• Non ci sono risultati.

Conductive ZSM-5-based structured adsorbent for

N/A
N/A
Protected

Academic year: 2021

Condividi "Conductive ZSM-5-based structured adsorbent for"

Copied!
74
0
0

Testo completo

(1)

1

Conductive ZSM-5-based structured adsorbent for

1

CO

2

capture: active phase vs. monolith

2

Alessio Masala†‡, Jenny G. Vitillo†‡*, Giorgia Mondino§, Gianmario Martra,† Richard Blom,§ 3

Carlos A. Grande§ and Silvia Bordiga† 4

Department of Chemistry, NIS Center and INSTM, University of Torino, via Quarello 15, I-10135 5

Torino, Italy. 6

*Present address: University of Minnesota, Department of Chemistry, 207 Pleasant Street S.E., 7

Minneapolis, MN 55455-0431, Tel: 612-624-5923, E-mail: jg.vitillo@gmail.com. 8

SINTEF Materials and Chemistry, P.O. Box 124 Blindern, N0314 Oslo, Norway. 9

These authors equally contributed to the work. 10

Supporting Information

11 12

Content

13

S0. Pictorial representation of H-ZSM-5 structure. ... 3 14

S1. Volumetry, P-XRD and HRTEM measurements. ... 4 15

S1.1. Surface areas on pure active phase, monolith and Carbon(M). ... 4 16

S1.2. P-XRD. ... 6 17

S1.3. HRTEM: Particle distribution size. ... 7 18

S2. Thermogravimetric analysis. ... 8 19

(2)

2 S3. Specific heat capacity calculation. ... 10 20

S4. Adsorption isotherms at 25 °C of CO2, N2 and O2 on H-ZSM-5-500 and H-ZSM-5-800. ... 14

21

S5. Data tables for CO2, H2O, N2 and O2 adsorption isotherms. ... 16

22

S5.1 CO2, O2, N2 and H2O fitting parameters for H-ZSM-5-800 °C and the monolith. ... 52

23

S5.2 CO2, O2 and N2 isosteric heat of adsorption ... 54

24

S5.3 IAS-Theory ... 57 25

S6. CO2 breakthrough and N2, O2 pulsed chromatography measurements. ... 59

26

S6.1 Henry’s law constants. ... 64 27

S6.2 Diffusion of N2, O2 and CO2 with pulse and breakthrough measurements ... 69

28

S6.3. Modelling gas diffusion from pulse and breakthrough measurements ... 71 29 S7. H2O microcalorimetry of adsorption ... 73 30 References ... 74 31 32 33 34

(3)

3

S0. Pictorial representation of H-ZSM-5 structure.

35 36

A pictorial representation of the different hydroxils that can be present in a zeolitic framework 37

is reported in the following figure. Besides the presence of protons as counterions, hydroxyls related 38

to the presence of structural defects as silanols and alumina clusters can also be observed. 39

40

41 42

Figure S1. Pictorial representation of H-ZSM-5 structure. The position and nature of the different hydroxyls present is

43

evidenced: Si-(OH+)-Al (Brønsted sites, a), Si-OH (silanols, b) and Al-OH (hydroxyls associated with extraframework 44 Al3+, c). 45 46 47

c

a

b

b

b

(4)

4

S1. Volumetry, P-XRD and HRTEM measurements.

48

S1.1. Surface areas on pure active phase, monolith and Carbon(M).

49

The N2 isotherms obtained at 77 K for all the samples is reported in the following figure. It is 50

evident the significantly larger pore volume of the pure carbonaceous phase of the monolith 51 (Carbon(M)). 52 53 54

(a)

(b)

(5)

5

Figure S2. (a) Volumetric N2 adsorption/desorption isotherms obtained at 77 K for ZSM-5-500 (green curve),

H-55

ZSM-800 (olive curve) and the monolith (black curve). Filled and empty scatters refer to adsorption and desorption 56

branches, respectively. In part (b), the corresponding Pore Size Distributions, as obtained by NLDFT analysis of the 57

isotherms are presented. The isotherm obtained on the pure carbon phase Carbon(M) – obtained by the dissolution of 58

HZSM5-based carbon monolith in HF – is reported as blue line. 59

(6)

6 61

S1.2. P-XRD.

62

HRTEM measurement were principally 63

64

Figure S3. XRPD patterns of the monolith (black line) and the phenolic resin carbonized at 800 °C (blue line),

65

activated in vacuum at 400 °C and kept in inert atmosphere. The patterns have been normalized at the intensity of 66

monolith peak at 7.85° of 2θ. 67

(7)

7 69

S1.3. HRTEM: Particle distribution size.

70

HRTEM measurement were principally conducted to verify the morphology of NH4-ZSM-5; beside 71

this we could also evaluate the particle size over an average of 170 particles. 72

73

74

Figure S4. (a) HRTEM image of a single NH4-ZSM-5 particle; High resolution TEM images of (b) H-ZSM-5-800

75

(120k x) and (c) the monolith (80k x). (d, e) Particle size distributions based on the analysis of 170 particles. The NH4

-76

ZSM-5 zeolite presented a shape of particles more or less squared with a Gaussian-type particle size distribution with a 77

mean average of 95.2 nm, as evidenced by the histogram reported above. 78

(8)

8

S2. Thermogravimetric analysis.

80

TGA measurements were performed by means of a TA Q600 analyzer. In Figure S4a, the TGA 81

from 30 to 900 °C (ramp, 2°C min-1) under N2 flow (100 ml min-1) for the precursor of H-ZSM-5,

82

that is NH4-ZSM-5, for H-ZSM-5-800 and the monolith. The TGA curve of NH4-ZSM-5 is

83

coincident with that of H-ZSM-5-800 for temperature higher than 500°C, that for temperature at 84

which the ammonium cations have been totally decomposed to protons with evolution of NH3. In

85

Figure S4b, the TGA is reported only for NH4-ZSM-5, in order to better appreciate the weight loss.

86

It is interesting to notice that for T > 500°C, a continuous weight loss is present in both the pure 87

zeolitic samples, associated to the evolution of water. This is due to the dealumination of the zeolite 88

structure that is accompanied, for charge balance, to a stechiometric equivalent decrease of 89 Brønsted sites. 90 91 92

(a)

(9)

9 93

Figure S5. (a) Thermogravimetric analysis (TGA) conducted on NH4-ZSM-5 (blue curve), H-ZSM-500 (dark grey

94

curve) and the monolith (black curve) from RT to 900°C in N2 flow (ramp, 2°C/min). In the case of the monolith, the

95

flow was switched from N2 to air for the last hour in order to allow the quantification of the carbonaceous part of the

96

material. The switch to air is marked by an arrow. The ramp temperature is indicated as a grey line. (b) Inset on the 97 NH4-ZSM-5 curve. 98 99

100

200

300

400

500

600

700

800

900

9,6

9,8

10,0

10,2

10,4

1.9% NH

3

1.8% H

2

O

w

ei

ght

(

m

g)

T(°C)

5.7% H

2

O

(b)

(10)

10

S3. Specific heat capacity calculation.

100

The main reason why solid porous adsorbents have been chosen as possible candidates for post-101

combustion adsorbent materials is because their heat capacities result much lower than the one of 102

aqueous alkanolamine usually employed in CCUS stations.1 This can be the main key for reducing 103

the regeneration energy penalty. 104 Definition of cp: 105 106 𝑐𝑐𝑐𝑐 = ∆𝑇𝑇𝑄𝑄 = 𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇 (S1) 107 108

Where Q is the heat, ΔT the difference in temperature, ϑT the infinitesimal difference in 109

temperature and ϑU the infinitesimal difference in internal energy, this last one composed by the 110

contributions of translation, rotation and vibration quantized energy modes. 111

112

Table S1. Specific heat capacity calculation of NH4-ZSM-5, H-ZSM-5-800 and the monolith (samples not pre-activated

113

previously to the measurements). 114 Type of material At 60 °C (kJ kg-1 K-1) At 90 °C (kJ kg-1 K-1) At 120 °C (kJ kg-1 K-1) H-ZSM-5-800 0.80 0.81 0.82 monolith 1.14 1.30 1.46 coal 1.48 1.73 2.00 115

These values were obtained using the following formula: 116

117

𝑐𝑐𝑝𝑝𝑝𝑝 =𝐻𝐻∗𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝∗ 𝑐𝑐𝑝𝑝𝑚𝑚 (S2)

118 119

Where: cps is the cp of the sample to be calculated; cpr is the cp of the sapphire (reference) which is

120

know from the literature2 at different temperatures; ms and mr are respectively the measured weight 121

of the sample and of the reference; H is the heat flow difference at the chosen T (e.g. 60 or 90 or 122

120 °C) between the sample (blue line in Figure S6, Figure S7 and Figure S8) and the empty pan 123

(baseline, green line); h is the heat flow difference at the chosen T between the reference (red line) 124

and the empty pan (green line). 125

(11)

11 From the plots below, we could evaluate at the chosen temperature the values of heat flow (mW) in 126

order to calculate H and h and then using them in the formula to obtain Cps.

127

The data obtained here are higher with respect to those found in literature for zeolitic systems.3 In 128

this respect we have to say that the value reported in literature were obtained by low-temperature 129

adiabatic calorimetry. In our case the measurements have been performed starting from samples that 130

were not pre-activated. The fact that the sample where weighted in air, imply that the contribution 131

of adsorbed water is also considered. 132

133

134

Figure S6. DSC curves of NH4-ZSM-5 (blue line), the reference sapphire (red line) and the empty cell (green line).

135 60.00°C -0.1350mW 90.00°C -0.09562mW 120.00°C -0.06440mW 60.00°C -8.203mW 90.00°C -8.615mW 120.00°C -9.062mW 60.00°C -2.661mW 90.00°C -2.612mW 120.00°C-2.680mW -12 -10 -8 -6 -4 -2 0 2 H eat F low ( m W ) 20 40 60 80 100 120 140 160 180 200 Temperature (°C) baseline_30_200C.002 ––––––– zaffiro_30_200C.002 – – – – NH4-ZSM5_as_30_200C.002 ––––– ·

(12)

12 136

Figure S7. DSC curves of H-ZSM-5-800 (blue line), the reference sapphire (red line) and the empty cell (green line).

137 138 139 140 60.00°C -0.1350mW 90.00°C -0.09562mW 120.00°C -0.06440mW 60.00°C -8.203mW 90.00°C -8.615mW 120.00°C -9.062mW 60.00°C -2.106mW 90.00°C -2.522mW 120.00°C -2.421mW -12 -10 -8 -6 -4 -2 0 2 H eat F low ( m W ) 20 40 60 80 100 120 140 160 180 200 Temperature (°C) baseline_30_200C.002 ––––––– zaffiro_30_200C.002 – – – – NH4-ZSM5_calc800C_30_200C.002 ––––– ·

(13)

13 141

142

Figure S8. DSC curves of the monolith (blue line), the reference sapphire (red line) and the empty cell (green line).

143 144

(14)

14

S4. Adsorption isotherms at 25 °C of CO

2

, N

2

and O

2

on ZSM-5-500 and

H-145

ZSM-5-800.

146

A preliminary screening of CO2 adsorption on all the samples under study was performed in order

147

to compare their behavior towards CO2. All the samples were activated at 400 °C before CO2

148

adsorption and primary and secondary isotherms were performed in order to verify the fully 149

reversibility of the interaction and be sure of the reproducibility of the measurements. The results 150

are reported in Figure S8. A relevant observation is that the isotherms obtained of the three ZSM-5 151

zeolites, namely ZSM-5 (NH4-ZSM-5 activated in vacuum at 400°C); ZSM-5--500 and H-152

ZSM-5-800 are nearly overimposed confirming what expected on the basis of the XRD and 153

volumetry of N2 at 77 K, that is that the high thermal treatment is not compromising the

H-ZSM-5-154

800 structure and then its affinity towards CO2. A small decrease in the H-ZSM-5-800 uptake is

155

observed with respect to H-ZSM-500 in the p < 100 mbar range, due to the partial loss of the 156

protonic species during the treatment at 800°C, associated to the partial dealumination of the 157

zeolitic structure (<Al3+ in the structure, <H+ counterions). 158

(15)

15 160

Figure S9. Adsorption isotherms at 25 °C of a) CO2 (circles), b) N2 (squares) and c) O2 (diamonds) on H-ZSM-5-500

161

(dark yellow); H-ZSM-5-800 (green). Full symbols refers to the primary isotherm; empty symbols refer to the 162

secondary isotherms. 163

(16)

16

S5. Data tables for CO

2

, H

2

O, N

2

and O

2

adsorption isotherms.

165

The data of all the isotherms reported in the manuscript are here reported. 166

167

Table S2. CO2 adsorption isotherms on H-ZSM-5-800 at 25°C.

168 Adsorption Desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 0.14769 0.00314 1093.59 2.1838 0.296 0.00575 1047.33 2.17359 0.43123 0.00794 981.073 2.14769 0.55328 0.00978 914.614 2.11593 0.99262 0.01703 867.005 2.09037 1.92441 0.03238 800.152 2.04778 3.03917 0.04926 733.655 1.99754 4.00731 0.06294 666.978 1.93878 5.01122 0.07644 600.315 1.87178 6.78066 0.09898 532.713 1.7937 12.752 0.16701 466.173 1.70363 41.109 0.39533 399.718 1.59967 79.4024 0.60958 333.174 1.47686 105.821 0.72867 266.541 1.33129 133.088 0.83538 200.14 1.15501 150.284 0.89835 159.97 0.93288 187.371 1.01968 213.086 1.09472 239.831 1.16756 267.039 1.23579 332.155 1.3761 399.747 1.49977 466.14 1.60545

(17)

17 533.784 1.69879 600.395 1.77997 667.283 1.85276 733.975 1.91773 800.598 1.97498 867.09 2.02677 933.5 2.07605 1000.73 2.1202 1066.96 2.16089 1093.59 2.1838 169

(18)

18

Table S3. CO2 adsorption isotherms on H-ZSM-5-800 at 60°C.

170 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 5.36346 0.01776 1093.53 1.13158 7.32279 0.02395 1071.68 1.12156 13.4483 0.04258 1005.23 1.10209 40.6308 0.11396 934.978 1.06119 80.0728 0.20104 864.853 1.02946 106.162 0.24975 801.532 0.99329 132.826 0.29681 733.23 0.95355 149.728 0.32762 666.385 0.91173 160.141 0.34512 600.865 0.86244 186.437 0.3875 532.472 0.80583 213.101 0.42934 466.055 0.74717 240.486 0.4624 399.497 0.68631 265.79 0.49987 333.903 0.61572 331.155 0.57819 266.353 0.53401 399.623 0.65171 186.971 0.42399 466.123 0.71481 -- -- 532.935 0.77925 -- -- 601.195 0.83545 -- -- 667.162 0.87626 -- -- 732.114 0.92367 -- -- 801.267 0.96791 -- -- 867.034 1.00123 -- -- 932.698 1.03887 -- -- 999.52 1.08836 -- -- 1068.63 1.12807 -- -- 1093.53 1.13158 -- -- 171 172

(19)

19

Table S4. CO2 adsorption isotherms on H-ZSM-5-800 at 90°C.

173 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 8.25708 0.00728 1093.81 0.65856 14.954 0.01361 1069.07 0.65701 39.1678 0.03602 996.445 0.65717 80.5179 0.06957 933.916 0.63695 106.302 0.09107 866.474 0.61157 133.196 0.11669 802.124 0.56241 150.536 0.13018 728.873 0.53388 159.348 0.14278 667.272 0.49737 186.454 0.16498 598.495 0.46744 212.469 0.17928 533.507 0.43973 238.814 0.1993 467.463 0.39717 267.283 0.21775 398.697 0.34947 332.951 0.25915 332.683 0.30581 399.449 0.30171 266.802 0.26046 467.349 0.34387 186.654 0.20355 534.244 0.37896 599.909 0.41264 -- -- 667.16 0.44628 -- -- 734.603 0.47013 -- -- 796.844 0.52416 -- -- 871.13 0.55734 -- -- 936.277 0.58831 -- -- 1000.69 0.61558 -- -- 1066.2 0.64635 -- -- 1093.81 0.65856 -- -- 174 175

(20)

20

Table S5. CO2 adsorption isotherms on H-ZSM-5-800 at 120°C.

176 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 8.41649 0.00218 1092.94 0.37633 15.7149 0.00515 1068.22 0.37758 39.6057 0.0156 995.825 0.39104 80.5242 0.03193 935.441 0.36575 106.534 0.04323 863.946 0.3652 133.46 0.0543 800.79 0.35081 150.178 0.06359 733.33 0.33542 160.573 0.06568 667.829 0.31261 186.541 0.08104 598.956 0.28605 214.522 0.08881 532.418 0.26594 240.426 0.09975 466.712 0.24372 266.994 0.10953 400.157 0.21311 333.183 0.1328 332.2 0.1851 399.24 0.15654 267.276 0.15279 467.348 0.1819 185.212 0.1231 533.745 0.20554 600.344 0.22952 -- -- 667.864 0.2441 -- -- 731.416 0.27252 -- -- 801.249 0.30095 -- -- 867.281 0.32159 -- -- 933.551 0.33598 -- -- 1000 0.34597 -- -- 1065.93 0.35984 -- -- 1092.94 0.37633 -- -- 177 178

(21)

21

Table S6. CO2 adsorption isotherms on monolith at 25°C.

179 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 0.11946 0.04517 1092.81 2.17289 0.23841 0.07581 1052.99 2.15437 0.38233 0.09474 990.63 2.12322 0.54172 0.11692 925.384 2.08814 1.07231 0.17084 866.804 2.0539 1.90535 0.24359 800.165 2.01192 2.90239 0.28779 733.823 1.9665 3.80046 0.32408 666.442 1.91575 4.94423 0.35698 599.545 1.86018 6.42184 0.39277 533.041 1.79888 13.7012 0.51039 466.599 1.72983 38.1309 0.72947 400.038 1.65131 81.244 0.9507 333.764 1.56103 110.39 1.05958 267.541 1.45425 129.111 1.11942 201.22 1.32443 149.273 1.17702 -- -- 158.943 1.20333 -- -- 187.029 1.27282 -- -- 213.064 1.33098 -- -- 239.527 1.38465 -- -- 266.133 1.43418 -- -- 326.702 1.53386 -- -- 401.217 1.63709 -- -- 465.347 1.71396 -- -- 532.858 1.78533 -- -- 600.081 1.84849 -- -- 666.516 1.9049 -- -- 733.467 1.9564 -- --

(22)

22 799.99 2.00343 -- -- 866.868 2.0471 -- -- 933.637 2.08724 -- -- 1000.01 2.12445 -- -- 1066.78 2.1593 -- -- 1092.81 2.17289 -- -- 180 181

(23)

23

Table S7. CO2 adsorption isotherms on the monolith at 60°C.

182 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 0.67443 0.0392 1093.01 1.54121 0.95315 0.05093 1052.98 1.52329 1.92714 0.08616 990.352 1.49334 2.94526 0.11468 924.967 1.46 3.86139 0.13614 867.105 1.4286 4.90829 0.1574 800.198 1.39011 6.75005 0.18804 734.232 1.34934 13.9488 0.27181 667.573 1.30483 35.6698 0.41029 599.604 1.25571 39.7284 0.42923 532.996 1.20327 76.4741 0.55882 466.745 1.14586 103.968 0.6313 399.861 1.08209 130.487 0.69084 333.752 1.01068 148.759 0.72781 267.014 0.92861 159.391 0.74807 188.505 0.81242 186.555 0.79659 -- -- 213.579 0.83988 -- -- 239.393 0.87824 -- -- 266.266 0.91571 -- -- 326.814 0.99105 -- -- 399.641 1.0702 -- -- 465.382 1.13356 -- -- 533.095 1.19294 -- -- 600.238 1.24635 -- -- 666.434 1.29501 -- -- 733.396 1.34056 -- -- 800.224 1.38282 -- -- 866.792 1.42257 -- --

(24)

24 933.553 1.46014 -- -- 1000.43 1.49502 -- -- 1066.59 1.52803 -- -- 1093.01 1.54121 -- -- 183 184

(25)

25

Table S8. CO2 adsorption isotherms on the monolith at 90°C.

185 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 2.92174 0.04192 1093.49 1.12158 3.03015 0.0432 1052.65 1.10605 3.85025 0.0527 989.308 1.08023 4.77345 0.0627 922.63 1.05161 6.44864 0.07921 867.252 1.02656 13.9131 0.13669 800.535 0.99472 44.4016 0.269 734.077 0.96072 82.4347 0.36554 667.007 0.92461 106.73 0.41229 599.875 0.88531 131.258 0.45339 532.758 0.84325 149.425 0.4807 466.671 0.79802 159.455 0.49502 399.818 0.74799 186.865 0.53105 333.589 0.69296 213.177 0.56286 267.212 0.63028 239.82 0.59271 188.036 0.54144 266.43 0.62057 -- -- 328.991 0.67951 -- -- 399.673 0.73851 -- -- 465.665 0.78813 -- -- 533.392 0.83474 -- -- 600.229 0.87717 -- -- 666.91 0.91636 -- -- 733.367 0.95338 -- -- 800.632 0.98821 -- -- 866.754 1.02075 -- -- 933.671 1.05209 -- -- 1000.13 1.0815 -- -- 1066.78 1.11009 -- --

(26)

26

1093.49 1.12158 -- --

186 187

(27)

27

Table S9. CO2 adsorption isotherms on the monolith at 120°C.

188 adsorption desorption Pressure (mbar) CO2 adsorbed (mol kg-1) Pressure (mbar) CO2 adsorbed (mol kg-1) 8.85109 0.03409 1093.13 0.76077 13.6393 0.04992 1051.54 0.74779 41.0264 0.11997 987.656 0.72684 80.1256 0.19018 921.493 0.70414 102.181 0.22113 866.701 0.68556 132.129 0.25738 801.281 0.66103 149.075 0.27589 733.414 0.6345 159.427 0.28743 666.995 0.60769 186.977 0.31396 599.622 0.57889 212.821 0.33645 532.666 0.54908 239.797 0.35773 466.505 0.5172 265.938 0.37805 400.018 0.48162 328.116 0.42352 333.476 0.44105 401.077 0.46833 267.244 0.39346 465.622 0.50424 199.904 0.33825 533.896 0.53881 150.494 0.28919 600.647 0.56949 100.863 0.22815 666.592 0.59953 48.038 0.14145 734.057 0.62857 -- -- 800.334 0.65531 -- -- 867.205 0.67991 -- -- 933.077 0.70394 -- -- 999.93 0.72832 -- -- 1067.3 0.75162 -- -- 1093.13 0.76077 -- -- 189 190

(28)

28

Table S10. O2 adsorption isotherms on H-ZSM-5-800 at 25°C.

191 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 6.75874 0.0019 1093.71 0.24066 15.3381 0.00425 1066.86 0.2365 39.9374 0.01039 1006.17 0.22544 79.9955 0.02032 934.011 0.21106 106.705 0.02683 867.3 0.19722 133.375 0.0332 800.441 0.18301 150.03 0.03726 734.031 0.16866 159.992 0.03977 667.307 0.15407 186.616 0.04589 599.491 0.13892 213.117 0.05215 532.7 0.12384 239.901 0.05847 466.305 0.10857 267.132 0.06485 399.784 0.09272 332.6 0.07955 333.298 0.07705 399.527 0.09456 266.649 0.06069 466.152 0.10961 187.025 0.04089 533.852 0.12449 600.473 0.13851 666.959 0.15253 733.841 0.16657 800.303 0.18059 867.155 0.19436 933.545 0.20759 1000.36 0.22172 1067.18 0.23513 1093.71 0.24066 192 193

(29)

29

Table S11. O2 adsorption isotherms on H-ZSM-5-800 at 60°C.

194 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 35.2806 0.00432 1096.49 0.11456 45.7594 0.00552 984.552 0.10356 80.0725 0.00935 884.091 0.09369 106.736 0.01226 784.629 0.08351 133.354 0.01517 699.505 0.07481 150.131 0.01697 599.71 0.06437 159.982 0.0181 499.588 0.05391 186.635 0.02096 399.737 0.04332 213.194 0.02374 299.918 0.03258 239.774 0.02669 200.121 0.02168 266.641 0.02956 100.166 0.01067 332.102 0.03654 399.626 0.04368 466.194 0.0506 532.717 0.05765 600.52 0.06468 667.198 0.07148 733.847 0.07835 800.692 0.08508 867.6 0.09179 933.654 0.09827 1000.41 0.10496 1063.96 0.1112 1096.49 0.11456 195 196

(30)

30

Table S12. O2 adsorption isotherms on H-ZSM-5-800 at 90°C.

197 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 39.266 0.00295 1097.87 0.07255 45.9346 0.00344 983.227 0.06541 80.134 0.00578 883.046 0.05881 106.608 0.00765 782.622 0.05244 133.349 0.00951 700.618 0.04701 150.597 0.01066 599.418 0.04015 160.02 0.0112 499.529 0.03371 186.489 0.01293 400.187 0.02688 213.339 0.01461 299.739 0.01994 239.79 0.01641 200.009 0.01291 266.472 0.01832 100.068 0.00591 332.456 0.02278 399.574 0.02748 466.446 0.0316 533.689 0.03605 600.476 0.0407 667.447 0.04464 -- -- 733.427 0.04899 -- -- 800.409 0.05346 -- -- 867.123 0.05762 -- -- 933.565 0.06206 -- -- 1000.66 0.06597 -- -- 1063.07 0.07045 -- -- 1097.87 0.07255 -- -- 198 199

(31)

31

Table S13. O2 adsorption isotherms on the monolith at 25°C.

200 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 27.9126 0.00824 1093.56 0.27027 44.5363 0.01294 1050.21 0.26094 79.9525 0.02288 984.906 0.24675 106.662 0.03026 918.504 0.23189 133.276 0.03759 867.012 0.22027 150.048 0.04217 800.743 0.20509 159.959 0.0449 734.575 0.1896 186.431 0.05211 665.957 0.17338 213.161 0.05918 599.506 0.15725 239.713 0.06627 532.685 0.14092 266.503 0.07344 466.204 0.12427 330.971 0.09033 399.687 0.10738 399.538 0.10788 333.226 0.0901 467.296 0.12486 266.877 0.07256 533.843 0.14139 187.01 0.051 599.539 0.1573 667.007 0.17349 734.185 0.18933 800.432 0.20469 867.203 0.22008 933.835 0.23516 1000.48 0.24992 1066.78 0.26446 1093.56 0.27027 201 202

(32)

32

Table S14. O2 adsorption isotherms on the monolith at °C.

203 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 33.6719 0.00494 1096.88 0.14517 45.5474 0.00661 985.43 0.13154 79.9911 0.01151 884.943 0.11947 106.761 0.01522 832.833 0.11296 133.31 0.01893 800.265 0.1092 150.037 0.02122 751.251 0.10304 160.407 0.02269 700.372 0.09644 186.588 0.02623 651.232 0.09016 213.26 0.0298 599.485 0.08346 239.908 0.03338 549.573 0.07684 266.415 0.03707 499.592 0.07017 331.884 0.04582 449.616 0.06344 399.554 0.05507 399.458 0.05672 467.325 0.0639 349.824 0.04994 532.565 0.07258 299.795 0.04295 601.323 0.08147 249.837 0.03598 666.977 0.08992 200.046 0.02897 733.91 0.09846 150.031 0.02181 800.311 0.10686 100.041 0.01465 867.134 0.11514 933.59 0.12354 1000.54 0.1317 1063.1 0.14049 1096.88 0.14517 204 205

(33)

33

Table S15. O2 adsorption isotherms on the monolith at 90°C.

206 adsorption desorption Pressure (mbar) O2 adsorbed (mol kg -1 ) Pressure (mbar) O2 adsorbed (mol kg -1 ) 36.648 0.00365 1096.37 0.09476 45.7495 0.00448 983.263 0.0863 79.9238 0.0074 883.169 0.07813 106.507 0.00984 783.295 0.06991 133.325 0.0122 700.591 0.06306 149.876 0.01368 599.286 0.05502 159.936 0.01461 499.594 0.04727 186.486 0.01698 399.906 0.03879 213.142 0.01924 299.498 0.03051 239.743 0.0216 200.166 0.02182 266.33 0.02396 99.8906 0.01308 332.242 0.02976 399.406 0.03554 466.129 0.04137 534.506 0.04714 600.207 0.05292 667.245 0.05839 -- -- 733.676 0.064 -- -- 800.686 0.0697 -- -- 866.949 0.0754 -- -- 933.774 0.08092 -- -- 1000.13 0.08676 -- -- 1063.65 0.09211 -- -- 1096.37 0.09476 -- -- 207 208

(34)

34

Table S16. N2 adsorption isotherms on H-ZSM-5-800 at 25°C.

209 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 3.37644 0.00139 1093.8 0.29359 4.5942 0.00182 1071.35 0.28815 5.01648 0.00193 1006.16 0.27412 6.7797 0.00285 933.872 0.25658 13.3951 0.00538 866.928 0.23924 39.812 0.01415 800.342 0.22221 79.9788 0.02664 733.788 0.20455 106.628 0.03475 667.647 0.18626 133.367 0.04261 600.432 0.16775 150.434 0.04798 532.865 0.14824 159.985 0.05071 466.001 0.12877 186.536 0.05844 400.296 0.10921 213.212 0.06584 333.745 0.08924 239.797 0.07346 267.285 0.06872 266.455 0.08138 187.57 0.04336 332.507 0.10008 -- -- 399.385 0.1192 -- -- 467.175 0.13779 -- -- 534.218 0.1558 -- -- 600.835 0.17328 -- -- 667.088 0.1904 -- -- 733.647 0.20709 -- -- 800.532 0.22386 -- -- 867.223 0.24027 -- -- 933.708 0.25577 -- -- 1000.24 0.27125 -- -- 1066.95 0.28757 -- -- 1093.8 0.29359 -- --

(35)

35 210

(36)

36

Table S17. N2 adsorption isotherms on H-ZSM-5-800 at 60°C.

212 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 3.72439 6.72608E-4 1093.46 0.14398 4.61115 8.01969E-4 1069.94 0.14247 5.01847 8.35958E-4 1006.04 0.13823 6.77305 0.00125 933.79 0.12871 13.3807 0.00288 867.008 0.12045 39.9662 0.00691 801.051 0.11199 79.8204 0.01276 733.604 0.10307 106.644 0.01658 667.088 0.09354 133.302 0.0204 599.253 0.08425 149.9 0.02249 533.829 0.07497 159.955 0.02378 465.959 0.06473 186.595 0.02719 399.369 0.05478 213.222 0.03087 333.174 0.04471 239.812 0.03445 266.541 0.03409 267.018 0.03827 186.952 0.02128 332.817 0.04772 -- -- 401.058 0.05725 -- -- 467.015 0.06591 -- -- 533.731 0.07522 -- -- 600.828 0.08345 -- -- 666.753 0.09249 -- -- 733.784 0.10073 -- -- 800.625 0.10914 -- -- 867.338 0.1169 -- -- 933.714 0.12501 -- -- 1000.41 0.13348 -- -- 1067.15 0.14063 -- -- 1093.46 0.14398 -- --

(37)

37 213

(38)

38

Table S18. N2 adsorption isotherms on H-ZSM-5-800 at 90°C.

215 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 4.11595 3.98145E-4 1093.8 0.10515 5.75713 5.92106E-4 1070.34 0.10327 6.87828 7.41162E-4 1005.7 0.09928 13.4614 0.00183 933.714 0.09125 40.0672 0.00443 866.932 0.08395 79.8322 0.00876 800.508 0.07718 106.758 0.01128 733.95 0.07048 133.283 0.0142 667.242 0.06307 149.996 0.01578 599.321 0.05566 159.987 0.01649 532.848 0.04808 187.132 0.01921 466.522 0.03981 213.3 0.02216 399.827 0.03152 239.959 0.02465 337.107 0.02228 266.302 0.02754 270.834 0.01316 332.806 0.03426 192.797 0.00238 400.645 0.04024 -- -- 465.904 0.04768 -- -- 534.604 0.05419 -- -- 600.766 0.06002 -- -- 666.956 0.0658 -- -- 733.794 0.07216 -- -- 800.698 0.07932 -- -- 867.199 0.08537 -- -- 933.742 0.09162 -- -- 1000.56 0.09688 -- -- 1066.67 0.10384 -- -- 1093.8 0.10515 -- -- 216

(39)

39 217

(40)

40

Table S19. N2 adsorption isotherms on the monolith at 25°C.

218 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 9.13773 0.00724 1093.37 0.41941 14.3709 0.01072 1050.75 0.40825 38.6601 0.02604 985.909 0.39067 79.6739 0.05015 919.75 0.37217 106.456 0.06504 866.968 0.35699 133.195 0.07932 800.506 0.33721 149.946 0.08801 733.883 0.31664 159.908 0.09309 667.523 0.29529 186.482 0.10633 600.638 0.27292 213.21 0.11919 532.915 0.24918 240.451 0.1319 466.348 0.22458 266.513 0.14381 400.01 0.19881 330.241 0.17151 333.2 0.17135 399.7 0.19987 267.025 0.14233 467.411 0.22593 187.285 0.10465 533.974 0.25029 600.44 0.2734 -- -- 666.857 0.29559 -- -- 733.813 0.31689 -- -- 800.152 0.3372 -- -- 866.977 0.35702 -- -- 933.723 0.37614 -- -- 1000.2 0.3946 -- -- 1066.92 0.41238 -- -- 1093.37 0.41941 -- -- 219 220

(41)

41

Table S20. N2 adsorption isotherms on the monolith at 60°C.

221 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 12.7018 0.00383 1093.3 0.22229 15.2134 0.00455 1049.4 0.21504 39.8273 0.01098 983.899 0.20397 79.8218 0.021 917.529 0.19237 106.589 0.02752 867.177 0.18357 133.242 0.03395 800.584 0.17156 149.922 0.03789 733.703 0.15914 159.965 0.04021 667.086 0.14655 186.538 0.04643 599.53 0.13326 213.275 0.05257 532.56 0.11996 239.839 0.05858 466.116 0.10653 266.318 0.06457 399.587 0.09265 331.102 0.07877 333.193 0.07846 400.431 0.09362 266.788 0.06372 467.18 0.10748 186.992 0.04536 533.983 0.12097 600.654 0.13402 -- -- 667.074 0.1467 -- -- 733.883 0.15922 -- -- 800.383 0.17154 -- -- 867.077 0.18337 -- -- 933.5 0.19518 -- -- 1000.49 0.20679 -- -- 1067.01 0.21802 -- -- 1093.3 0.22229 -- -- 222 223

(42)

42

Table S21. N2 adsorption isotherms on the monolith at 90°C.

224 adsorption desorption Pressure (mbar) N2 adsorbed (mol kg -1 ) Pressure (mbar) N2 adsorbed (mol kg -1 ) 15.2572 0.00236 1093.67 0.13375 44.5972 0.00645 1048.63 0.12878 79.857 0.01125 982.846 0.12151 106.573 0.01477 916.071 0.11406 133.211 0.01841 866.798 0.10826 150.537 0.02068 800.151 0.10066 159.841 0.02193 733.825 0.09283 186.489 0.02543 665.785 0.08478 213.154 0.02891 599.397 0.07686 239.722 0.03243 532.648 0.06878 266.412 0.03582 466.121 0.06048 331.889 0.04415 399.637 0.05205 399.436 0.05264 333.232 0.04367 466.004 0.0609 266.712 0.03493 534.169 0.06939 186.92 0.02435 600.755 0.07735 667.076 0.08532 -- -- 733.713 0.09302 -- -- 800.045 0.10089 -- -- 866.938 0.10835 -- -- 933.164 0.11587 -- -- 1000.39 0.12329 -- -- 1066.71 0.13104 -- -- 1093.67 0.13375 -- -- 225 226

(43)

43

Table S22. H2O adsorption isotherms on H-ZSM-5-800 at 25°C.

227 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.00231 0.56405 22.91027 5.62394 0.19866 1.48336 18.04594 5.23303 0.39934 1.77222 15.01425 4.83964 0.59765 1.91243 14.16947 4.78321 1.00127 2.12047 12.96361 4.64676 1.20141 2.20812 11.95531 4.55338 1.40368 2.28821 11.45117 4.42584 1.59386 2.3597 9.93873 4.29989 1.79589 2.42514 8.57617 4.05484 1.9934 2.48736 7.74501 3.95457 2.997 2.73389 7.0067 3.82795 4.9937 3.11755 5.99029 3.68294 8.25597 3.65035 5.00457 3.56188 11.22635 4.08432 3.99663 3.38108 15.08238 4.63812 2.98168 3.19998 17.89606 5.03756 1.98223 3.03154 22.91027 5.62394 0.96191 2.82641 0.04668 2.42905 228 229

(44)

44

Table S23. H2O adsorption isotherms on H-ZSM-5-800 at 60°C.

230 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.002 0 43.721 3.10309 0.199 0.49467 39.797 3.02182 0.399 0.6624 35.382 2.89535 0.605 0.76659 31.124 2.77318 0.998 0.9026 26.471 2.6394 1.206 0.97937 23.085 2.52756 1.401 1.04893 22.118 2.50625 1.603 1.09596 18.146 2.37886 1.792 1.15274 14.937 2.25673 2.002 1.20161 11.217 2.10546 3.007 1.33675 7.927 1.94069 4.996 1.55351 4.67 1.71759 7.702 1.77218 2.975 1.56933 10.693 1.94307 1.965 1.47124 14.644 2.12678 1.778 1.44532 17.628 2.24266 1.58 1.42141 22.629 2.42514 1.373 1.39331 21.839 2.40875 1.184 1.36469 26.049 2.55053 0.973 1.33492 30.484 2.68707 0.608 1.19657 34.885 2.81641 0.425 1.10893 39.252 2.95892 0.214 0.98251 43.721 3.10309 0.037 0.90898 231 232

(45)

45

Table S24. H2O adsorption isotherms on H-ZSM-5-800 at 90°C.

233 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.005 0.36375 43.667 2.34674 0.262 0.60698 39.62 2.29352 0.533 0.70588 35.321 2.23212 0.764 0.77121 31.084 2.16318 1.07 0.83815 26.887 2.09203 1.311 0.88571 23.058 2.01721 1.555 0.92715 22.009 1.99582 1.763 0.96106 17.942 1.89887 1.966 0.99075 15.101 1.83153 2.169 1.01795 10.993 1.70812 3.064 1.10717 8.145 1.61413 5.058 1.26452 4.957 1.46381 7.654 1.43616 3.049 1.34761 10.625 1.5695 2.026 1.27611 14.637 1.71398 1.847 1.25454 17.601 1.80151 1.676 1.2017 22.642 1.93565 1.44 1.18346 21.777 1.92126 1.239 1.16665 26.069 2.02179 1.027 1.14694 30.545 2.11387 0.616 1.10937 34.96 2.19443 0.435 1.08898 39.286 2.26755 0.231 0.96099 43.667 2.34674 0.054 0.95056 234 235

(46)

46

Table S25. H2O adsorption isotherms on H-ZSM-5-800 at 120°C.

236 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.119 0.34603 43.721 1.65849 0.321 0.39071 39.695 1.62271 0.611 0.46566 35.382 1.57822 0.813 0.50661 31.288 1.53223 1.122 0.5518 26.778 1.47586 1.311 0.59323 22.997 1.42257 1.51 0.62905 21.961 1.40691 1.719 0.66013 17.942 1.34188 1.909 0.69065 15.087 1.29483 2.122 0.71434 11.088 1.20386 3.129 0.78487 7.968 1.13194 5.116 0.91198 5.059 1.049 7.763 1.01274 3.09 0.95975 10.72 1.0971 2.076 0.90579 14.644 1.19503 1.892 0.85841 17.574 1.2591 1.691 0.84816 22.642 1.35928 1.491 0.8363 21.77 1.34976 1.296 0.824 26.124 1.42047 1.087 0.81008 30.559 1.48664 0.672 0.78116 34.994 1.54593 0.484 0.76587 39.307 1.60132 0.283 0.65513 43.721 1.65849 0.16 0.74195 237 238

(47)

47

Table S26. H2O adsorption isotherms on the monolith at 25°C.

239 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.00656 0.02428 23.09104 6.91014 0.1998 1.28462 22.16451 6.82482 0.39774 1.48936 18.23353 6.32991 0.61905 1.63157 14.85439 4.4461 1.00125 1.81563 11.22318 3.8649 1.19565 1.89596 8.04842 3.48904 1.39481 1.96976 4.98392 2.9743 1.59977 2.03544 2.98734 2.6086 1.80307 2.09697 1.96738 2.36557 2.00315 2.15011 1.77976 2.3118 2.9943 2.38506 1.57944 2.25051 5.00321 2.75638 1.37827 2.18058 7.99918 3.20444 1.17453 2.10784 10.60321 3.63136 0.9744 2.02442 14.94296 4.29632 0.55588 1.80926 17.87245 5.62667 0.36557 1.66461 23.09104 6.91014 0.16019 1.43896 0.00382 0.94447 240 241

(48)

48

Table S27. H2O adsorption isotherms on the monolith at 60°C.

242 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.006 0.02818 44.163 3.25073 0.202 0.81252 39.721 3.05067 0.426 0.93247 35.347 2.91535 0.679 1.01619 31.014 2.77656 1.003 1.09813 26.518 2.63475 1.201 1.14637 23.071 2.5297 1.428 1.19681 22.151 2.49952 1.708 1.24381 17.981 2.3657 1.889 1.27495 -- -- 2.091 1.30594 -- -- 2.994 1.41433 -- -- 5 1.60057 -- -- 8.004 1.81071 -- -- 10.746 2.00237 -- -- 14.643 2.16546 -- -- 17.607 2.27633 -- -- 22.669 2.44779 -- -- 21.858 2.42456 -- -- 26.136 2.56001 -- -- 30.428 2.69474 -- -- 34.87 2.85234 -- -- 39.408 3.00253 -- -- 44.163 3.25073 -- -- 243 244

(49)

49

Table S28. H2O adsorption isotherms on the monolith at 90°C.

245 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 0.006 0 43.904 1.9878 0.198 0.471 39.959 1.93048 0.434 0.56159 35.797 1.85832 0.703 0.62737 31.464 1.79325 0.995 0.6806 26.804 1.71892 1.204 0.72236 23.064 1.65001 1.398 0.75921 22.11 1.63251 1.697 0.7959 18.268 1.55812 1.909 0.81882 15.222 1.49364 2.089 0.83507 11.25 1.39141 3.001 0.9034 8.205 1.29835 5.031 1.02635 4.98 1.14555 7.994 1.17198 2.973 1.02917 10.801 1.29306 1.968 0.94822 14.664 1.40161 1.784 0.92853 17.614 1.47503 1.585 0.90711 22.771 1.5868 1.378 0.88336 21.919 1.57244 1.172 0.85662 26.177 1.658 0.975 0.82818 30.667 1.74111 0.55 0.7507 35.013 1.81605 0.369 0.69827 39.449 1.89518 0.161 0.60472 43.904 1.9878 0.034 0.53761 246 247

(50)

50

Table S29. H2O adsorption isotherms on the monolith at 120°C.

248 adsorption desorption Pressure (mbar) H2O adsorbed (mol kg-1) Pressure (mbar) H2O adsorbed (mol kg-1) 1E-3 0.30387 43.87 1.42236 0.187 0.4372 40.198 1.39561 0.367 0.48386 35.558 1.35482 0.695 0.54747 31.205 1.31623 1 0.59199 26.974 1.27435 1.305 0.62782 23.193 1.2313 1.506 0.64961 22.11 1.21793 1.705 0.66722 18.458 1.17252 1.913 0.68428 15.263 1.12659 2.12 0.7001 11.114 1.05421 3.002 0.74987 7.79 0.98249 4.999 0.8342 4.98 0.89247 8.001 0.92253 2.971 0.80947 10.794 1.00209 1.954 0.74655 14.643 1.07347 1.787 0.73164 17.648 1.12247 1.581 0.7143 22.853 1.19391 1.38 0.69499 21.926 1.18505 1.173 0.67304 26.245 1.23869 0.973 0.64918 30.66 1.28797 0.551 0.58695 34.993 1.33452 0.368 0.54559 39.455 1.37864 0.16 0.48926 43.87 1.42236 0.028 0.46204 249 250

(51)

51 251

252

Figure S10 (a) CO2, (b) N2 and (c) O2 adsorption isotherms on H-ZSM-5-800 (●) and the monolith (▲) at 25, 60,

253

90 and 120 °C. CO2 color code: from dark violet (25 °C) to light violet (120 °C). N2 color code: red (25 °C), magenta

254

(60 °C) and dark red (90 °C). O2 color code: blue (25 °C), dark cyan (60 °C) and cyan (90 °C). Full symbols are for

255

adsorption, empty symbols are for desorption. 256

(52)

52

S5.1 CO

2

, O

2

, N

2

and H

2

O fitting parameters for H-ZSM-5-800 °C and the

258

monolith.

259

Dual-site and single-site Langmuir model fit parameters for CO2 adsorption isotherms of H-ZSM-5

260

calcined at 800 °C at 25, 60, 90 and 120 °C and 1 bar: 261 262 T = 25 °C: 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 2.0702 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 0.356 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏𝐴𝐴 = 1.919 ∗ 10−3𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 𝑏𝑏𝐵𝐵 = 3.217 ∗ 10−2𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 60 °C: 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.848 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.392 ∗ 10−3𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 90 °C: 𝑞𝑞 =𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 1 + 𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.938 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 4.623 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 120 °C: 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.697 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 2.592 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 263

Dual-site Langmuir model fit parameters for CO2 adsorption isotherms of H-ZSM-5 based carbon

264

monolith at 25, 60, 90 and 120 °C and 1 bar: 265

(53)

53 266 T = 25 °C: 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 2.105 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 0.560 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏𝐴𝐴 = 2.76 ∗ 10−3𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 𝑏𝑏𝐵𝐵 = 3.35 ∗ 10−1𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 60 °C: 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 1.808 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 0.432 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏𝐴𝐴 = 1.42 ∗ 10−3 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 𝑏𝑏𝐵𝐵 = 9.98 ∗ 10−2 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 90 °C: 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 1.597 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 0.353 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏𝐴𝐴 = 8.57 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 𝑏𝑏𝐵𝐵 = 3.65 ∗ 10−2𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1

(54)

54 T = 120 °C: 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 1.47 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 0.292 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏𝐴𝐴 = 4.55 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 𝑏𝑏𝐵𝐵 = 1.13 ∗ 10−2𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1

Single-site and single-site Langmuir model fit parameters for O2 adsorption isotherms of H-ZSM-5

calcined at 800 °C at 25, 60 and 90 °C and 1 bar:

T = 25 °C: 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 2.009 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.239 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 60 °C: 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.492 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 7.564 ∗ 10−5𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 T = 90 °C: 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.337 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 5.209 ∗ 10−5𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1

Single-site Langmuir model fit parameters for O2 adsorption isotherms of H-ZSM-5 based carbon

267

monolith at 25, 60 and 90 °C and 1 bar: 268

269

T = 25 °C:

(55)

55 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 2.001 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.425 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 271 T = 60 °C: 272 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 2.124 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 6.641 ∗ 10−5𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 273 T = 90 °C: 274 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.929 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 4.623 ∗ 10−5𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 275

Single-site and single-site Langmuir model fit parameters for N2 adsorption isotherms of H-ZSM-5

276

calcined at 800 °C at 25, 60 and 90 °C and 1 bar: 277 278 T = 25 °C: 279 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.779 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.801 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 280 T = 60 °C: 281 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.156 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.300 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 282 T = 90 °C: 283

(56)

56 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.286 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 8.176 ∗ 10−5𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 284 285

Dual and single-site Langmuir model fit parameters for N2 adsorption isotherms of H-ZSM-5 based

286

carbon monolith at 25, 60 and 90 °C and 1 bar: 287 288 T = 25 °C: 289 𝑞𝑞 ≡ 𝑞𝑞𝐴𝐴+ 𝑞𝑞𝐵𝐵 =𝑞𝑞1 + 𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴𝑏𝑏𝐴𝐴𝑐𝑐 𝐴𝐴𝑐𝑐 + 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵𝑏𝑏𝐵𝐵𝑐𝑐 1 + 𝑏𝑏𝐵𝐵𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐴𝐴 = 0.053 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠,𝐵𝐵 = 1.374 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 290 𝑏𝑏𝐴𝐴 = 4.365 ∗ 10−3𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 291 𝑏𝑏𝐵𝐵 = 3.440 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 292 T = 60 °C: 293 𝑞𝑞 =𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 1 + 𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.044 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 2.465 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 294 T = 90 °C: 295 𝑞𝑞 =𝑞𝑞1 + 𝑏𝑏𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐 𝑞𝑞𝑝𝑝𝑠𝑠𝑠𝑠 = 1.127 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑔𝑔−1 𝑏𝑏 = 1.229 ∗ 10−4𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚−1 296 Variables index: 297

qA(B) = adsorbed quantity of CO2 by site A (B) at pressure p.

298

qsat,A(B) = maximum adsorbed quantity of CO2 by site A (B) at saturation pressure.

299

bA(B) = Langmuir constant for the site A (B).

300 301

(57)

57 302

S5.2 CO

2

, O

2

and N

2

isosteric heat of adsorption.

303

The isosteric heat qst calculated for CO2, O2 and N2 for H-ZSM-5-800 and the monolith is reported

304

in Figure 6a (for CO2 only) and Table 3 of the manuscript.

305

The qst was obtained from the isotherms reported in Figure 7 a,b,c by the following procedure: i)

306

The isotherms reported in in Figure 7 a,b,c were fitted by using the Dual or Single-Site Langmuir 307

equation, as reported in Section S5.1. ii) The ln(p/p0) is plotted as a function of 1/T, where p is the 308

pressure and p0 is a reference pressure (p0 = 1 bar), for each coverage. iii) Each set of points is 309

fitted by a straight line (isosteric curve) whose slope is equal to -qst/R, if we assume a Langmuir

310

behaviour of the adsorption and by applying the Clausius-Clapeyron equation. 311

312

S5.3 IAS-Theory.

313

The IAST CO2/N2 selectivity in the presence of 5 vol.% O2 has been calculated by means of

314

pyIAST software, which is based on the theory of Myers and Prausnitz.4 The IAS-Theory is 315

principally used to calculate ideal mixed-gas isotherms. From these calculated multicomponent 316

isotherms, IAST selectivities can be obtained. The model is based on the single component 317

adsorption isotherms measured for gases of interest. Two approximations must be contemplated: i) 318

the gas components of the mixture must be ideally mixed and ii) the surface of the adsorbent must 319

be homogeneous. 320

The IAST selectivity is defined by the ratio between the equilibrium pressure pi,j0 of two gases i and

321

j taken at the same spreading pressure π0. 322 323 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝑗𝑗 =𝑝𝑝𝑗𝑗 0 𝑝𝑝𝑖𝑖0 (S3) 324 325

Equation S3 is giving the general definition of IAST selectivity S between components i and j. 326

In order to obtain the spreading pressures π0

of components i and j, the following equation must be 327

applied to the single-component isotherms: 328 329 𝝅𝝅𝒊𝒊𝟎𝟎�𝒑𝒑𝒊𝒊𝟎𝟎� = 𝑹𝑹𝑹𝑹𝑨𝑨 ∫ 𝒏𝒏𝒊𝒊 𝟎𝟎(𝒑𝒑) 𝒑𝒑 𝒑𝒑𝒊𝒊𝟎𝟎 p=𝟎𝟎 𝒅𝒅𝒑𝒑 (S4) 330 331

(58)

58 Where ni0 represents the gas uptake of component i as a function of equilibrium pressure p, R is the

332

ideal gas constant, T the temperature at which the isotherms has been measured and A the available 333

surface area for the two gases. 334

(59)

59 336

337

S6. CO

2

breakthrough and N

2

, O

2

pulsed chromatography measurements.

338

The experimental parameters characterizing the apparatus used for the CO2 breakthrough and N2,

339

O2 measurements are reported in Table S30.

340 341

Table S30. Experimental conditions for breakthrough experiments pulse chromatography of CO2, N2 and O2 on

H-342

ZSM-5 and on the final artifact. 343 Gas CO2 on H-ZSM-5 CO2 on final artifact N2, O2 on H-ZSM-5 N2, O2 on final artifact Bed length L cm 7.738 5.074 7.738 5.074 Bed diameter cm 0.69 0.457 0.69 0.457 Bed porosity* 0.40 0.40 0.40 Particles diameter R µm 0.1 300-500 0.1 300-400 Adsorbent mass M g 1.174 0.397 1.174 0.397

Pure He flowrate* (for desorption) ml/min 22.5 20 14-60 50-40 Feed gas flowrate* (for breakthrough) ml/min 20 20

CO2 concentration in feed gas (C0) Cfeed % 22.5 0.5

Pressure p bar 1 1 1 1 Temperature T °C 120-90-60-25 120-90-60-25 120-90-60-25 120-90-60-25 344

For what concerns the breakthrough curves of CO2 on H-ZSM-5 and on the final artifact, we have

345

set a very low gas concentration (Table S30), ensuring that the adsorption equilibrium will not have 346

any effect on the diffusion rate and that the thermal effects are also minimized allowing to assume 347

that the temperature is constant in the adsorbent. The experimental curves were fitted for each 348

temperature on the basis of the mathematical models described in section S6.3 below, by varying 349

the value of diffusion constant (Dc) as exemplified in Figure S11(H-ZSM-5 at 90 °C) and in Figure 350

S12 (final artifact at 60 °C). 351

(60)

60 353

Figure S11. CO2 breakthrough curves at 90 °C. Experimental data (□) compared to model data (solid lines) obtained

354

by using different Dc/rc 2

values. Dc/rc 2

values are reported in s-1. 355

356 357

358

Figure S12. CO2 breakthrough curves at 60 °C. Experimental data (□) compared to model data (solid lines) obtained

359

by using different Dc/rc2 values. Dc/rc2 values are reported in s-1.

360

The complete set of CO2 breakthrough curves and the corresponding modeled curves are shown in

361

Figure S13 and Figure S14. 362

(61)

61 364

Figure S13. Experimental and model data of CO2 breakthrough curves on H-ZSM-5 at 26 (green), 60 (red), 90 (blue)

365

and 120 °C (violet). 366

367

368

Figure S14. CO2 breakthrough curves on final artifact at 25 (green), 60 (red), 90 (blue) and 120 °C (violet).

369

Experimental data are represented by diamonds (♦), model data are represented by solid lines. 370

The curves relative to the N2 and O2 pulse chromatography measurements at different temperatures

371

and flow rates are reported in Figure S16. 372

(62)

62 .

373

Figure S15. Experimental (scatters) and model (continuous lines) curves for a) N2 and b) O2 pulse experiments on

H-374

ZSM-5 at different temperatures (25, 60, 90, 120 °C). 375

376

(63)

63 377

Figure S16. Experimental (scatters) and model (continuous lines) curves for N2 and O2 pulse experiments on carbon

378

monolith at different temperatures (25, 60, 90, 120 °C) and different flow rates. 379

(64)

64 380

S6.1 Henry’s law constants.

381

382

The dimensionless Henry coefficients (KH) relative to CO2 adsorption on H-ZSM-5 and on the final

383

artifact were evaluated from the stoichiometric breakthrough time (τst), using equation (S5): 384

385

𝜏𝜏𝑝𝑝𝑠𝑠 = ∫ �1 −0𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶 � 𝑑𝑑𝑑𝑑=𝐿𝐿𝑢𝑢�1 +1−𝜀𝜀𝜀𝜀𝑐𝑐𝑐𝑐𝐾𝐾𝐻𝐻� (S5)

386 387

Where 𝐶𝐶 is the concentration of adsorbate in the gas phase at the exit of the column, Cfeed is the

388

concentration of CO2 in the feed (0.5% CO2in He), εc is the bed void fraction (0.34), L is the length

389

of the bed, u is the interstitial velocity and KH is the Henry constant.

390

Table S30, Table S31 and Table S32 give the parameters used to obtain KH for CO2. KH are

391

reported against 1/T in Figure 9(d,d’) of the manuscript. 392

(65)

65 394

395

Table S31. CO2 Henry Constant coefficients of H-ZSM-5. Dimensionless Henry’s law constants KH, stoichiometric

396

breakthrough time (τst) and interstitial velocity (u) relative to CO2 breakthrough measurements at different temperatures.

397

-∆H has been evaluated from the fits of Figures 9d, d’ reported in the main text. 398 T (K) 1/T (K-1) Interstitial velocity u (m s-1) τst (s) KH -∆H (kJ mol-1) 298.15 0.003354016 0.038048517 1162.6 380.4318 24.5 ± 0.7 333.15 0.003001651 0.042373002 344.9 125.242 363.15 0.002753683 0.046188725 144.03 56.64785 393.15 0.002543558 0.050004455 73.0 30.78703 399 400

Table S32. CO2 Henry Constant coefficients of the final artifact. Dimensionless Henry’s law constants KH,

401

stoichiometric breakthrough time (τst) and interstitial velocity (u) relative to CO2 breakthrough measurements at

402

different temperatures. -∆H has been evaluated from the fits of Figures 9d’ (main text) in the T range of 60-120 °C.. 403 T (K) 1/T (K-1) Interstitial velocity u (m s-1) τst (s) KH -∆H (kJ mol-1) 298.15 0.003354016 0.047406884 2036.7 1434.752058 31 ± 7 333.15 0.003001651 0.054562037 703.3 569.7410915 363.15 0.002753683 0.057742109 346.98 297.1283559 393.15 0.002543558 0.06251221 102.0 94.00801488 404

The dimensionless Henry coefficients (KH) relative to N2 adsorption on H-ZSM-5 and on the final

405

artifact, were evaluated from the first moment of the pulse as: 406

(66)

66 𝜇𝜇 =𝐿𝐿𝑢𝑢�1 + �1−𝜀𝜀𝑐𝑐

𝜀𝜀𝑐𝑐 � 𝐾𝐾𝐻𝐻� (S6)

407

Where εC is the bed void fraction, L is the length of the bed, u is the interstitial velocity and KH is

408

the Henry constant. Table S30 and Table S33-S36 give the parameters used to obtain KH for O2 and

409

N2. Together with the KH of CO2, they are plotted as function of 1/T in Figure 9 d,d’ of the

410

manuscript. 411

412

Table S33. N2 Henry Constant coefficients of H-ZSM-5. Dimensionless Henry’s law constants KH and interstitial

413

velocity (u) relative to N2 pulsed chromatography measurements at different temperatures and at different flow rates.

-414

∆H has been evaluated from the fits of Figures 9d (main text) in the T range of 60-120 °C. 415 T (K) 1/T (K-1) Interstitial velocity u (m s-1) Flux (ml min -1 ) KH -∆H (kJ mol-1) 298.15 0.003354016 0.022643896 10 12.583507 11 ± 2 298.15 0.003354016 0.033965843 20 12.776939 298.15 0.003354016 0.045287792 30 12.92486 333.15 0.003001651 0.025302076 10 4.9234576 333.15 0.003001651 0.037953113 20 4.9729605 333.15 0.003001651 0.050604151 30 4.869808 363.15 0.002753683 0.027580515 10 3.2021878 363.15 0.002753683 0.041370772 20 3.368363 363.15 0.002753683 0.055161033 30 3.0976887 393.15 0.002543558 0.029858955 10 2.637336 393.15 0.002543558 0.044788433 20 2.5835724 393.15 0.002543558 0.05971791 30 2.683473 416

(67)

67

Table S34. N2 Henry Constant coefficients of the final artifact. Dimensionless Henry’s law constants KH and interstitial

417

velocity (u) relative to N2 pulsed chromatography measurements at different temperatures and at different flow rates.

-418

∆H has been evaluated from the fits of Figures 9d’ (main text) in the T range of 60-120 °C. 419 T (K) 1/T (K-1) Interstitial velocity u (m s-1) Flux (ml min -1 ) KH -∆H (kJ mol-1) 298.15 0.003354016 0.023703442 10 13.793753 12.5 ± 0.5 298.15 0.003354016 0.047406884 20 13.571887 298.15 0.003354016 0.071110327 30 13.511489 333.15 0.003001651 0.026486002 10 6.6224904 333.15 0.003001651 0.052972004 20 6.568137 333.15 0.003001651 0.079458007 30 5.612218 363.15 0.002753683 0.014435527 10 3.9348655 363.15 0.002753683 0.020209738 20 4.239907 363.15 0.002753683 0.028871054 30 4.2353954 393.15 0.002543558 0.015628053 10 3.0808103 393.15 0.002543558 0.021879274 20 3.2929533 393.15 0.002543558 0.031256107 30 2.8006017 420 421

(68)

68 422

Table S35. O2 Henry Constant coefficients of H-ZSM-5. Dimensionless Henry’s law constants KH and interstitial

423

velocity (u) relative to O2 pulsed chromatography measurements at different temperatures and at different flow rates.

-424

∆H has been evaluated from the fits of Figures 9d (main text) in the T range of 60-120 °C. 425 T (K) 1/T (K-1) Interstitial velocity u (m s-1) Flux (ml min -1 ) KH -∆H (kJ mol-1) 298.15 0.003354016 0.011321948 10 4.8289847 5.4 ± 0.1 298.15 0.003354016 0.022643896 20 4.75058 298.15 0.003354016 0.045287792 30 4.719273 333.15 0.003001651 0.010516452 10 3.409165 333.15 0.003001651 0.021032904 20 3.3459082 333.15 0.003001651 0.042065808 30 2.979813333 363.15 0.002753683 0.013790258 10 2.9021447 363.15 0.002753683 0.027580515 20 2.7984421 363.15 0.002753683 0.041370772 30 2.494547333 393.15 0.002543558 0.012410455 10 2.4925613 393.15 0.002543558 0.02482091 20 2.2982216 393.15 0.002543558 0.037231366 30 2.3681989 426

(69)

69

Table S36. O2 Henry Constant coefficients of H-ZSM-5. Dimensionless Henry’s law constants KH and interstitial

427

velocity (u) relative to O2 pulsed chromatography measurements at different temperatures and at different flow rates.

-428

∆H has been evaluated from the fits of Figures 9d’ (main text) in the T range of 60-120 °C. 429 T (K) 1/T (K-1) Interstitial velocity u (m s-1) Flux (ml min-1) KH -∆H (kJ mol-1) 298.15 0.003354016 0.023703442 10 6.531802 6.6 ± 0.9 298.15 0.003354016 0.047406884 20 6.1911883 298.15 0.003354016 0.071110327 30 5.9129825 333.15 0.003001651 0.018540202 10 4.0167584 333.15 0.003001651 0.026486002 20 4.320414 333.15 0.003001651 0.052972004 30 3.6996965 363.15 0.002753683 0.079458007 10 3.7340837 363.15 0.002753683 0.014435527 20 2.9058797 363.15 0.002753683 0.020209738 30 2.761645 393.15 0.002543558 0.028871054 10 2.8197322 393.15 0.002543558 0.015628053 20 2.8831391 393.15 0.002543558 0.021879274 30 2.5736957 430

S6.2 Diffusion of N

2

, O

2

and CO

2

with pulse and breakthrough measurements.

431

N2, O2 and CO2 diffusion measurements were performed on H-ZSM-5 and on the final artifact at

432

25, 60, 90 and 120 °C. The diffusion of N2 and O2 was measured through pulse chromatography

433

while diluted breakthrough experiments were instead preferred for CO2 diffusion, due to the

434

strongly non-symmetric shape of the CO2 peaks (due to the high non-linearity of the CO2 isotherms

435

even at very low pressures). The experimental curves were simulated by using the mathematical 436

model described in section S6.3 in order to obtain the reciprocal diffusion time constants. 437

(70)

70 From the analysis of both pulse and breakthrough experiments it was observed that the diffusional 438

resistances were small compared to the axial dispersion (due of the fast diffusion of the measured 439

gases). For this reason, it was not possible to estimate an accurate value of the diffusivity parameter 440

(Dc) from the measured data. However, modeling simulations of the measured peaks and 441

breakthrough curves were performed in order to provide a limiting value of the parameter, as 442

reported in Table S37. 443

444

Table S37 Diffusion measurements outputs. Results of the analysis of the diffusion measurements on H-ZSM-5-800

445

and on the monolith. 446 Gas T (°C) Dc rc -2 (s-1) H-ZSM-5-800 Dc rc-2 (s-1) Monolith CO2 25 >0.1 > 0.1 60 >0.1 > 0.5 90 >0.1 > 0.5 120 >1 > 0.5 O2 25 >1 >10 60 >5 >50 90 >5 >100 120 >5 >100 N2 25 >2.5 >5 60 >2.5 >10 90 >5 >50 120 >10 >50 447 448 449 450

Riferimenti

Documenti correlati

We are focused to the the numerical modelling of infil- tration of contaminated water into unsaturated porous media and determination of adsorption isotherms.. A coupled system

Urban area n. We find as well formerly rural areas turned into high-density residential neighbourhoods. The typical case is the Falchera neighbourhood, in District 6, that

This would be the only approach that would truly recognize the local communities as sovereign social semi- public authorities (the so-called State- Community)

The Fe-Co alloys, compared to elemental Fe and Co, display a much higher selectivity toward CO, an intermediate one for CH 4 , and show activity in the catalytic formation of C 2 -C

simply with proporHons betwee n land a nd capita l-plu s- l abour, not amounts of them, and with rates of return to land and to capital - plus-labour not total

Additionally, it was concluded that for the prediction of the sorption of selected organic compounds, the models that have more complex structure produce lower values of MAE,

Based on the known methodology of seasonal heat demand, the final and primary energy consumption was determined for each analyzed case together with

described in steps 2 and 3, a plane is prescribed with a double angulation: orthogonal to the VLP (horizontal Hne on Figure 2.6), on one side, and then aligned with the maximal