proved to be not definable in FO:

• connectivity

• parity (i.e. even / odd)

• 2-colorability

• finiteness

• acyclicity …

Ehrenfeucht-Fraïssé games

110

(83)

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

(84)

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(85)

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

(86)

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

(87)

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Eve

disjunction

evaluation game GM’,φ

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

which disjunct should I pick ?

(88)

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Eve

disjunction

evaluation game GM’,φ

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

evaluation game GM,φ

which disjunct should I pick ? Here I know which

disjunct to pick!

Eve

(89)

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Eve

disjunction

evaluation game GM’,φ

Ehrenfeucht-Fraïssé games — soundness

111

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

evaluation game GM,φ

I pick same disjunct Here I know which

disjunct to pick!

Eve

(90)

Ehrenfeucht-Fraïssé games

112

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(91)

Ehrenfeucht-Fraïssé games

112

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Adam picked a conjunct

conjunction

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(92)

Ehrenfeucht-Fraïssé games

112

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

Eve wins the evaluation game GM,φ

Eve wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

Adam picks same conjunct

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Adam picked a conjunct

conjunction

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(93)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(94)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

existential quantification Eve

?

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(95)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

binds x to u ∈ UM Eve

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

existential quantification Eve

?

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(96)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

EF game GM,M’

binds x to u ∈ UM Eve

Spoiler places pebble u

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

existential quantification Eve

?

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(97)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

EF game GM,M’

Duplicator responds with v

binds x to u ∈ UM Eve

Spoiler places pebble u

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

existential quantification Eve

?

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

(98)

Ehrenfeucht-Fraïssé games

113

Theorem M,M’ n-equivalent iff Duplicator survives n rounds in GM,M’

[Fraïssé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to n-equivalence)

True wins the evaluation game GM,φ

True wins the evaluation game GM’,φ

evaluation game GM,φ evaluation game GM’,φ

EF game GM,M’

Duplicator responds with v

binds x to u ∈ UM Eve

Spoiler places pebble u

binds x to v ∈ UM’

disjunction

conjunction

existential quantification

universal quantification 4 cases based on subformula:

existential quantification Eve

Consider φ in NNF and with quantifier rank n Suppose M ⊨ φ and Duplicator survives n rounds in GM,M’

Need to prove that M’ ⊨ φ

Riferimenti

Documenti correlati

Among other results, we shall prove that any finitely generated soluble-by-finite group in which all cyclic subgroups are almost pronormal is finite over its centre; it follows

A partire da quello dell’apertura della porta che dà accesso alla stanza proibita – luogo di memoria della violenza –, quindi della indelebile macchia di sangue sulla chiave

The quick release and the early force recovery Huxley and Simmons 8 applied a small, very rapid, length change to a single muscle fibre in the isometric state quick release

Commonly used plasmids present in the Registry of Standard Biological Parts enable a 40-fold copy number variation (from 5 copies per cell for low copy vectors to ∼ 200 copies per

It can be seen that patients in phase ON tended to under- estimate the time interval that had to be measured, with respect to controls; the same patients, however,

Tuttavia, il prezzo predatorio rappresenta un dilemma che ha tradizionalmente sollecitato l’attenzione della comunità antitrust: da un lato la storia e la teoria economica

The Balkans States partners of TWReferenceNET have in their territory some of the most valuable transitional waters of the Biosphere, including the Karavasta lagoon and the Danube

In Section 5 it is presented the approach that measure the performance of critical supply chain processes, in order to encourage a cooperative behavior across