• Non ci sono risultati.

concentration on rice seedlings. Plant Physiology. 71: 30–34.

N/A
N/A
Protected

Academic year: 2021

Condividi " concentration on rice seedlings. Plant Physiology. 71: 30–34. "

Copied!
30
0
0

Testo completo

(1)

Bibliografia

1. Akiko Kozaki and Go Takeba, 1996. Photorespiration protects C3 plants from photooxidation. Nature 384: 557-560.

2. Allan AC, Fluhr R., 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 1997, 9:1559-1572.

3. Alpi A. and Beevers H., 1983. Effects of O

2

concentration on rice seedlings. Plant Physiology. 71: 30–34.

4. Armstrong W, 1979. Aeration in higher plants. Advances in Botanical Research. 7: 225-232.

5. Armstrong W, Brändle R, Jackson MB. 1994. Mechanisms of flood

tolerance in plants. Acta Botanica Neerlandica 43: 307–358.

(2)

6. Armstrong W, Drew MC. 2002. Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant roots: the hidden half. New York, NY, USA: Marcel Dekker, 729–761.

7. Asada K., 1999. THE WATER-WATER CYCLE IN CHLOROPLASTS:

Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol 50: 601-639.

8. Azpiroz-Leehan R., Feldman K.A., 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends in Genetics. 13: 152-156.

9. Bailey-Serres J, Chang R, 2005. Sensing and signalling in response to oxygen deprivation in plants and other organism. Annals of Botany 96:

507-518.

10. Ballaré CL. 1999. Keeping up with the neighbors: phytochrome sensing and other signaling mechanisms. Trends in Plant Science 4: 97–102.

11. Banga M, Slaa EJ, Blom CWPM, Voesenek LACJ. 1996. Ethylene biosynthesis and accumulation under drained and submerged conditions.

Plant Physiology 112: 229–237.

12. Banga M, Bögemann GM, Blom CWPM, Voesenek LACJ. 1997.

Flooding resistance of Rumex species strongly depends on their response

(3)

to ethylene: rapid shoot elongation or foliar senescence. Physiologia Plantarum 99: 415–422.

13. Banks NH, 1983. Evaluation of methods for determining internal gases in banana fruit. J Exp Bot 34: 871-879.

14. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. 2002.

ROPGAP4-dependent Rop GTPase rheostat controls of Arabidopsis oxygen deprivation tolerance. Science 296: 2026–2028.

15. Benschop JJ, Jackson MB, Gühl K, Vreeburg RAM, Croker SJ, Peeters AJM, Voesenek LACJ. 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant Journal 44: 756–768.

16. Blom CWPM, Voesenek LACJ, 1996. Flooding: the survival strategies of plants. Trends in Ecology and Evolution 11: 290–295.

17. Bienert GP, Schjoerring JK, Jahn TP, 2006. Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 1758(8): 994-1003.

18. Branco-Price C, Kawaguchi R, Ferreira R, Bailey-Serres J, 2005.

Genome-wide analysis of transcript abundance and translation in

Arabidopsis seedlings subjected to oxygen deprivation. Annals of Botany

96: 647–660.

(4)

19. Botrel A, Magne C, Kaiser WM, 1996. Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia, Plant Physiol. Biochem 34: 645–652.

20. Buchanan BB, Gruissem W, Jones RL, 2003. Biochimica e biologia molecolare delle piante. Ed. Zanichelli.

21. Butler W, Cook L,Vayda ME, 1990. Hypoxic stress inhibits multiple aspects of the potato tuber wound response. Plant Physiol. 93: 264-270.

22. Chang C, Kwok SF, Bleeker AB and Meyerowtz EM, 1993.

Arabidopsis ethylene-response gene ETR1: similarity of product to two- component regulators. Science. 262: 539-544.

23. Chaparro-Giraldo A, Barata BM, Chabregas SM, Azevedo RA, Silva- Filho MC, 2000. Soybean leghemoglobin targeted to potato chloroplast influences growth and development of transgenic plants. Plant Cell Rep.

19: 961-965.

24. Chung HJ, Ferl RJ, 1999. Arabidopsis alcohol dehydrogenase expression

in both shoots and roots is conditioned by root growth environment, Plant

Physiol 121: 429–436.

(5)

25. Colmer TD, Gibberd MR, Wiengweera A and Thinh TK (1998). The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany 49: 1431- 1436.

26. Colmer TD, 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17–36.

27. Cornic G, Fresneau C., 2002. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89: 887-94.

28. Corpas FJ, Barroso JB, del Rio LA., 2001: Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells.

Trends Plant Sci 6:145-150.

29. Cosgrove DJ. 1999. Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology 50: 391–417.

30. Cox MCH, Millenaar FF, de Jong van Berkel YEM, Peeters AJM,

Voesenek LACJ. 2003. Plant movement; submergence-induced petiole

elongation in Rumex palustris depends on hyponastic growth. Plant

Physiology 132: 282–291.

(6)

31. Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM, Moritz T, Peeters AJM, Voesenek LACJ. 2004. The roles of ethylene, auxin, abscisic acid and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiology 136: 2948–2960.

32. Crawford R.M.M., 1978. Metabolic adaptation to anoxia. In: D.D. Hook and R.M.M Crawford (Eds.). Plant Life in Anaerobic Environment. Ann.

Arbor Sciences Publishers. Ann. Arbor., MI pp. 119-136.

33. Crawford RMM. 1992. Oxygen availability as an ecological limit to plant distribution. Advances in Ecological Research 23: 93–185.

34. Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM. 2004. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry.

42: 273-282.

35. Davies P.J., ed. (1987). Plant Hormones and their Role in Plant Growth and Development. Martinus Nijhoff, Dordrecht, The Netherlands.

36. Del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ. 1992.

Metabolism of oxygen radicals in peroxisomes and cellular implications.

Free Radical Biol. Med. 13: 557-580.

(7)

37. Desikan R., Hancock J.T. and Neill S.J., 2003. Oxidative stress signalling. Top Curr Genet 4:129-149.

38. Desikan R, Reynolds A, Hancock JT, Neill SJ. 1998. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J. 330:115-20.

39. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ, 2001.

Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579-1587.

40. Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill S, 2005. A role for ETR1 in hydrogen peroxide signalling in stomatal guard cells. Plant Physiology 137: 831-834.

41. Dolferus R, Klock EJ, Delessert C, Wilson S, Ismond KP, Good AG, Peacock Wj, Dennis ES, 2003. Enhancing the anaerobic response. Annals of Botany 91: 111-117.

42. Dordas C, Rivoal J, Hill RD., 2003. Plant haemoglobins, nitric oxide and

hypoxic stress. Annals of Botany 91: 173-178.

(8)

43. Dordas C, Hasinoff BB, Rivoal J, Hill RD. 2004. Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219: 66–72.

44. Drew MC, Jackson MB, Giffard S. 1989. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:

83-88.

45. Drew MC, 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology 48: 223-250.

46. Drew MC, He CJ, Morgan PW. 2000. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science 5: 123–127.

47. Duff SM, Wittenberg JB, Hill RD., 1997. Expression, purification and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J. Biol. Chem. 272: 16746- 16752.

48. Evans DE. 2003. Aerenchyma formation. New Phytologist 161: 35–49.

(9)

49. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H,Torres MA, 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.

50. Frost-Christensen H, Bolt Jorgensen L, Floto F. 2003. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants. Plant, Cell & Environment 26: 561–569.

51. Fukao T. and Bailey-Serres J., 2004. Plant responses to hypoxia is survival a balancing act? Trends Plant Science. 9: 449–456

52. Fukao T. et al., 2006. A variable cluster of ethylene-responsive-like factors regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021–2034.

53. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F. 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141(2):436-45.

54. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz

G, Botstein D, Brown PO., 2000. Genomic expression programs in the

response of yeast cells to environmental changes. Molecular Biology of the

Cell.

(10)

55. Geigenberger P., Fernie AR, Gibon Y, Christ M, Stitt M, 2000.

Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381: 723-740.

56. Geigenberger P, 2003. Response of plant metabolism to too little oxygen.

Current Opinion in Plant Biology 6: 247-256.

57. Geigenberger P, Kolbe A, Tiessen A., 2005. Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot.

56(416):1469-1479.

58. Gibbs J, Greenway H, 2003. Mechanism of anoxia tolerance in plants. I.

Growth, survival and anaerobic catabolism. Functional Plant Biology 30:

1-37.

59. Greenway H, Gibbs J, 2003. Mechanism of anoxia tolerance in plants. II.

Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology 30: 999-1036.

60. Groeneveld HW, Voesenek LACJ. 2003. Submergence-induced petiole elongation in Rumex palustris is controlled by developmental stage and storage compounds. Plant and Soil 253: 115–123.

61. Grun S, Lindermayr C, Sell S, Durner J., 2006. Nitric oxide and gene

regulation in plants. J Exp Bot. 57(3): 507-16.

(11)

62. Guglielminetti L, Yamaguchi J, Perata P. and Alpi A. 1995.

Amylolytic activities in cereal seeds under aeorobic and anaerobic conditions. Plant Physiol. 109: 1069-1076.

63. Guimil S, Dunand C., 2006. Patterning of Arabidopsis epidermal cells:

epigenetic factors regulate the complex epidermal cell fate pathway.

Trends Plant Sci. 12: 601-9.

64. Gustavsson N., . A Diez, T Nystrom 2002. The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage Molecular Microbiology 43:102-107

65. Hall MA. 1991. Ethylene metabolism. In: Mattoo AK, Suttle JC, eds. The Plant Hormone Ethylene. Boca Raton, FL, USA: CRC Press, 65–80.

66. Halliwell B. 1989 Free Radicals in Biology and Medicine, Second edition (Oxford, England).

67. Halliwell B., 2006. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97(6):1634-58.

68. Hancock J.T., Desikan R., Neill S.J., 2001. Hydrogen peroxide and nitric

oxide in plant defence: revealing potential targets for oxidative stress

tolerance? Biofactors.15(2-4): 99-101.

(12)

69. Hancock J.T., Desikan R., Neill S.J., 2003. Cytochrome c, glutathione, and the possible role of redox potentials in apoptosis. Ann N Y Acad Sci.

1010: 446-448.

70. Hancock J.T., Desikan R., Neill SJ, 2005. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem. 43(9): 828- 835.

71. Hancock J., Desikan R., Harrison J., Bright J., Hooley R., Neill S., 2006. Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot. 57(8):1711-1718.

72. He CJ, Drew MC, Morgan PW. 1994. Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiology105: 861–865.

73. He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW. 1996.

Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiology 112:

1679–1685.

(13)

74. Jackson M.B., Herman B. and Goodenough A., 1982. An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ. 5: 163-172.

75. Jackson M.B. (1985). Ethylene and responses of plants to soil waterlogging and submergence. Annual rewiew of Plant Physiology. 36:

145-174.

76. Jackson M.B., Davies W.J., Else M.A, 1996. Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants, Ann. Bot. 77: 12–24.

77. Jackson M.B., Armstrong W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.

Plant Biology. 1: 274-287.

78. Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ, 2004. Evidence of a novel cell signalling role for extracellular adenosine triphosphates and diphospates in Arabidopsis. Plant Cell. 16: 2652-2664.

79. Jones M, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS. 2002. The

Arabidopsis Rop2 GTPase is a positive regulator of both root hair

initiation and tip growth. Plant Cell 14: 763–776.

(14)

80. Jones M.A., Raymond M.J., Yang Z., Smirno N. 2007. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase J Exp Bot. 58(6):1261-70.

81. Joo JH, Bae YS, Lee JS., 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126:1055-1060.

82. Kato-Noguchi H., 2004. Sugar utilization and anoxia tolerance in rice roots acclimated by hypoxic pre-treatment. J. Plant Physiology. 161: 803- 808.

83. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C.

1998. A plant homolog of the neutrophil NADPH oxidase gp

91

phox subunit gene encodes a plasma membrane protein with Ca

2+

binding motifs. Plant Cell. 10: 255–266.

84. Kende H. (1993). Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 283-307.

85. Kende, H. et al., 1998. Deepwater rice: a model plant to study stem elongation. Plant Physiology 118: 1105–1110.

86. Kim J.H., Lee S., Park J.B., Lee S.D., Kim J.H., Ha S.H., Hasumi K.,

Endo A., Suh P.G., Ryu S.H. 2005 Hydrogen peroxide induces

association between glyceraldehyde 3-phosphate dehydrogenase and

(15)

phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells.

J Neurochem. 85(5): 1228-36.

87. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES. 2002. Expression profile analysis of the low-oxygen response in Arabidopsis rot cultures. Plant Cell 14: 2481-2494.

88. Kovtun Y, Chiu W-L, Tena G, Sheen J, 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 97:2940-2945.

89. Krysan P.J., Young J.C., Tax F., Sussman M.R., 1996. Identification of transferred DNA insertions with Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA, 93:8145-8150.

90. Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, Choi EJ, Taylor ATS, Low

PS, Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, Choi EJ, Taylor ATS,

Low PS, Lee Y, 1999: Oligogalacturonic acid and chitosan reduce

stomatal aperture by inducing the evolution of reactive oxygen species

from guard cells of tomato and Commelina communis. Plant Physiol,

121:147-152.

(16)

91. Levine A., Tenhaken R., Dixon R., Lamb CJ., 1994. H

2

O

2

from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response. Cell. 79: 583-593.

92. Licausi F., 2007. Now: an USP that mediates stress signalling in Arabidopsis thaliana.

93. Liu Y, Zhang S., 2004. Phosphorylation of 1-aminocyclopropane-1- carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386–3399.

94. Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J.

2005. Global transcription profiling reveals comprehensive insights into hypoxia response in Arabidopsis. Plant Physiology 137: 1115–1129.

95. Loreti E, Poggi A, Novi G, Alpi A. and Perata P., 2005. Genome-wide analysis of gene expression in Arabidopsis seedlings under anoxia. Plant Physiol. 137(3): 1130-1138.

96. Lorbiecke R, Sauter M. 1999. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiology 119: 21–29.

97. Magness JR., 1920. Composition of gases in intercellular spaces of apples

(17)

98. Maxwell DP, Nickels R, McIntosh L, 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 29:269- 279.

99. McQueen-Mason SJ, Durachko DM, Cosgrove DJ. 1992. Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:

1425–1433.

100. Mehler, A.H., 1951. "Studies on reactions of illuminated chloroplasts." Arch. Biochem. Biophys. 33: 65-77.

101. Mensuali-Sodi A, Panizza M and Tognoni F. 1992.

Quantification of ethylene losses in different container-seal system and comparison of biotic and abiotic contribuition to ethylene accumulation in cultured tissues. Physiology Plantarum 84: 472-476.

102. Millenaar FF, Cox MCH, de Jong-van Berkel YEM, Welschen RAM,

Pierik R, Voesenek LACJ, Peeters AJM. 2005. Ethylene-induced

differential growth of petioles in Arabidopsis analyzing natural variation,

response kinetics, and regulation. Plant Physiology 137: 998–1008

(18)

103. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., 2004.

Reactive oxygen gene network of plants. Trends Plant Science. 9(10):

490-498.

104. Mommer L, Pedersen O, Visser EJW. 2004. Acclimation of a terrestrial plant to submergence facilitates gas exchange underwater. Plant, Cell &

Environment 17: 1281–1287.

105. Mommer L, Visser EJW. 2005. Underwater photosynthesis in flooded terrestrial plants: a mater of leaf plasticity. Annals of Botany. 96: 581–589.

106. Mommer L, de Kroon H, Pierik R, Bögemann GM, Visser EJW.

2005a. A functional comparison of acclimation to shade and submergence in two terrestrial plant species. New Phytologist. 167: 197–206.

107. Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW.

2005b. Submergence-induced morphological, anatomical and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology 139: 497–508.

108. Mullineaux PM, Karpinski S, Baker NR., 2006. Related Spatial

dependence for hydrogen peroxide-directed signaling in light-stressed

plants. Plant Physiol. 141(2): 346-350.

(19)

109. Murata Y, Pei Z-M, Mori IC, Schroeder J., 2001. Abscisic acid activation of plasma membrane Ca

2+

channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513-2523.

110. Muhlenbock P., Plaszczyca M., Plaszczyca M., Mellerowicz E., Karpinski S., 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. The Plant Cell 19: 3819- 3830.

111. Nakagami H, Kiegerl S, Hirt H, 2004. OMTK1, a novel MAPKKK, channels oxidative stress signalling through direct MAPK interaction. J Biol Chem 279: 26959-26966.

112. Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H, 2006. A Mitogen-activated Protein Kinase Kinase Kinase mediates Reactive Oxygen Species homeostasis in Arabidopsis. Journal of Biological Chemistry. 281 (50): 38697-38704.

113. Neill S, Desikan R, Clarke A, Hancock J, 2002a. Nitric oxide is a novel

component of abscisic acid signalling in stomatal guard cells. Plant Physiol,

128:13-16.

(20)

114. Neill S, Desikan R and Hancock J., 2002b. Hydrogen peroxide signalling. Current Opinion in Plant Biology. 5: 388-395.

115. Nie X. and Hill RD, 1997. Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiology 114: 835 –840.

116. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S, 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant Journal.

48: 535-547.

117. Nystrom T, Neidhardt FC., 1994. Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Molecular Microbiology 11: 537-544.

118. Noctor G, Foyer CH., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 49:249-279.

119. Ober ES, Sharp RE, 1996. A microsensor for direct measurement of O

2

partial pressure within plant tisssues. Journal Experimental of Botany 47:

447-457.

120. Oliva M. and Dunand C., 2007. Waving and skewing: how gravity and

the surface of growth media affect root development in Arabidopsis. New

phytologist 176: 37-43.

(21)

121. Pei Z-M, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI., 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406:731- 734.

122. Peng HP, Chan CS, Shih MC, Yang SF. 2001. Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiology 126: 742–749.

123. Perata, P. and Alpi, A., 1993. Plant responses to anaerobiosis. Plant Science. 93: 1–17

124. Perata P. and Voesenek LACJ., 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends in Plants Science. Vol.12 n.2: 43-46.

125. Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW.

2004. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant Journal 38:

310–319.

126. Raskin I. and Kende H., 1984a. Regulation of growth in stem sections of

deep-water rice. Planta. 160: 66-72.

(22)

127. Raven JA, Osborne BA, Johnston AM. 1985. Uptake of CO

2

by aquatic vegetation. Plant, Cell & Environment 8: 417–425.

128. Ren D, Yang H, Zhang S., 2002. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem, 277:559-565.

129. Richard B., VanToai T., Chourey P. and Saglio P. (1998). Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant physiology. 116: 1323-1331.

130. Rijnders JGHM, Yang Y, Kamiya Y, Takahashi N, Barendse GWM, Blom CWPM, Voesenek LACJ. 1997. Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203: 20–25.

131. Roberts J.K.M., Callis J., Jardetzky O., Walbot V. and Freeling M.

1984a. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci., USA. 81: 6029-6033.

132. Roberts J.K.M., Callis J., Wemmer D., Walbot V. and Jardetzky O., 1984b. Mechanism of cytoplasmatic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci., USA. 81:

3379-3383.

(23)

133. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M., 2002.

Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro, J. Exp. Bot. 53: 1–7.

134. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN, 2006.

Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141(2): 357-66.

135. Rolletscheck H, Borisjuk L, Koschorreck M, Wobus U, Weber H, 2002. Legume embryos develop in a hypoxic enviroment. J Exp Bot.

53:1099-107.

136. Ros Barcelò A., 2005. Xylem-parenchyma cells deliver the H

2

O

2

necessary for lignification in differtiating xylem vessels. Planta. 220: 747- 756.

137. Saab IN, Sachs MM. 1996. A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiology 112: 385–391.

138. Sachs JA, 1882. A text book of botany. Oxford, UK: Oxford University Press.

139. Sagi M, Fluhr R. 2001. Superoxide production by plant homologues of

the gp91phox NADPH oxidase. Modulation of activity by calcium and by

tobacco mosaic virus infection. Plant Physiology126: 1281–1290.

(24)

140. Sand-Jensen K. 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. General features of aquatic photosynthesis. Aquatic Botany 34: 5–25.

141. Schiefelbein JW, Somerville C., 1990. Genetic Control of Root Hair Development in Arabidopsis thaliana. Plant Cell. 2(3):235-243.

142. Schiefelbein JW, Masucci JD, Wang H., 1997. Building a root: the control of patterning and morphogenesis during root development. Plant Cell. 9(7):1089-98.

143. Sedbrook J.C., Kronebusch P.J., Borisy G.G., Trewavas A.J.,. Masson P.H, 1996. Transgenic AEQUORIN revels organ specific cytosolic Ca

2+

responses to anoxia in Arabidopsis thaliana seedlings, Plant Physiol 111:

243–257.

144. Setter, T.L. and Laureles, E.V., 1996. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J. Exp. Bot. 47: 1551–

1559.

145. Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z., 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol. 54(1):

39-50.

(25)

146. Singh KK, 2000. The Saccharomyces cerevisiae Slnp1-Ssk1p two component system mediates response to oxidative stress and in an oxidant specific fashion. Free Radical Biol. Med. 10: 1043-1050.

147. Song CJ, Steinebrunner I,Wang X, Stout SC, Roux SJ., 2006.

Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiology 140(4):1222-1232.

148. Sousa M.C., McKay D.B., 2001. Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135-1141

149. Stöhr C, Strube C, Marx G, Ullrich WR, Rockel P, 2001. A plasmamembrane bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta 212: 835–841.

150. Subbaiah CC, Bush DS, Sachs MM, 1998. Mitochondrial contribution to the anoxic Ca

2+

signal suspension cultured cells. Plant Physiology 118: 759- 771.

151. Subbaiah CC and Sachs MM (2003). Molecular and cellular adaptations

of maize to flooding stress. Annals of Botany 91: 119-127.

(26)

152. Taylor ER, , Nie XZ, MacGregor AW, Hill RD., 1994. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol. Biol. 24: 853-862.

153. Teani A., 2007. Realizzazione di costrutti genici per lo studio dell’effetto di geni alterati da inserzioni di T-DNA in Arabidopsis thaliana.

154. Tian Q., Reed W., 1999. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711-721.

155. Tiwari BS, Belenghi B, Levine A., 2002. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol, 128:1271-1281.

156. Torres MA, Dangl JL, Jones JDG., 2002. Arabidopsis gp

91

phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA. 99:517-522

157. Tsuji H, Nakazono M, Saisho D, Tsutsumi N, Hirai A. 2000. Transcript

levels of the nuclear-encoded respiratory genes in rice decrease by oxygen

deprivation: evidence for involvement of calcium in expression of the

alternative oxidase 1a gene. FEBS Lett 471: 201-204.

(27)

158. Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K., 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743–

1754.

159. Vandenabeele S, Der Kelen K.V., Dat J., 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco.

Proceedings of the National Academy of Sciences, USA.

160. Vandenbroucke K, Robbens S, Vandepoele K, Inzè D, Van de Peer Y, Van Breusegem F, 2008. Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol. Biol. Evol. 3: 507-516.

161. van Dongen JT, Schurr U, Pfister M, Geigenberger P, 2003. Phloem metabolism and function have to cope with low internal oxygen. Plant Physiology 131: 441-451.

162. Vervuren PJA, Blom CWPM, de Kroon H. 2003. Extreme flooding events on the rhine and the survival and distribution of riparian plant species. Journal of Ecology. 91: 135–146.

163. Vreeburg RAM, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan

AHM, Staal M, Elzenga TM, Staals RHJ, Darley CP, McQueen-Mason

SJ, Voesenek LACJ. 2005. Ethylene regulates fast apoplastic acidification

(28)

and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant Journal 43: 597–610.

164. Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB, 2003.

Flooding and plant growth. Annals of Botany 91: 107-109.

165. Voesenek L.A.C.J., Benschop J.J., Bou J., Cox M.C.H., Groeneveld H.W., Millenaar F.F., Vreeburg R.A.M., Peeters A.J.M. 2003.

Interaction between plant hormones regulates submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. (Land) 91: 205-211.

166. Voesenek LACJ et al., 2006. How plants cope with complete submergence. New Phytologist 170: 213–226.

167. Voesenek LACJ, Blom CWPM, 1999. Stimulated shoot elongation: a mechanism of semiaquatic plants to avoid submergence stress. In: Lerner HR, ed. Plant responses to enviromental stresses: from phytohormones to genome reorganization. New York, USA: Marcel Dekker Inc. 431-448.

168. Volkov R.A., Panchuk I.I., Mullineaux P.M., Schif F., 2006. Heat

stress-induced H

2

O

2

is required for effective expression of heat shock genes

in Arabidopsis. Plant Mol Biol. 61(4-5):733-46.

(29)

169. Vranova E, Inz D,Van Breusegem F. 2002. Signal transduction during oxidative stress. Journal of Experimental Botany 53: 1227-1236.

170. Vranova E., Inz D.,Van Breusegem F. 2002. Signal transduction during oxidative stress. Journal of Experimental Botany 53: 1227-1236.

171. Vreeburg RAM, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan AHM, Staal M, Elzenga TM, Staals RHJ, Darley CP, McQueen-Mason SJ, Voesenek LACJ. 2005. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant Journal 43: 597–610.

172. Wu Y, Kwon K-S, Rhee SG, 1998. Probing cellular targets of H

2

O

2

with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. FEBS Letters. 440: 111-115.

173. Xu K.N. and Mackill D.J, 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 2: 219–224.

174. Xu K. et al., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705–70.

175. Yang T., Poovaiah B.W., 2002. Hydrogen peroxide homeostasis:

activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S

A. 99(6):4097-4102

(30)

176. Yang S.F. and Hoffman N.E., 1984. Ethylene biosynthesis and its regulation in higher-plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35:

155-189.

177. Zarembinski T.I., Hung L.W., Mueller-Dieckmann H.J., Kim K.K., Yokota H., Kim R., Kim S.H. 1998. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci USA 95: 15189-15193.

178. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P, 2001.

Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438-1448

.

179. Zhang A., Jiang M., Zhang J., Ding H., Xu S., Hu X,. Tan M., 2007.

Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol. 175(1): 36-50.

180. www.genevestigator.com

Riferimenti

Documenti correlati

Comune alle due teorie è il rapporto tra parti e istituzione (anche se esso è diversamente qualificato), mentre al rapporto tra parti ed arbitro la seconda teoria sostituisce

This analysis suggests that the regions that are closer to the big European markets and the European Core (especially the border regions) and highly specialised in knowledge

The gr-modi fied plants were obtained by inserting a rat gene encoding the glucocorticoid receptor, containing the constitutive CaMV promoter; it is possible that plant

The aim of this review is to see whether this “dream catalyst” is at hand analyzing the different proposals present in the recent literature and making evident the role of the

These results clearly show larger yields for the reactions in ILs with respect to those carried out in conventional reaction media, with the former ranging between 51% and 95% even

The first point to discuss concerns the different amount of bone mass recorded between the control group and the two groups of rats fed calcium-deprived diet; in fact, trabecular

In this study we investigated the effects of flavonoids extracted from orange and bergamot juices on H 2 O 2 -induced oxidative stress in human alveolar type II epithelial A549