• Non ci sono risultati.

Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle

N/A
N/A
Protected

Academic year: 2021

Condividi "Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle"

Copied!
11
0
0

Testo completo

(1)

BIBLIOGRAFIA

Alberts J. J., Schindler J. E. and Miller R. W. (1974). Elemental mercury evolution mediated by humic acid. Science 184, 895-897.

Allard B. and Arsenie I. (1991). Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle. Water, Air and Soil Poll. 56, 457-464.

Amyot M., Mierle G., Lean D. and McQueen D. (1994). Sunlight–induced formation of dissolved gaseous mercury in lake waters. Environ. Sci. Technol. 28, 2366-2371.

Amyot M., Mierle G., Lean D. and McQueen D. J. (1997a). Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochim. Cosmochim. Acta 61, 975- 987.

Amyot M., Gill G. A. and Morel F. M. M. (1997b). Production and loss of dissolved gaseous mercury in coastal seawater. Environ. Sci. Technol. 31, 3606-3611.

Amyot M., Lean D. and Mierle G. (1997c). Photochemical formation of volatile mercury in high Arctic Lakes. Environ. Toxicol. Chem. 16(10), 2054-2063.

Amyot M., Lean D. R. S., Poissant L. and Doyon M. R. (2000). Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario. Can. J. Fish.Aquat. Sci. 57 (suppl. 1), 155-163.

Andren A. W. and Nriagu J. O. (1979). The global cycle of mercury. Chapt. 1. In: The biogeochemistry of mercury in the environment (ed. Nriagu J. O.). Elsevier/North-Holland Biomedical Press, 1-22.

Baeyens W. and Leermakers M. (1998). Elemental mercury concentrations and formation rates in the Scheldt estuary and the North Sea. Mar. Chem. 60, 257-266 .

Baldini M., Molinaro M. G., Stacchini P., Zanasi F., Comi R. and Leoni V. (1994). Valutazione della ingestione settimanale di mercurio con la dieta in Italia. La rivista di Scienza dell’Alimentazione 23, 177-182.

(2)

Barghigiani C., Bargagli R. and Gioffrè D. (1988). Mercury in the environment of the Mt. Etna volcanic area. Environ. Technol. Letters. 9, 239-244.

Barkay T., Turner R. R., Vandenbrook A. and Liebert C. (1991). The relationship of Hg(II) volatilization from freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Microb. Ecol. 21, 151-161.

Barkay T. (2001). Molecular and biochemical investigation of the potential for microbial mercury volatilisation in the Idrijca River-Gulf of Trieste ecosystem. In: Hines M. E., Horvat M., Faganeli J.

editors. RMZ-M&G. Workshop on mercury in the Idria Region and Northern Adriatic. Portoroz, vol.

48(1), pp. 109-115.

Barkey T., Miller S. M. and Summers A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27, 355-384.

Ben-Bassat D. and Mayer A. M. (1987). Reduction of mercury chloride by Chlorella: evidence for a reducing factor. Physiol. Plant. 40, 157-162.

Ben-Bassat D. and Mayer A. M. (1988). Light-induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine. Physiol. Plant. 42, 33-38.

Benoit J. M., Mason R. P., Gilmour C. C. and Aiken G. R. (2001). Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochim. Cosmochim.

Acta 65, 4445-4451.

Bentz M. (1977). Investigation on the simultaneous uptake and release of mercury by Dunaliella tertiolecta. Mar. Biol. 41, 89-92.

Bernhard M. and Renzoni A. (1977). Mercury concentration in the marine organisms and in their environment: natural and anthropogenic origin. Thalassia Jugosl. 13, 265-300 (1977).

Boudala F. S., Folkins I., Beauchamp S., Tordon R., Neima J. and Johnson B. (2000). Mercury flux measurements over air and water in Kejimkujik National Park, Nova Scotia. Water, Air and Soil Poll. 122, 183-202.

Brosset C. (1987). The mercury cycle. Water, Air and Soil Poll. 34, 145-166.

(3)

Buffoni G., Bernhard M. and Renzoni A. (1982). Mercury in the Mediterranean tuna. Why is their level higher than in Atlantic tuna? A model. Thalassia Jugosl. 18, 231-243 (1982).

Clarkson T. W. (1994). The toxicology of mercury and its compounds. Chapt. VIII.1. In: Mercury pollution. Integration and synthesis. (eds. Watras C. J. and Huckabee J. W.). Lewis Publishers, 631-641.

Constantinou E., Gerath M., Mitchell D., Seigneur C. and Levin L. (1995). Mercury from power plants: a probabilistic approach to the evaluation of potential health risks. Water, Air and Soil Poll.

80, 1113-1116.

Cossa D., Martin J. D., Takayanagi K. and Sanjuan J. (1997). The distribution and cycling of mercury species in the Western Mediterranean. Deep-Sea Res. II 44 (3-4), 721-740.

Costa M. and Liss P. (1999). Photoreduction of mercury in sea water and its possible implication for Hg° air-sea fluxes. Mar. Chem. 68, 87-95.

Costa M. and Liss P. (2000). Photoreduction and evolution of mercury from seawater. Sci Total Environ. 261, 125-135.

Ebinghaus R. and Wilken R. D. (1993). Transformations of mercury species in the presence of Elbe river bacteria. Appl. Organometallic Chem. 7, 127-135.

Edner H., Ragnarson P., Svamberg S., Wallinder E., De Liso A., Ferrara R. and Maserti B. E.

(1992). Differential absorption Lidar mapping of atmospheric atomic mercury in Italian geothermal fields. J. Geophys. Res. 97, 3779-3786.

Fagerstrom T. and Jernelov A. (1971). Formation of methyl mercury from pure mercuric sulphide in aerobic organic sediment. Water Res. 5, 121-122.

Ferrara R. and Maserti B. E. (1991). Atmospheric mercury levels in the mount Etna volcanic area after an eruptive phase. Environ Technol. 11, 51-56.

Ferrara R., Maserti B. E., Andersson M., Edner H., Ragnarson P. and Svanberg S. (1997).

Mercury degassing rate from mineralized areas in the Mediterranean basin. Water, Air and Soil Poll. 93, 59-66.

(4)

Ferrara R. and Mazzolai B. (1998). A dynamic flux chamber to measure mercury emission from aquatic system. Sci. Total Environ. 215, 51-57 .

Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E. and Pirrone N. (2000a). Temporal trends in gaseous mercury evasion from the Mediterranean seawater. Sci. Total Environ. 259, 183-190.

Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E. and Pirrone N. (2000b). Volcanoes as emission sources of atmospheric mercuri in the Mediterranean basin. Sci. Total Environ. 259, 115- 121.

Ferrara R., Lanzillotta E., Ceccarini C. (2001). Dissolved gaseous mercury concentration and mercury evasional flux from seawater in front of a chlor-alkali plant. Environ. Technol. 22, 971-978.

Ferrara R., Ceccarini C., Lanzillotta E., Gardfeldt K., Sommar J., Horvat M., Logar M., Fajon V.

and Kotnik J. (2003). Profiles of dissolved gaseous mercury concentration in the Mediterranean seawater. Atmos. Environ. 37, S85-S92.

Fischer R. G., Rapsomanikis S., Andreae M. O. and Baldi F. (1995). Bioaccumulation of methylmercury and transformation of inorganic mercury by macrofungi. Environ. Sci. Technol. 29, 993-999.

Fitzgerald W. F., Mason R. P. and Vandal G. M. (1991). Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water, Air and Soil Poll. 56, 745-767.

Fitzgerald W. F. (1993). Global biogeochemical cycling of mercury. In: Allan R. J., Nriagu J. O.

editors. Heavy metals in the environment. CEP Consultants LTD Publisher, Edinburgh UK. Chapt.

1, pp. 320-323.

Fitzgerald W. F., Mason R. P., Vandal G. M. and Dulac F. (1994). Air-water cycling of mercury in lakes. In: Huckabee J., Watras C., editors. Mercury as a global pollutant. FL: Lewis, 203-220.

Foster T. J., Nakahara H., Weiss A. A. and Silver S. (1979). Transposon A-generated mutations in the mercuric resistance genes of plasmid R-100-1. J. Bacteriol. 140, 167-181.

Furukawa K., Suzuki T. and Tonomura K. (1969). Decomposition of organic mercurial compounds by mercury-resistant bacteria. Agric. Biol. Chem. 33, 128-130.

(5)

Gardfeldt K., Feng X., Sommar J. and Lindqvist O. (2001). Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions. Atmos. Environ.

35(17), 3027-3038.

Gardfeldt K., Horvat M., Sommar J., Kotnik J., Fajon V., Wangberg I. and Lindqvist O. (2002).

Comparison of procedures for measurements of dissolved gaseous mercury in seawater performed on a Mediterranean cruise. Anal. Bional. Chem. 374, 1002-1008.

Gazzetta Ufficiale della Comunità Europea. Direttiva 91/493 del consiglio del 15 luglio 1991 che stabilisce le norme sanitarie applicabili alla produzione e alla commercializzazione dei prodotti della pesca. G.U.C.E. L.268 del 24/09/1991.

Grier N. (1968). Mercury. In: The Enciclopedia of Chemical Elements (ed. Hampel, C.a.).

Reinhold, New York, 401-412.

Guandalini E. and Mantovani A. (1988). Il metilmercurio nei prodotti ittici. Ambiente Risorse Salute. Marzo, 8-11.

Harada M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Toxicol. 25, 1-24.

Hintelmann H., Ebinghaus R. and Wilken R. D. (1993). Accumulation of mercury (II) and methylmercury by microbial biofilfms. Wat. Res. 27, 237-242.

Horvat M., Kotnik J., Fajon V., Logar M., Zvonaric T. and Pirrone N. (2001). Speciation of mercury in waters of the Meditrranean Sea. In: Hines M. E., Horvat M. and Faganeli J. editors.

RMZ–M&G. Workshop on mercury in the Idria Region and Northern Adriatic. Portoroz, vol. 48(1), pp. 241-252.

Hudson R. J. M., Gherini S. A., Watras C. J. and Porcella D. B. (1994). Modelling the biogeochemical cycle of mercury in lakes: the MCM model and its application to the MTL lakes. In:

Watras C.J., Huckabee J.W. editors. Mercury Pollution Integration and Synthesis. Lewis Publishers, Boca Raton, USA. Chapt. V.1, pp. 473-526.

Hugunin A. G. and Bradley R. L. Jr. (1995). Exposure of Man to Mercury. A review. J. Milk Food Technol. 6, 354-368.

(6)

Ishihara N. and Urushiyama K. (1994). Longitudinal study of workers exposed to mercury vapour at low concentrations: time course of inorganic and organic mercury concentrations in urine, blood and hair. Occup. Environ. Med. 51, 660-662.

Jackson W. J. and Summers A. O. (1982a). Polypeptides encoded by the mer operon. J.

Bacteriol. 149, 479-487.

Jackson W. J. and Summers A. O. (1982b). Biochemical characterization of the HgCl2- inducible polypeptides encoded by the mer operon of plasmid R100. J. Bacteriol. 151, 962-970.

Jones G. J., Waite T. D. and Smith J. D. (1985). Light-dependent reduction of copper(II) and its effect on cell-mediated, thiol-dependent superoxide production. Biochem. Res. Comm. 128, 1031- 1036.

Jones G. J., Palenik B. P. and Morel F. M. M. (1986). Trace metal reduction by phytoplankton:

the role of plasmalemma redox enzimes. J. Phycol. 23, 237-244.

Khera K. S. (1979). Teratogenic and genetic effects of mercury toxicity. Chapt. 19. In: The biogeochemistry of mercury in the environment (ed. Nriagu). Elsevier/North.Holland Biomedical Press, 503-518.

Kim J. P. and Fitzgerald W. F. (1986). Air portioning of mercury in the Equatorial Pacific Ocean.

Science 23, 1131-1133.

Kim J. and Fitzgerald W. F. (1988). Gaseous mercury profiles in the Tropical Pacific Oceans.

Geophys. Res. Letters 15, 40-43.

Kim K. H. and Lindberg S. E. (1995). Design and initial tests of a dynamic closure chamber for measurements of vapor-phase mercury fluxes over soils. Water, Air and Soil Poll. 80, 1059-1068.

Krabbenhoft D. P., Hurley J. P., Olson M. L. and Cleckner L. B. (1998). Diel variability of mercury phase and species distribution in the Florida Everglades. Biogeochem. 40, 311-325.

Lamborg C. H., Rolfhus K. R., Fitzgerald W. F. and Kim G. (1998). The atmospheric cycling and air-sea exchange of mercury species in the Soulth and Equatorial Pacific Atlantic. Deep-Sea Res. II 46, 957-977.

(7)

Lanzillotta E. and Ferrara R. (2001). Daily trend of dissolved gaseous mercury concentration in coastal seawater of the Mediterranean basin. Chemosphere 45, 935-940.

Lanzillotta E., Ceccarini C. and Ferrara R. (2002). Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin. Sci. Total Environ.

300/1-3, 193-201.

Lanzillotta E., Ceccarini C., Ferrara R., Dini F., Frontini F. P. and Banchetti R. (2004).

Importance of the biogenic organic matter in photo-formation of dissolved gaseous mercury in a colture of the marine diatom Chaetoceros sp. Sci. Total Environ. 318, 211-221.

Lindberg S. E., Meyers T. P. and Munthe J. (1995). Evasion of mercury vapor from the surface of a recently limed acid forest in Sweden. Water, Air and Soil Poll. 85, 725-730.

Lindberg S. E., Vette A. F., Miles C. and Schaedlich F. (2000). Mercury speciation in natural waters: measurements of dissolved gaseous mercury with a field analyzer. Biogeochem. 48(2), 237-259.

Lindqvist O., Jernelov A., Johansson K. and Rodhe H. (1984). Mercury in the Swedish environment. Global and local sources. National Swedish Environment Protection Board, Report snv pm 1816.

Lindqvist O. and Rodhe H. (1985). Atmospheric mercury. A review. Tellus 37B, 136-159.

Lindqvist O. (1994). Atmospheric cycling of mercury: an overview. In: Watras C.J., Huckabee J.W. editors. Mercury Pollution Integration and Synthesis. Lewis Publishers, Boca Raton, USA.

Chapt. II.1, pp. 181-185.

Lipfert F. W., Moskowitz P. D., Fthenakis V., Delphillips M., Viren J. and Saroff L. (1995). An assessment of adult risk of paresthesia due to mercury from coal combustion. Water, air and Soil Poll. 80, 1139-1148.

Magos L. and Webb M. (1979). Synergism and antagonism in the toxicology of mercury. Chapt.

21. In: The biogeochemistry of mercury in the environment (ed. Nriagu). Elsevier/North Holland Biomedical Press, 581-599.

(8)

Majori L., Nedoclan G. and Modonutti G. B. (1967). Inquinamento da mercurio nell’Alto Adriatico. Acqua e Aria. 3, 164-172.

Mason R. P. and Fitzgerald W. F. (1991). Mercury speciation of open ocean waters. Water, Air, and Soil Poll. 56, 779-789.

Mason R. P., Fitzgerald W. F. and Morel M. M. (1994). The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochem. Cosmochem. Acta. 58, 3191-3198.

Mason R. P., Morel F. M. M. and Hemond H. F. (1995). The role of microrganisms in elemental mercury formation in natural waters. Water, Air and Soil Poll. 80, 775-787.

Mason R. P., Lawson N. M. and Sheu G. R. (1999). Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res. 46, 937-956.

Mason R. P. and Sullivan K. A. (1999). Mercury in the South and Equatorial Atlantic. Deep-Sea Res. II 46, 937-956.

Mason R. P., Lawson N. M. and Sheu G. R. (2001). Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res. II 48, 2829-2853.

Moore, B. (1960). A new screen test and selective medium for the rapid detection of epidemic strains of Staphylococcus aureus. Lancet ii, 453-458.

Nakahara H., Silver S., Miki T. and Rownd R. H. (1979). Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140, 161-166.

Nakamura K., Iwahara M. and Furukawa K. (2001). Screening of organomercurial-volatilizing bacteria in the mercury polluted sediments and seawater of Minamata Bay in Japan. Clean Prod.

Processes 3, 104-107.

Novick R. P. and Roth C. (1968). Plasmid resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95, 1335-1342.

(9)

Nriagu J. O. (1994). Mechanistic steps in the photoreduction of mercury in natural waters. Sci Total Environ. 154, 1-8.

O’Driscoll N. J., Siciliano S. D. and Lean D. R.S. (2003). Continuous analysis of dissolved gaseous mercury in freshwater lakes. Sci. Total Environ., 304, 285-294 .

Reilly C. (1991). Metal Contamination of Food. Elsevier, Essex.

Richmond M. H. and John M. (1964). Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts. Nature 202, 1360-1361.

Rolfhus K. R. and Firald W. F. (2001). The evasion and spatial/temporal distribution of mercury species in Long Island sound, CT-NY. Geochim. Cosmochim. Acta 65 (3), 407-418.

Rolfhus K. R. and Fitzgerald W. F. (2004). Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater. Mar. Chem. 90, 125-136.

Schroeder W. H., Munthe J. and Lindqvist O. (1989). Cycling of mercury between water, air and soil compartments of the environment. Water, Air and Soil Poll. 48, 337-347.

Schroeder W. H., Ebinghaus R. and Shoeib M. (1994). Atmospheric mercury measurements in the Northern Hemisphere from 56° to 82.5° N latitude. Water, Air and Soil Poll. 80, 1217-1226.

Schweinsberg F. (1994). Risk estimation of mercuri intake from different sources. Toxicol.

Letters. 72, 181-186, 345-351.

Seritti A., Ferrara R., Morelli E., Barghigiani C. and Petrosino A. (1986). Trace metals n marine environment in relation to the study of their biogeochemical cycle. Chem. Ecol. 2, 49-53.

Schottel J., Mandal A., Clark D., Silver S. and Hedges R. W. (1974). Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251, 335-337.

Schottel J. L. (1978). The mercuric and organomercurial detoxfying enzymes from a plasmid- bearing strain of Escherichia coli. J. Biol. Chem. 253, 4341-4349.

(10)

Schroeder W. H., Lindqvist O., Munthe J. and Xiao Z. F. (1992). Volatilization of mercury from lake surfaces. Sci. Total Environ. 125, 47-66.

Sharp J. H., Benner R., Bennett L., Carlson C. A., Down R., Fitzwater S. E. (1993). A revaluation of high temperature combustion and chemical oxidation measurements of dissolved organic carbon in seawater. Limnol. Oceanogr. 39, 1774-1782.

Siegel S. M. and Siegel B. Z. (1984). First estimate of annual mercury flux at the Kilauea main vent. Nature. 309, 146-147.

Smith D. H. (1967). R factors mediate resistances to mercury, nickel, and cobalt. Science 156, 1114-1116.

Spokes L. J. and Liss P. S. (1995). Photochemically induced redox reactions in seawater. I.

Cations. Marine Chem. 49, 201-213.

Stanojeviæć M., Lovšin N., Gubenšek F., Logar M., Kotnik J., Gibičar D. and Horvat M. (2004).

Mercury detoxification genes in river water contaminated by the past mercury mining activity in Idrija, Slovenia. RMZ-M&G 51, 1388-1391 (2004).

Summers A. O. and Sugarman L. I. (1974). Cell-ree mercury(II)-reducing activity in a plasmid- bearing strain of Escherichia coli. J. Bacteriol. 119, 242-249.

Summers A. O. and Barkay T. (1989). Metal resistance genes in the environment. In: Gene Transfer in the Environment (eds. Levy S. B. and Miller R. V.). Mc Grow-Hill Publishing Co., New York, 287-308.

Tonomura K and Kanzaki F. (1969). The reductive decomposition of organic mercurials by cell- free extracts of a mercury resistant pseudomonad. Biochim. Biophys. Acta. 184, 227-229.

Vandal G. M., Mason R. P. and Fitzgerald W. F. (1991). Cycling of volatile mercury in temperate lakes. Water, Air and Soil Poll. 56, 791-803.

Wangberg I., Schmolke S., Schager P., Munthe J., Ebinghaus R. and Iverfeldt A. (2001).

Estimates of air-sea exchange of mercury in the Baltic Sea. Atmos. Environ. 35(32), 5477-5484.

(11)

Wanninkhof R. (1992). Relationship between wind speed and gas exchange over the ocean. J.

Geophys. Res. 97, 7373-7382.

Xiao Z. F., Munthe J., Strömberg D. and Lindqvist O. (1994). Photochemical behaviour of inorganic mercury compounds in aqueous solution. In: Watras C. J., Huckabee J. W. editors.

Mercury Pollution Integration and Synthesis. Lewis Publishers, Boca Raton, USA. Chapt. VI.6, pp.

581-591.

Zhang H. and Lindberg S. (2000). Air/water exchange of mercury in the Everglades I: the behavior of dissolved gaseous mercury in the Everglades Nutrient Removal Project. Sci. Total Environ. 259, 123-133.

Riferimenti

Documenti correlati

In this work, the evasion of Hg in terms of fluxes were determined at four sites: two are located at a fish farm in the Lagoon (VN1 and VN3), which has previously been investigated

The time course of the non-protein thiol pool and Hg intracellular concentration shows that PCs, glutathione and γ-EC represent a rapid cellular response to mercury,

Evaluation of the state of sediments with the use of the geoaccumulation index and the pollution coefficient revealed moderate pollution of bottom sediments of the

This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements.. In

Gaseous mercury distribution in the upper troposphere and lower stratosphere observed onboard the CARIBIC passenger aircraft, Atmos. Worldwide trend of atmospheric

The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth

The degree of mercury release during thermal treatment of coal was then calculated as a mass ratio of mercury released during coal thermal treatment at a given

The standard deviation R 2 value, which is a measure of the correlation strength between the variables, is quite strong in the case of coal parameters and amounts to 0.70