• Non ci sono risultati.

2. F. Peterson, C. F. Smith, and R. Mittra, “Computational Methods for Electromagnetics”, IEEE Press, 1998.

N/A
N/A
Protected

Academic year: 2021

Condividi "2. F. Peterson, C. F. Smith, and R. Mittra, “Computational Methods for Electromagnetics”, IEEE Press, 1998. "

Copied!
4
0
0

Testo completo

(1)

Bibliography

1. R. F. Harrington, “Field Computations by Moment Methods”, IEEE Press, 1993.

2. F. Peterson, C. F. Smith, and R. Mittra, “Computational Methods for Electromagnetics”, IEEE Press, 1998.

3. G. Manara, A. Monorchio, P. Nepa, “Appunti di Campi Elettromagnetici”, Servizio Editoriale Universitario di Pisa, 2002

4. C. A. Balanis, “Advanced Engineering Electromagnetics”, Wiley & Sons, 1989.

5. C. A. Balanis, “Antenna Theory: Analysis and Design”, John Wiley & Sons, Inc., 1997.

6. G.T. Ruck, D. E. Barrick, W. D. Stuart, C. K. Krichbaum, “Radar Cross Section Handbook”, Plenum Press, 1970

7. E. Lucente, “Tecniche efficienti per il calcolo dello scattering elettromagnetico da oggetti di grandi dimensioni elettriche”, Ph.D thesis, 2007

8. S. M. Rao, D. R. Wilton, “Electromagnetic Scattering by Surfaces of Arbitrally Shape”, IEEE Trans. Microwave Theory and Tech., vol. AP-30, no. 3, May. 1982.

9. Dau-Sing Wang; , “Limits and validity of the impedance boundary condition on penetrable surfaces”, Antennas and Propagation, IEEE Transactions on , vol.35, no.4, pp. 453- 457, Apr 1987

10. E. Michielssen, “A Multilevel Matrix Decomposition Algorithm for Analyzing Scattering from Large Structures”, IEEE Trans. Antennas and Propagation, vol.41,no. 8, August 1996

11. J. Song, C Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects”, IEEE Trans. Antennas Propagat., AP-45, pp. 1488-1493, Oct. 1997.

12. R. Mittra, V.V.S. Prakash, S. J. Kwon, “An Improved Iterative Solution for Method of Moments Problems in Electromagnetics”, IEEE Trans. Antennas Propagat., 2002.

13. R. Mittra, S. J. Kwon, V.V.S. Prakash, “An Efficient Solution of a Dense System of

Linear Equations Arising in the Method of Moments Formulation”, Microwave and

Optical Technology Letters, vol. 33, no. 3, May 2002.

(2)

14. R. Mittra, V.V.S. Prakash, “Characteristic Basis Function Method: A New Technique for Efficient Solution of Method of Moments Matrix Equations”, Microwave and Optical Technology Letters, vol. 36, no. 2, January 2003.

15. E. Lucente, A. Monorchio, R. Mittra, “An Iteration Free MoM Approach Based on Excitation Independent Characteristic Basis Functions for Solving Large Multiscale Electromagnetic scattering Problems”, IEEE Trans. Antennas Propag., Vol.56, no.4, pp.999-1007, April 2008.

16. G.H. Golub, C. Reinsch, “Singular value decomposition and least square solutions”, Numerische Mathematik, 10. IV 1970, Volume 14, Issue 5, pp 403-420

17. E.H. Newman, “Generation of wide band from the method of moments by interpolating the impedance matrix”, IEEE Trans. AP, Vol.36, pp.1820-1824, Dec.

1988.

18. G. J. Burke, E. K. Miller, S. Chakrabarthi, and K. Demarest, “Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions”, IEEE Trans. Magn., vol. 25, pp. 2807-2809, July 1988.

19. C. J. Reddy, M. D. Deshpande, C. R. Cockrell, F. B. Beck, “Fast RCS Computation over a Frequency Band Using Method of Moments in Conjunction with Asymptotic Evaluation Technique”, IEEE Trans Antennas Propag., Vol.46, no.8, pp.1229-1233, August 1998.

20. X. C. Nie, N. Yuan, L.W. Li, Y. B. Gan, “Fast Analysis of RCS Over a frequency Band Using Pre-Corrected FFT/AIM and Asymptotic Waveform Evaluation Technique”, IEEE Trans. Antennas Propag., Vol.56, no.11, pag.3526-3533, Nov.2008.

21. Z. H. Fan, Z. W. Liu, D. Z. Ding, R. S. Chen, “Preconditioning Matrix Interpolation Technique for Fast Analysis of Scattering Over Broad Frequency Band”, IEEE Trans. Antennas Propag., Vol.58, no.7, pp.2484-2487, July 2010

22. M. De Gregorio, G. Tiberi, A. Monorchio, “Wide Band Scattering through the use

of the Universal Characteristic Basis Functions (UCBFs)”, IEEE International

Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science

meeting, July 11-17, 2010, Toronto, ON, Canada

(3)

23. M. De Gregorio, G. Tiberi, A. Monorchio, R. Mittra, “Solution of wide band scattering problems using the characteristic basis function method”, Microwaves, Antennas & Propagation, IET, pp 60-66, 2012

24. A. E. Yilmaz, Jian-Ming Jin, E. Michielssen, “Time Domain adaptive Integral Method for Surface Integral Equations”, IEEE Trans. Antennas Propag., Vol.52, no.10, pp.2692-2708, Oct.2004.

25. R. J. Burkholder, P. H. Pathak, K. Sertel, J. Marhefka, and J. L. Volakis, “Hybrid Framework for Antenna/Platform Analysis”, R. Applied Computational Electromagnetics Society Journal, Nov. 2006.

26. P. H. Pathak, P. Janpudgee, R. J. Burkholder, and J.-F. Lee, “An Efficient Hybrid FE-BI-TW-Collective Ray Formulation for Analysis of Large Conformal Arrays”, 2008 Union Radio Scientifique Internationale--(URSI) General Assembly, Aug. 7- 16, 2008, 4 pages.

27. G. Tiberi, S. Rosace, A. Monorchio, G. Manara and R. Mittra, “Electromagnetic Scattering from Large Faceted Conducting Bodies by Using Analytically-Derived Characteristic Basis Functions”, IEEE Antennas and Wireless Prop. Lett, Vol. 2, Issue: 20, 2003, pp. 290-293.

28. G. Tiberi, A. Monorchio, G. Manara, R. Mittra “A Numerical Solution for Electromagnetic Scattering from Large Faceted Conducting Bodies by Using Physical Optics-SVD Derived Basis”, IEICE Transaction on Electronics, Vol. E90-C, No. 2, Feb 2007, pp. 252-257.

29. T. Wang, R. F. Harrington, J. R. Mautz, “Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies”, IEEE Trans. Ant Propag, Vol 38, No 11, Nov. 1990, pp. 1805-1814

30. R. F. Harrington, “Time-Harmonic Electromagnetic Fields”, McGraw-Hill Book Company, Inc., 1961.

31. G. Tiberi, S. Bertini, A Monorchio, G. Mazzarella, G. Montisci, “A Spectral

Rotation Approach for the Efficient Calculation of the Mutual Coupling between

Rectangular Apertures”, IEEE Antennas and Wireless Propagation Letter, Vol: 10,

year: 2011 , pp: 131 – 134

(4)

32. D. Bianchi, A. Monorchio, G. Tiberi, M. De Gregorio, “Evaluating the generalized scattering matrix between horn antennas on a circular conducting cylinder by hybridizing Mode Matching/FEM with the spectral rotation approach”, IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science meeting, 2012

33. M. De Gregorio, G. Tiberi, A. Monorchio, “A Characteristic Basis Function (CBF) Approach for the Electromagnetic Radiation by Large Conducting Structures With Apertures”, ICEAA and IEEE APWC, September 12-16, 2011, Torino, Italia

34. www.flann.com/Products_Home/Components/FmiCat07108119.pdf 35. legacy.nrao.edu/alma/memos/html-memos/alma278/memo278.pdf

36. A. Pellegrini, A. Brizzi, L. Zhang, Y. Hao, “Numerical and experimental analysis of the on-body propagation channel at W band”, Antennas and Propagation (EUCAP), 2012 6th European Conference on , vol., no., pp.750-754, 26-30 March 2012

37. P. Usai, A. Monorchio, A. Brizzi, A. Pellegrini, L. Zhang; Y. Hao, “Analysis of on-

body propagation at W band by using ray tracing model and measurements”,

Antennas and Propagation Society International Symposium (APSURSI), 2012

IEEE , vol., no., pp.1-2, 8-14 July 2012

Riferimenti

Documenti correlati

(i) I numeri floating point possono essere trasferiti fra due computer che utilizzano lo standard IEEE in binario senza perdere precisione;.. (ii) I dettagli dell’aritmetica

Mittra, “On the Analysis of Frequency Selective Surfaces using Subdomain Basis Function”, IEEE Transactions on Antennas and Propagations, vol 38, No 1, Jan 90.. Holland, “Adaption

Introduzione Recentemente, le Wireless Mesh etwork o WM [1] Figura 1 hanno attratto sempre più i ricercatori a causa della disponibilità di tecnologie wireless a basso costo ad

Excitation Independent Characteristic Basis Functions for Solving Large Multiscale Electromagnetic Scattering Problems,” to appear on IEEE Trans. on Antennas and

Technique for Efficient Solution of Method of Moments Matrix Equations”, Microwave and Optical Technology Letters, vol.. Prakash, “Efficient Analysis of a Class

Graglia, “On the Numerical Integration of the Linear Shape Function Times the 3-D Green’s Function on its Gradient on a Plane Triangle”, IEEE Transactions on Antennas and

Ho fatto particolare riferimento, per tutte le informazioni relative ai componenti hardware utilizzati, ai siti Internet dei produttori:. www.microchip.com www.vishay.com www.st.com

[21] gave an asymptotic solution for the scattered field by a perfectly-conducting cylindrical obstacle in a grounded dielectric layer: numerical results for a circular cylinder