• Non ci sono risultati.

Prove the following stronger inequality: a2+ b2+ c2≥√ 3(4S + (c − a)2)

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove the following stronger inequality: a2+ b2+ c2≥√ 3(4S + (c − a)2)"

Copied!
1
0
0

Testo completo

(1)

Problem 11990

(American Mathematical Monthly, Vol.124, June-July 2017) Proposed by N. Minculete (Romania).

Leta, b, and c be the lengths of the sides of a triangle of area S. Weitzenb¨ock’s inequality states thata2+ b2+ c2≥ 4√

3S. Prove the following stronger inequality:

a2+ b2+ c2≥√

3(4S + (c − a)2).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will show the following even stronger inequality a2+ b2+ c2≥ 4√

3S + 2(c − a)2.

By the law of cosines, b2= a2+ c2− 2ac cos(B). Moreover 2S = ac sin(B). Hence a2+ b2+ c2− 4√

3S = 2a2+ 2c2− 2ac cos(B) − 2√

3ac sin(B)

= 2(a2+ c2) − 2ac(cos(B) +√

3 sin(B))

= 2(a2+ c2) − 4ac sin(B + π/6)

≥ 2(a2+ c2) − 4ac = 2(c − a)2≥ 0.



Riferimenti

Documenti correlati

Let s be the semiperimeter of the triangle and let A be

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

We denote with A, B, and C the position vectors of the vertices of the given

Let a, b, and c be the lengths of the sides of a triangle with

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy. Let N b (k) be the set of

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy. We first show that if n is