• Non ci sono risultati.

1. Day C.L. et al, A prognostic model for clinical stage I melanoma of the upper extremity, Ann Surg 1981; 193(4): 436-40.

N/A
N/A
Protected

Academic year: 2021

Condividi "1. Day C.L. et al, A prognostic model for clinical stage I melanoma of the upper extremity, Ann Surg 1981; 193(4): 436-40. "

Copied!
13
0
0

Testo completo

(1)

1

6. BIBLIOGRAFIA

1. Day C.L. et al, A prognostic model for clinical stage I melanoma of the upper extremity, Ann Surg 1981; 193(4): 436-40.

2. Dustin M.L.,Springer T.A., Lymphocyte function-associated antige-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J Cell Biol 1988;

107(1): 321-31.

3. Israel B.F. et al, Anti-CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas, Mol Cancer Ther 2005; 4(12): 2037-44.

4. Anderson T.M. et al, Effects of systemic recombinant interleukin-2 on natural killer and lymphokine activated killer activity of human tumor infiltrating lymphocytes, Cancer Res 1988; 48(5): 1180-83.

5. Novellino L., Castelli C., Parmiani G., A listing of human tumor antigens recognized by T cells:March 2004 update, Cancer Immunol Immunother 2005; 54: 187-207.

6. Propper D.J. et al, Low-dose IFN induces tumor MHC expression in metastatic malignant melanoma, Clin Cancer Res 2003; 9 (1): 84-92.

7. Weidanz J.A., Levels of specific peptide-HLA class I complex predicts tumor cells susceptibility to CTL killing, J Immunol 2006; 177: 5088-5097.

8. Ackrill A.M. et al, Inhibition of the cellular response to interferons by products of the adenovirus type 5 E1A oncogene, Nucleic Acids Res 1991; 19 (16): 4387-93.

9. Tomazin R. et al, Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP, J Virol 1998; 72 (3): 2560-3.

10. Glynn J.P. et al, Studies on immunity to leukemia L1210 in mice, Cancer Res, 1963; 23:

1008-15.

11. Mihic E., Combined effects of chemotherapy and immunity against leukemia L1210 in DBA/2 mice, Cancer Res 1969; 29: 848-54.

12. King J. et al, Advances in tumor immunotherapy, QJM 2008; 101: 675-83.

(2)

2 13. Rooney C.M. et al, Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients, Blood 1998;

92: 1549-55.

14. Heslop H.E. et al, Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes, Nat Med 1996; 2: 551-55.

15. Dudley M.E., Rosenberg S.A., Adoptive cell transfer, Semin Oncol 2007; 34: 524-31.

16. Yan L. et al, How can we improve antibody-based cancer therapy?, mAbs 2009; 1: 67- 70.

17. Hudis C.A., Trastuzumab-mechanism of action and use in clinical practice, N Engl J Med 2007; 357 (1): 39-51.

18. Vitetta E.S. et al, Immunotoxins: magic bullets or misguided missiles, Immunol Today 1993; 14 (6): 252-59.

19. Pardoll D.M., Cancer vaccines, Nat Med 1998; 4 (5 suppl): 525-31.

20. Foa R., Guarini A., Gansbacher B., IL12 treatment for cancer: from biology to gene therapy, Br J Cancer 1992; 66: 992-98.

21. Rosenberg S.A. et al, Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients, Ann Surg 1989; 210 (4): 474-84.

22. Tahrini A.A. Kirkwood J.M., Clinical and immunologic basis of interferon therapy in melanoma, Ann N Y Acad Sci 2009; 1182: 47-57.

23. Burton E.R., Libutti S., Targeting TNF for cancer therapy, J Biol 2009; 8 (9): 85.

24. Critchley-Thorne R.J. et al, Impaired interferon signaling is a common immune defect in human cancer, Proc Natl Acad Sci USA 2009; 106 (22): 9010-15.

25. Raffaele A., Elementi di storia della medicina, Piccin 1993; Padova.

26. Burnet F.M., The concept of immunological surveillance, Progr Exp Tumor Res 1970;

13: 1-27.

27. Shu S. et al, Tumor immunology, JAMA 1997; 278 (22): 1972-81.

28. Houbiers J.G. et al, In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53, Eur J Immunol 1993; 23 (9): 2072-77.

29. Van Pel A. et al, Genes coding for tumor antigens recognized by cytolytic T

lymphocytes, Immunol Rev 1995; 145: 229-50.

(3)

3 30. Tsang K.Y. et al, Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine, J Natl Cancer Inst 1995, 87 (13): 982-90.

31. Kuby J., Immunology, 1991; Second Ed., 3: 47-83.

32. Dranoff G. et al, Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting anti-tumor immunity, Proc Natl Sci USA 1993; 90: 3539-43.

33. Salgia R. et al, Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma, J Clin Oncol 2003; 21: 624-30.

34. Traversari C. et al, A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E, J Exp Med 1992; 176: 1453-57.

35. Zaremba S. et al, Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen, Cancer Res 1997, 57: 4570-77.

36. Rosenberg S.A. et al, Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma, Nat Med 1998; 4(3):

321-27.

37. Timmerman J.M. et al, Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma:

clinical and immune responses in 35 patients, Blood 2002, 99 (5): 1517-26.

38. Nestle F.O. et al, Vaccination of melanoma patients with peptide- or tumor lysate- pulsed dendritic cells, Nat Med 1998; 4(3): 328-32.

39. Lasaro M.O.,Ertl H.C., New insights on adenovirus as vaccine vectors, Mol Ther 2009, 17(8): 1333-39.

40. Barefoot B. et al, Comparison of multiple vaccine vectors in a single heterologous prime boost trial, Vaccine 2008; 26 (48): 6108-18.

41. Lewis B.A. et al, Adenovirus E1A proteins interact with the cellular YY1 transcription factor, J Virol 1995; 69 (3): 1628-36.

42. Yeh P., Perricaudet M., Advances in adenoviral vectors: from genetic engineering to

their biology, FASEB J 1997; 11 (8): 615-23.

(4)

4 43. Hitt M.M, Addison C.L., Graham F.L., Human adenovirus vectors for gene transfer into

mammalian cells, Adv Pharmacol 1997; 40: 137-206.

44. Michou A.I. et al, Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression, Gene Ther 1997; 4 (5): 473-82.

45. Tripathy S.K. et al, Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors, Nat Med 1996; 2 (5): 545-50.

46. Wolff G. et al, Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ, J Virol 1997;

71 (1): 624-629.

47. Worgall S. et al, Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract, Hum Gene Ther 1997; 8 (14): 1675-84.

48. Morral N. et al, Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors, Hum Gene Ther 1997; 8 (10): 1275-86.

49. Dai Y et al, Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression, Proc Natl Acad Sci USA 1995; 92: 1401-1405.

50. Yang Y., Trinchieri G., Wilson J.M., Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung, Nat Med 1995; 1 (9): 890-93.

51. Kafri T. et al, Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy, Proc Natl Acad Sci USA 1998; 95: 11377-82.

52. Armentano D. et al, Effect of the E4 region on the persistence of transgene expression from adenovirus vectors, J Virol 1997; 71 (3): 2408-16.

53. Jooss K., Ertl H.C., Wilson J.M., Cytotoxic T-ltmphocyte target proteins and their major

histocompatibility complex class I restriction in response to adenovirus vectors

delivered to mouse liver, J Virol 1998, 72 (4): 2945-54.

(5)

5 54. Dedieu J.F. et al, Long-term gene delivery into the livers of immunocompetent mice

with E1/E4-defective adenoviruses, J Virol 1997; 71 (6): 4626-37.

55. Engelhardt J.F. et al, Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver, Proc Natl Acad Sci USA 1994; 91: 6196-6200.

56. Gorziglia M.I. et al, Eliniation of both E1 and E2a from adenovirus vectors further improves prospects for in vivo human gene therapy, J Virol 1996; 70 (6): 4173-78.

57. Lusky M. et al, In vitro and in vivo biology of recombinant adenovirus vectors with E1,E1/E2A, or E1/E4 deleted, J Virol 1998; 72 (3): 2022-2032.

58. Clemens P.R. et al, In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes, Gene Ther 1996; 3 (11): 965-72.

59. Liu M. et al, Gene-based vaccines and immunotherapeutics, Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14567-71.

60. Porgador A. et al, Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization, J Exp Med 1998; 188 (6):

1075-82.

61. Corr M. et al, In vivo priming by DNA injection occurs predominantly by antigen transfer, J Immunol 1999; 163: 4721-27.

62. Kwissa M. et al, Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control, Vaccine 2000; 18: 2337-44.

63. Heller R. et al, In vivo gene electroinjection and expression in rat liver, FEBS Lett 1996;

389 (3): 225-28.

64. Mathiesen I., Eclectropermeabilization of skeletal muscle enhances gene transfer in vivo, Gene Ther 1999; 6: 508-14.

65. Elia L. et al, CD4+ CD25+ regulatory T-cell-inactivation in combination with adenovirus vaccines enhances T-cell responses and protects mice from tumor challenge, Cancer Gene Ther 2007; 14 (2): 201-10.

66. Sakaguchi S. et al, Immunologic self tolerance maintained by T-cell-mediated control

of self-reactive T cells: implications for autoimmunity and tumor immunity, Microbes

Infect 2001; 3 (11): 911-18.

(6)

6 67. Wei-Zen W. et al, Concurrent induction of antitumor immunity and autoimmune thyroiditis in CD4+CD25+ regulatory T cell-depleted mice, Cancer Res 2005; 65 (18):

8471-78.

68. Schneeberger A. et al, CpG motifs are efficient adjuvants for DNA cancer vaccines, J Invest Dermatol 2004; 123 (2): 371-79.

69. Bertin S. et al, Plasmidic CpG sequences induce tumor microenvironment modifications in a rat liver metastasis model, Int J Mol Med 2008; 21 (3): 309-15.

70. Coban C. et al, Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors, J Leukoc Biol 2005, 78 (3): 647- 55.

71. Hacker G., Redecke V., Hacker H., Activation of the immune system by bacterial CpG- DNA, Immunology 2002; 105 (3): 245-51.

72. Takeuchi O. et al, Discrimination of bacterial lipoproteins by Toll-like receptor 6, Int Immunol 2001; 13 (7): 933-40.

73. Krieg M.A., Therapeutic potential of Toll-like receptor 9 activation, Nat Rev Drug Discov 2006; 5 (6): 471-84.

74. Ashkar A.A. et al, Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2, J Virol 2003; 77 (16): 8948-56.

75. Huang Q. et al, The plasticity of dendritic cell responses to pathogens and their components, Science 2001; 294 (5543): 870-75.

76. Banchereau J., Palucka A.K., Dendritic cells as therapeutic vaccines against cancer, Nat Rev Immunol 2005; 5 (4): 296-306.

77. Hartmann G. et al, Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo, J Immunol 2000; 164: 1617- 24.

78. Vollmer J. et al, Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation, Immunology 2004;

113: 212-23.

(7)

7 79. Elkins K. et al, Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria, J Immunol 1999;

162: 2291-98.

80. Freidag B.L., CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M.tubercolosis, Infect Immun 2000; 68 (5): 2948-53.

81. Verthelyi D. et al, CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection, J Immunol 2003; 170: 4717-23.

82. Cooper C.L. et al, CpG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults, AIDS 2005; 19: 1473-79.

83. Hartmann E. et al, Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer, Cancer Res 2003; 63: 6478-87.

84. Friedberg J.W. et al, Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon- - inducible gene expression, without significant toxicity, Blood 2005; 105 (2): 489-95.

85. Yu D. et al, Accessible 5’-end of CpG-containing phosphorotioate oligodeoxynucleotides is essential for immunostimulatory activity, Bioorg Med Chem Lett 2000, 10 (23): 2585-88.

86. Kandimalla E.R. et al, Conjugation of ligands at the 5’-end of CpG DNA affects immunostimulatory activity, Bioconjug Chem 2002; 13 (5): 966-74.

87. Kandimalla E.R. et al, Effect of chemical modifications of cytosine and guanine in a CpG-motif of oligonucleotides: structure-immunostimulatory activity relationship, Bioorg Med Chem 2001; 9: 807-13.

88. Verthelyi D. et al, Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs, J immunol 2001; 166: 2372-77.

89. Marshall J.D. et al, Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions, J Leukoc Biol 2003; 73 (6):

781-92.

90. Lipford G.B. et al, CpG-DNA-mediated transient lymphadenopathy is associated with a

state of Th1 predisposition to antigen-driven responses, J Immunol 2000; 165: 1228-

1235.

(8)

8 91. Kandimalla E.R. et al, Immunomodulatory oligonucleotides containing a cytosine-

phosphate-2’-deoxy-7-deazaguanosine motif as potent Toll-like receptor 9 agonists, Proc Natl Acad Sci USA 2004, 102 (19): 6925-30.

92. McCluskie M.J., Krieg A.M., Enhancement of infectious disease vaccines through TLR9- dependent recognition of CpG DNA, Curr Top Microbiol Immunol 2006; 311: 155-78.

93. Chaperot L. et al, Virus or TLR agonists induce TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells, J Immunol 2006; 176: 248-55.

94. Ballas Z.K., Modulation of NK cell activity by CpG oligodeoxynucleotides, Immunol Res 2007; 39 (1-3): 15-21.

95. Damiano V. et al, TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts, Proc Natl Acad Sci USA 2007; 104 (30): 12468-73.

96. Gallo P. et al, Adenovirus vaccination against neu oncogene exerts long-term protection from tumorigenesis in BALB/neuT transgenic mice, Int J Cancer 2006; 120:

574-84.

97. Rovero S. et al, DNA vaccination against rat Her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice, J Immunol 2000; 165: 5133-42.

98. Facciabene A. et al, DNA and adenoviral vectors encoding carcinoembryonic antigen fused to immunoenhancing sequences augment antigen-specific immune response and confer tumor protection, Hum Gene Ther 2006; 17: 81-92.

99. Breen M., Modiano J., Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans - man and his best friend share more than companionship, Chromosome Res 2008; 16 (1): 145-54.

100. Uva P. et al, Comparative expression pathway analysis of human and canine mammary tumors, BMC Genomics 2009; 10: 135-55.

101. Nasir L., Telomeres and telomerase: biological and clinical importance in dogs, Vet J 2008; 175 (2): 155-63.

102. Kandimalla E.R. et al, A dinucleotide motif in oligonucleotides shows potent

immunomodulatory activity and overrides species-specific recognition observed with

CpG motif, Proc Natl Acad Sci 2003; 100 (24): 14303-08.

(9)

9 103. Clarke P. et al, Mice transgenic for human carcinoembryonic antigen as a model for

immunotherapy, Cancer Res 1998; 58: 1469-77.

104. Pascolo S. et al, HLA-A2.1-restricted education and cytolytic activity of CD8+T lymphocytes from 2 microglobulin ( 2m) HLA-A2.1 monochain transgenic H-2D

b

2m double knockout mice, J Exp Med 1997; 185 (12): 2043-2051.

105. Scott G.K. et al, A truncated intracellular HER2/neu receptor produced by alternative RNA processing affects growth of human carcinoma cells, Mol Cell Biol 1993; 13 (4):

2247-57.

106. Facciabene A. et al, Vectors encoding carcinoembryonic antigen fused to the B subunit of heat-labile enterotoxin elicit antigen-specific immune responses and antitumor effects, Vaccine 2007; 26 (1): 47-58.

107. Montgomery D.L. et al, Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors, DNA Cell Biol 1993; 12 (9): 777-83.

108. Peruzzi D. et al, Telomerase and HER2/neu as targets of genetic cancer vaccines in dogs, Vaccine 2010; 28 (5): 201-08.

109. Retrospective survey of malignant lymphoma cases in the dog: clinical, therapeutical and prognostic features, Vet Res Commun 2008; 32 (Suppl 1): 291-3.

110. Cipriani B. et al, Therapeutic vaccination halts disease progression in BALB/neuT mice: the amplitude of elicited immune response is predictive of vaccine efficacy, Hum Gene Ther 2008, 19 (7): 670-80.

111. Cho H.S. et al, Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab, Nature 2003, 421 (6924): 756-60.

112. Franklin M.C. et al, Insights into ErbB2 signaling from the structure of the ErbB2- pertuzumab complex, Cancer Cell 2004, 5 (4): 317-28.

113. Mennuni C. et al, Efficient induction of T-cell responses to carcinoembryonic antigen by a heterologous prime-boost regimen using DNA and adenovirus vectors carrying a codon usage optimized cDNA, Int J Cancer 2005; 177: 444-55.

114. Aurisicchio L. et al, Immunogenicity and safety of a DNA prime/adenovirus boost vaccine against rhesus CEA in nonhuman primates, Int J Cancer 2007; 120: 2290-2300.

115. Daubenberger C.A., TLR9 agonists as adjuvants for prophylactic and therapeutic

vaccines, Curr Opin Mol Ther 2007; 9 (1): 45-52.

(10)

10 116. Mennuni C. et al, Preventive vaccination with telomerase controls tumor growth in genetically engineered and carcinogen-induced mouse models of cancer, Cancer Res 2008; 68 (23): 9865-74.

117. Dharmapuri S. et al, Coadministration of telomerase genetic vaccine and a novel TLR9 agonist in nonhuman primates, Mol Ther 2009; 17 (10): 1804-13.

118. Wang D. et al, Immunopharmacological and antitumor effects of second-generation immunomodulatory oligonucleotides containing synthetic CpR motifs, Int J Oncol 2004;

24 (4): 901-08.

119. Kim H.A. et al, CpG-ODN-based immunotherapy is effective in controlling the growth of metastasized tumor cells, Cancer Lett 2009; 274 (1): 160-64.

120. Yazawa M. et al, Molecular cloning of the canine telomerase reverse transcriptase gene and its expression in neoplastic and non-neoplastic cells, Am J Vet Res 2003; 64 (11): 1395-400.

121. Harari D., Yarden Y., Molecular mechanisms underlying ErbB2/HER2 action in breast cancer, Oncogene 2000; 19: 6102-14.

122. Slamon D.J., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2, N Engl J Med 2001; 344 (11): 783- 92.

123. Seidman A. et al, Cardiac dysfunction in the trastuzumab clinical trials experience, J Clin Oncol 2002; 20 (5): 1215-21.

124. Quaglino E. et al, Electroporated DNA vaccine clears away multifocal mammary carcinomas in Her-2/neu transgenic mice, Cancer Res 2004; 64: 2858-64.

125. Melani C. et al, Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity, Blood 2003; 102 (6): 2138-45.

126. Mittendorf E.A. et al, Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial, Cancer 2006; 106 (11): 2309-17.

127. Peoples G.E. et al, Clinical trial results of a HER2/neu (E75) vaccine to prevent

recurrence in high-risk breast cancer patients, J Clin Oncol 2005; 23 (30): 7536-45.

(11)

11 128. Roda J.M., Parihar R., Carson W.E., CpG-containing oligodeoxynucleotides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells, J Immunol 2005; 175: 1619-27.

129. Lee-Hoeflich S.T. et al, A central role for HER3 in HER2-amplified breast cancer:

implications for targeted therapy, Cancer Res 2008; 68 (14): 5878-87.

130. Allen S.D. et al, Peptide vaccines of the HER-2/neu dimerization loop are effective in inhibiting mammary tumor growth in vivo, J Immunol 2007; 179: 472-82.

131. Garrett J.T. et al, Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER2/neu, J Immunol 2007; 178: 7120-31.

132. Thompson J.A., Carcinoembryonic antigen gene family: molecular biology and clinical perspectives, J Clin Lab Anal 1991; 5 (5): 344-66.

133. Eades-Perner A. et al, Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern, Cancer Res 1994; 54: 4169-76.

134. Wilkinson R.W. et al, Evaluation of a transgenic mouse model for anti-human CEA radioimmunotherapeutics, J Nucl Med 2002, 43 (10): 1368-76.

135. Meyerson M. et al, hEST2 the putative human telomerase catalytic subunit gene is up-regulated in tumor cells and during immortalization, Cell 1997; 90: 785-95.

136. Counter M. et al, Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity, EMBO J 1992, 11 (5):

1921-29.

137. Counter M. et al, Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes, J Virol 1994, 68 (5): 3410-14.

138. Prowse K.R., Avilion A.A., Greider C.W., Identification of a nonprocessive telomerase activity from mouse cells, Proc Natl Acad Sci USA 1993; 90: 1493-97.

139. Kim N.W. et al, Specific association of human telomerase activity with immortal cells and cancer, Science 1994; 266: 2011-15.

140. Herbert B.S. et al, Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death, Proc Natl Acad Sci USA 1999, 96 (25):

14276-81.

(12)

12 141. Vonderheide R.H. et al, The telomerase catalytic subunit is a widely expressed tumor-

associated antigen recognized by cytotoxic T lymphocytes, Immunity 1999; 10: 673-79.

142. Chen D.Y. et al, Differential lysis of tumors by polyclonal T cell lines and T cell clones specific for hTERT, Cancer Biol Ther 2007; 6 (12): 1991-96.

143. Filaci G. et al, Frequency of telomerase-specific CD8+ T lymphocytes in patients with cancer, Blood 2006; 107 (4): 1505-12.

144. Gannagé M. et al, Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: Implications for vaccine development and adoptive cellular immunotherapy, J Immunol 2005; 174: 8210-18.

145. Su Z. et al, Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer, J Immunol 2005; 174: 3798-3807.

146. Domchek S.M. et al, Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance, Cancer Res 2007; 67 (21): 10546-55.

147. Vicari A.P. et al, Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody, J Exp med 2002; 196 (4): 541-49.

148. Yu D. et al, “Immunomers” – novel 3’-3’ – linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents, Nucleic Acids Res 2002; 30 (20): 4460-69.

149. Sallusto F. et al, Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes, J Exp Med 1998; 187 (6): 875-83.

150. Molenkamp B.G. et al, Local administration of PF-3512676 CpG-B instigates tumor- specific CD8+ T-cell reactivity in melanoma patients, Clin Cancer Res 2008; 14 (14):

4532-42.

151. Karan D., krieg A.M., Lubaroff D.M., Paradoxical enhancement of CD8 T cell- dependent anti-tumor protection despite reduced CD8 T cell responses with addition of a TLR9 agonist to a tumor vaccine, Int J Cancer 2007; 121: 1520-28.

152. Gavazza A. et al,Association between canine malignant lymphoma, living in industrial areas, and uses of chemical by dog owners, J Vet Intern Med 2001; 15 (3): 190-95.

153. Argyle D.J., Nasir L., Telomerase: a potential diagnostic and therapeutic tool in canine

oncology, Vet Pathol 2003; 40: 1-7.

(13)

13 154. Yazawa M. et al, Measurement of telomerase activity in dog tumors, J Vet Med Sci

1999; 61 (10): 1125-29.

155. Vail D.M., Young, K.M.. Hematopoietic tumors In: Withrow and MacEven's Small Animal Clinical Oncology, Ch. 31, Fourth edition, 2007.

156. WHO, TNM Classification of Tumors in Domestic Animals, Vol. WHO Proceedings, pp.

46-54, Ginevra 1980

157. Ponce F. et al, Prognostic significance of morphological subtypes in canine malignant lwmphoma during chemotherapy, Vet J 2004; 167 (2): 158-66.

158. Simon D. et al, Efficacy of a continuous, multiagent chemotherapeutic protocol versus a short-term single-agent protocol in dogs with lymphoma, J Am Vet Med Assoc 2008; 232 (6): 879-85.

159. van der Most R.G. et al, Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity, Cancer Res 2006, 66 (2): 601-04.

160. Bracci L. et al, Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T- cell homeostatic proliferation and specific tumor infiltration, Clin Cancer Res 2007; 13 (2): 644-53.

161. Ghuringhelli F. et al, Metronomic cyclophospamide regimen selectively depletes CD4+ CD25+ regulatory T and NK effector functions in end stage cancer patients, Cancer Immunol Immunother 2007; 56 (5): 641-48.

162. Dudley M.E. et al., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science 2002; 298 (5594): 850-54.

163. Nisticò P, Chemotherapy enhances vaccine-induced antitumor immunity in

melanoma patients, Int J Cancer 2009; 124: 130-34.

Riferimenti

Documenti correlati

In particular, the bimetallic nanoparticles of the 3%Pd–1.8%Zn catalyst have a Pd core with surface Zn atoms upon reduction at 275 ◦ C, and the surface PdZn film possesses

Oltre ad essere una soluzione adatta alle comunità isolate, offre anche ulteriori vantaggi: a causa delle sua natura modulare, può essere aumentata la potenza fornita, se

Si tratta di una parte per noi superata, ma di fatto per il nostro metodo- logicamente indispensabile – con gli strumenti statistici di cui allora disponeva – per misurare la

One possibility is that regular exercise modifies genes expression, thereby changing the production of bioactive molecules such as proteins and enzymes; another potential site of

Mauro Sassu

Department of Architecture of the same university, have refined a system of advanced technologies in the survey field for the digital documentation of the architectural

We have then studied the behaviour of the system when a uniform magnetic field is applied to a paramagnetic state, finding that a first order phase transition - accompanied by a

In the previous section we have seen that the odd parity 2-point correlators of the massive fermion model, either in the IR or UV limit, are local and give rise to action terms