• Non ci sono risultati.

Analysis of flooding in urban areas, taking into account the residence time of the water on site case of study: Veracruz, México

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of flooding in urban areas, taking into account the residence time of the water on site case of study: Veracruz, México"

Copied!
7
0
0

Testo completo

(1)E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0704023. Analysis of flooding in urban areas, taking into account the residence time of the water on site case of study: Veracruz, México Faustino De Luna C 1 2. 1,a. 1. 1. , Oscar A. Fuentes M , Laura Vélez M and Ismene L. A. Rosales Plascencia. 2. Instituto de Ingeniería UNAM - Universidad Nacional Autónoma de México, Av. Universidad No.3000 Coyoacán, México D.F. Universidad Autónoma Metropolitana Unidad Azcapotzalco, Azcapotzalco México D.F.. Abstract. Analysing some aspects of water management in urban areas affected by flooding, an event that occurred in September 2010 by overflows Cotaxtla Jamapa and rivers in western Mexico along with the rain event for five consecutive days. In this area, near the Gulf of Mexico, the elevations are less than three meters elevation. Floods are common in cities like Veracruz, in this article the flood risk calculated by means of a hydraulic model of rainfall-runoff dimensional type developed at the Institute of Engineering of the National Autonomous University of Mexico. Data digital terrain elevation models of LIDAR were used, records hourly rainfall levels and channels of some hydrometric stations of the National Water Commission. The location of housing and services in a metropolitan area considered to calculate the depths of flooding in them. To estimate the damage, shall take into account the hydrodynamic behaviour of the flows. Since houses remain flooded for several days, was the reason to use precipitation level for more than seven days. in the mathematical modelling of flows water with a regular grid made up of cells 10 m by side with the boundary condition downstream, corresponding to the predicted change in the average sea level.. 1 Objective Warning the repercussions of the residence time of water in the study area, also the damage caused to homes by floods.. 2 Study area and available information  

(2)        

(3)    

(4)      

(5)   !"      "  

(6) 

(7)    #    $ " % & "     "   %  #  

(8)   

(9)        ". # %  #    % "

(10)    #          % '    (' # )"   %               )" *  )" *      +,-  &+-      &,+,- &.+.-    #  /0  1  2 ""   230'45' 6    %"  7  88,9 :       $ " % && !"       %       

(11) ;<6 #. a. Figure 1. Location of the basin. Source: CONABIO, 2014.   

(12) ;<  

(13)  # 

(14) =    #   "

(15)  

(16)     #    %   :  "         /    " 9 "    $  / 

(17)        7  

(18)  9 2<     0 >  '  (' #)" *     2  <     " .   4

(19) 

(20)  >$      

(21)  *  ?   ;<   . Corresponding author: FLunaC@iingen.unam.mx. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(22) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0704023.   %   "%

(23)         6 #      

(24)   

(25)  % "    #       

(26)    )" =

(27) "    %

(28)   "     # D . 3 Concepts @%  #%    %     

(29)   #    

(30)  )"       % 

(31) 

(32)  &           

(33)  ;<  %   

(34)

(35) 

(36) % "        7  

(37)  ;<" #

(38)

(39) 2 $  )"      6 #.  Figure 4.Searching events on the basin of interest. 3 3   ,88,"7  @              88, /B C9       6 #,   Figure 2. Location of weather stations and hydrometric.  :             7 "   &.  # %

(40)  

(41)  " A   % # 6 #      '  "     )%&&.BC  . Figure 5. Hyetograph and mass curved station 30056 3.  @% #

(42)     BC%  "    "# 

(43)   " A BC ," A ?  6 #. Figure 3 Hydrographs station of Paso Del Toro and El Tejar. . 2.

(44) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0704023.  

(45)          6  6    

(46) " :         %  8 %      #      > '.   BC   6 #&. . Figure 6. Hydrographs in Paso del Toro andEl Tejar, October, 2005. .  :  7 " . 88 " @   E  2 # %    

(47)  8 !"A  #

(48)   #  

(49) ;< 6 #.       

(50)  "

(51)  

(52)       " 2 $    )"  .  Figure 9. Hyetographs for different return periods of the Weather Station El Tejar and Mata Anona.     #  1 7  BC   >  '.     "   %

(53)   -     

(54)   #6 #8. Figure 7. Distribution of curve numbers on the Cotaxtla River.. Figure 8. Distribution of curve numbers on the Jamapa River.. .  :  

(55)   "

(56) %   .      

(57)  % #      %             "   #". Figure 10. Hyetographs total rainfall (mm) with simultaneity factor for different return periods.. 3.

(58) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.  Applying the rain factors (2 & 9to each station, the ten days hyetographs are obtained with an hour bars, then the effective time hyetographs of rain are shown with simultaneity factor of extraordinary events for El Tejar and Mata Anona. Figure 11. . DOI: 10.1051/ e3sconf/2016 0704023. 1 wu wh  g wt wx. S. 1 wv wh  g wt wy. S. x.  S fx.

(59). 3. y.  S fy.

(60). 4. 6  #  

(61) 

(62)        

(63) >. #7  !

(64) ". S fx S fy. n2 u u 5. h4/ 3 n2 v v h4 / 3. 6. :

(65) " F ,  F      . 1 w u n uu  g w t h4 / 3. . wh wz  wx wx. 7. 2 1 w v n vv  4/3 g wt h. . wh wz  wy wy. 8. 2. BF  .     F    #  % " 

(66)  " " "     

(67)   !         

(68)    

(69)  "    "    <  . wh w w  uh  vh q wt wx wy Figure 11. Hyetographs for different return periods, considering the time factor effective rainfall with concurrency of extraordinary events.. 1 F    "

(70)  

(71)

(72)   

(73)       "   $      %F    

(74)  

(75)  .  

(76)     "     % "

(77)  

(78)

(79)   F 

(80) " %  $  .    &    #      %   '    % "  

(81)    

(82)   F     #     $ "    

(83)  "  "  

(84) 

(85) 

(86)

(87)   6    

(88)  " " "       "   #"  ;  *   ##    

(89)   "   #"  $      %   "  " %       

(90)  %    

(91)      

(92)    

(93)  

(94)   #     

(95) . 4 Hydraulic mathematical model  "              " " F        "#      % " "     %       "  $ #   

(96)   #

(97)                 !.         6   ! 

(98)  

(99)

(100)  F  !   %     #    % 

(101)   $ "      "     . %  $   / !  9   

(102)  

(103)        #    

(104)     

(105)  " " "

(106)    G "  

(107)   />"  HC &.,9. wu wu wu wh u v  g wt wx wy wx. g S x  S fx. wv wv wv wh u v  g wt wx wy wy. g S y  S fy.

(108). 1.

(109). 2. 9. 4.1 Mathematical model results 4  #    $ "           

(110)  

(111)

(112)   "      

(113)   " "  "    "   #"     ; *     

(114)   "   #"  $           "  " %       

(115)  %    

(116)       

(117)   

(118)   

(119)         

(120)        "   #"      #  % 

(121) . *  #       %   #  "   

(122)      $ % "    F    %    #  

(123) # % . 4.

(124) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. 

(125)  %

(126)   %  #   %    "   

(127)    

(128)  

(129)    . DOI: 10.1051/ e3sconf/2016 0704023. Figure 13. Satellite image with envelopes depths maximum values resulting from mathematical modeling in the historical event of 2010. 4.2 Digital elevation model. Figure 14. Satellite image with envelopes velocities maximum values resulting from mathematical modeling in the historical event of 2010. . 5 Vulnerability and Severity Figure 12. Digital elevation model in the study area.  *     

(130) 

(131)     %      % $  :  #         "#. '  #  #  %      C "#   

(132)           "# 

(133)  

(134) 

(135)  "  :       %      %

(136)   "#   

(137)      % /6   %         

(138)  9  ;   % $      

(139)      

(140)  "#   "

(141)   #     

(142)  D. .  '  #  

(143) "         , 8" %  " " "  #  #  "    

(144) ,8"%,8 "                       

(145)

(146)             " "    " :    :0B4:  #  "   / %"

(147)   0 :   

(148) 4 #% 7   9  "      " "  "    "  % 8       "     %  " "  "  #    #    <

(149)  ,8 " % ,8 "   ! #             # "  %     #

(150)  "  8  1                %  "  #/6 #  9  '      

(151)  "  " "  "  #        

(152)      "$ ""   

(153)      "         "   "$ ""  .  %

(154)  "  "  "  "     "$ """%  

(155)

(156)   "         "$ "". D IvC. 10. 1D  2   

(157) "# :;;   % $/  8%9   !D:    $   $ 

(158)      %   

(159)    ". 

(160) .       #   #     %      % /8 9    %

(161)   %7 '"%%    ! "   # %   $ " %

(162)  "# /9. 11. : 

(163)   

(164)  =  #  "D,8888/:0B4:6 #,9=   

(165)         % :0B4:   # .

(166) "  . 5.

(167) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0704023.  Figure 17. Graph of cost against flood depth, for a household type I.   %     

(168) " %       

(169)         "  

(170)               

(171)         . #

(172) 

(173)   .  Figure 15. Vector information of houses locations..    "      %

(174)   

(175)   ! 

(176)    # 2B0'B?     "

(177)  

(178) # 

(179) 

(180)          #  * 4 

(181)  7   >  ' @<    !       %     , %

(182)   

(183) #  % :. 5.1Severity maps  :  ?" 88.  #  " 

(184)  0 7   1 /'  9 F    % *          #     ?  #      "         ! " #"   

(185)        %      

(186)        %

(187) 

(188)           

(189)      % 6 #       # #

(190)  I J  %K% I

(191)  I  LI M   I I  #  

(192)    9 2   #     = "    %   .  Figure 16. Home vulnerability function for type I.  ?"#    %  :     

(193)  , %

(194)      

(195) ;<      6 # . 2 #    

(196)         

(197)    #  % 

(198)  " : ::   :::  

(199)   "  % #G  "    % :;   ;          "   #

(200)       %   

(201)  "  #  

(202)  " "    88    % 7 "   %       "!   %        "! 

(203)   "         "

(204)    #     %      #           

(205)   . #   !%   

(206) 

(207)   "# 6 %   C    #   %

(208)    . Figure 18 Color scale. .    "$ ""      "$ ""  %    #  #  6 #        "

(209)  %      .         7 % "

(210)        %<   

(211)   #

(212) #& . 6.

(213) E3S Web of Conferences 7, 04023 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0704023. 7 References    

(214)      factores de convectividad para el cálculo de las relaciones intensidad-duración-!  "  Maestría. Universidad Nacional Autónoma de México. 2.  # $%     & '((  daños por inundación en zonas habitacionales de )%*!'(

(215) ++ 3. Chen, C. L. (1983). Rainfall Intensity-DurationFrequency Formulas. Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 12, December  1983, pp. 1603-1621. Figure 19. Severity 4. ,- .  "  +//0  17 8'!  McGraw-Hill Interamericana, S.A., Colombia. 6 %    %       6 # 8 5. 98:;

(216) 0 !<7 & '     B$ '. ?"# elaboración de Atlas Estatales y Municipales de  :=!+>;(

(217) 0  6. ? )  @  8 

(218) +

(219)   @(  hietogramas correspondientes a diferentes periodos  ! AA.  B  Hidráulica, San José, Costa Rica. 7. Maidment, D. R. (1993). Handbook of Hydrology. McGraw-Hill Inc., USA. 8. Metodología para la Elaboración de Mapas de Riesgo por Inundaciones en Zonas Urbanas. Centro Nacional de Prevención de Desastres. Serie: Atlas Nacional de Riesgos. Fenómenos Hidrometeorológicos. Marco Antonio Salas, Julio 2011.  9. OMM, Gestión Integrada de Crecidas: Documento Comceptual. Organización Meteoorológica Mundial. Figure 20. Expected Annual Damage OMM-No.1047. Ginebra, Suiza 2009.  10. OMM, Tercera Conferencia Mundial sobre el clima, Ginebra, Suiza, 31 de agosto-4 de septiembre de 2009. 6 Conclusions 11. Paoli, Carlos U. Curso Gestión Integrada de Crecidas, Facultad de Ingeniería y Ciencias Hídricas6  #    

(220)    #   Universidad Nacional del Litoral. Centro Regional %  

(221)   #

(222)      

(223)

(224)     Litoral-Instituto Nacional del Agua.-Prof. Ing. Carlos        

(225)  $ " 

(226)  %  U. Paoli, Santa Fe Argentina, 26 al 30 de abril de  

(227)      %   2010.  

(228)                

(229)

(230)   %      )"    "    

(231)     

(232)     0   %   !        

(233)   "# 7 " "      "  %     

(234)       "    #      

(235)   C%= 

(236)         %    "     

(237)      #  

(238)     !%  " 

(239) 

(240)   "   #  

(241)      1.. 7.

(242)

Riferimenti

Documenti correlati

Maximal simulated water heights inland in the hamlet of Cabanes du Gapeau for a return period of 30 years at 2030 deadline top and for a return period of 100 years at 2100

For the application of Monte Carlo method to stability analysis, the values of the input variables are randomly sampled from their cumulative probability

This model can be used in two modes: - in the mode of determining the optimal development of energy technologies (taking into account structural redundancy in the form of reserves

A noticeable decrease in stresses from operational loads, obtained with considering the temperature inhomogeneity of concrete, allows reducing the amount of pre-compression p ,

This factor is involved in the definition of the design actions in case a linear dynamic analysis is carried out as an approximation of the truly nonlinear behavior of the structure

Zoledronic acid The Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly (HORIZON) trial enrolled 7765 postmenopausal women with osteoporosis and demonstrated a

Accordingly, the actual chip thickness, cutting forces and machining system vibrations may exhibit strongly non-linear evolutions when the axial depth of cut is increased, due to