• Non ci sono risultati.

7. Atmospheric neutrinos and Neutrino oscillations

N/A
N/A
Protected

Academic year: 2021

Condividi "7. Atmospheric neutrinos and Neutrino oscillations"

Copied!
53
0
0

Testo completo

(1)

7. Atmospheric neutrinos and

Neutrino oscillations

Corso “Astrofisica delle particelle”

Prof. Maurizio Spurio

Università di Bologna. A.a.

2011/12

(2)

Outlook

 Some history

 Neutrino Oscillations

 How do we search for neutrino oscillations

 Atmospheric neutrinos

 10 years of Super-Kamiokande

 Upgoing muons and MACRO

 Interpretation in terms on neutrino oscillations

 Appendix: The Cherenkov light

(3)

At the beginning of the ’80s, some theories (GUT) predicted the proton decay with measurable

livetime

The proton was thought to decay in (for instance) pe+p0ne

Detector size: 103 m3, and mass 1kt (=1031 p)

The main background for the detection of proton decay were atmospheric neutrinos interacting inside the experiment

7.1 Some history

Proton decay gg

e Neutrino Interaction

Water Cerenkov Experiments (IMB, Kamiokande)

Tracking calorimeters (NUSEX, Frejus, KGF)

Result: NO p decay ! But some anomalies on the neutrino

measurement!

(4)

7.2 Neutrino Oscillations

|n

e

 , |n

m

 , |n

t

=Weak Interactions (WI) eigenstats

|n

1

 , |n

2

 , |n

3

=Mass (Hamiltonian) eigenstats

Idea of neutrinos being massive was first suggested by B. Pontecorvo

Prediction came from proposal of neutrino oscillations

• Neutrinos propagate as a superposition of mass

eigenstates

Neutrinos are created or annihilated as W.I.

eigenstates

(5)

Weak eigenstates (n

e

, n

m

, n

t

) are expressed as a combinations of the mass eigenstates (n

1

, n

2

,n

3

).

 These propagate with different frequencies due to their different masses, and different phases develop with distance travelled. Let us assume two neutrino flavors only.

 The time propagation : |n(t)= (|n

1

 , |n

2

 )



0

2

2 2

2

ij

i i

ii

M

E E m

m p

M

n n

M =

(2x2 matrix)

(eq.2)

) (t dt M

i d n n

(eq.1)

(6)

eq.1 becames, using eq.2)

) 2 (

2

t E v

E m dt

i d i 

 

 

n n

n

whose solution is :

v

i

( t )  v

i

( 0 ) e

iit





n

n

E E mi

i 2

2

with

During propagation, the phase difference is:

En

t m

m

i 2

) ( 2212



(eq.4)

(eq.6) (eq.5)

Time propagation

(7)

|

n

e

 = cosq |n

1

 + sinq |n

2

|n

m

 = -sinq |n

1

 + cosq |n

2

q = mixing angle (eq.3)

Time evolution of the “physical”

neutrino states:

• Let us assume two neutrino flavors only (i.e. the electon and the muon neutrinos).

• They are linear superposition of the n1,n2 eigenstaten:

t t i

i

t i t

i e

i i

e v

e v

v

e v

e v

v

2 1

1 2

) 0 ( cos

) 0 ( sin

) 0 ( sin

) 0 ( cos

2 1

2 1

m

q q

q q

(eq.7)

• Using eq. 5 in eq. 3, we get:

(8)

• At t=0, eq. 7 becomes:

) 0 ( cos

) 0 ( sin

) 0 ( sin

) 0 ( cos

2 1

2 1

v v

v

v v

v e

q q

q q

m

) 0 ( cos

) 0 ( sin

) 0 (

) 0 ( sin

) 0 ( cos

) 0 (

2 1

m m

q q

q q

v v

v

v v

v

e e

• By inversion of eq. 8:

(eq.8)

• For the experimental point of view (accelerators, reactors), a pure muon (or electron) state a t=0 can be prepared. For a pure nm beam, eq. 9:

) 0 ( cos

) 0 (

) 0 ( sin

) 0 (

2 1

m m

q q

v v

v v

(eq.9)

(eq.10)

(9)

The time evolution of the nm state of eq. 8:

t i t

i v e i

e v

vm  sin 2 q m (0) 1  cos 2 q m (0) 2

By definition, the

probability that the state at a given time is a nm is:

0 t 2

P

n mn m

 n

m

n

m

(eq. 12)

• Using eq. 11, the probability:

i t i t

t

e e

P

) (

) 2 (

2

4 2 4

0

2 1

2

cos 1

sin

cos sin

m

m n

n

q q

q q

n

m n

m



 

 2

) sin (

2 sin

1 2 2 1 2 t

Pn mn m q  

i.e. using trigonometry rules:

(eq.11)

(eq. 13)

(eq. 14)

(10)





n

n

E E mi

i 2

2

Finally, using eq.5:

n n

n m m q

E

t m

P m

4

) sin (

2 sin

1

2 1 2

2 2 2

With the following substitutions in eq.15:

- the neutrino path length L=ct (in Km)

- the mass difference m2 = m22 – m12

(in eV2)

- the neutrino Energy En (in GeV)

 

 

  

n n

nm m

q

E

L P m

2 2

2

2 sin 1 . 27

sin 1

To see “oscillations”

pattern: 1 .27 2

0

2 p

q

n

E

L m

(eq. 15)

(eq. 16)

(11)

7.3 How do we search

for

neutrino oscillatio

ns?

(12)

..with

atmosph eric

neutrino s

n n

nm m q

E L P m

2 2

2 2 sin 1.27 sin

1

• m2, sin22Q  from Nature;

• En = experimental parameter (energy distribution of

neutrino giving a particular

configuration of events)

• L = experimental parameter

(neutrino path length from production to interaction)

(13)

A p p e a ra n c e /D is a p p e a ra n c e

(14)

n n

nm m q

E L P m

2 2

2 2 sin 1.27 sin

1

(15)

7.4- Atmospheric neutrinos

(16)

The recipes for the evaluation of the atmospheric neutrino

flux-

e n ne

m

n m

p

m m

\

(17)

E-3 spectrum

GZK cut

1015 < E< 1018 eV galactic ?

E < 1015 eV Galactic

E  5. 1019 eV Extra-Galactic?

Unexpected?

5. 1019 < E< 3. 1020 eV

i) The primary spectrum

(18)

ii)- CR-air cross section

pp Cross section versus center of mass energy.

Average number of charged hadrons produced in pp

(andpp) collisions versus center of mass energy

It needs a model of nucleus-nucleus interactions

(19)

iii) Model of the atmosphere

ATMOSPHERIC NEUTRINO PRODUCTION:

• high precision 3D calculations,

• refined geomagnetic cut-off treatment (also geomagnetic field in atmosphere)

• elevation models of the Earth

• different atmospheric profiles

• geometry of detector effects

(20)

Output: the neutrino (n

e

,n

m

) flux

See for instance the FLUKA MC:

http://www.mi.infn.it/~bat tist/neutrino.html

(21)

iv) The Detector response

Fully

Contained

n Partially

Contained

Energy spectrum of n for each event categoryn

m

Through going m Stopping m

n

m

n

m

Energy spectrum (from Monte

Carlo) of

atmospheric neutrinos seen with different

event topologies (SuperKamiokand e)

up-stop m up-thru m

n n

nm m q

E L P m

2 2

2 2 sin 1.27 sin

1

(22)

Rough estimate: how many

‘Contained events’ in 1 kton detector

1. Flux: n ~ 1 cm-2 s-1

2. Cross section (@ 1GeV):

sn~0.5 10-38 cm2

3. Targets M= 6 1032 (nucleons/kton) 4. Time t= 3.1 107 s/y

Nint = n (cm-2 s-1) x sn (cm2)x M (nuc/kton) x t (s/y) ~ ~ 100 interactions/ (kton y)

nm

ne

(23)

7.5 10 years of Super-Kamiokande

1996.4 Start data taking

1999.6 K2K started

2001.7 data taking was stopped for detector upgrade

2001.11 Accident

partial reconstruction

2002.10 data taking was resumed

2005.10 data taking stopped for full reconstruction

2006.7 data taking was resumed

2001 Evidence of solar n oscillation (SNO+SK) 1998 Evidence of atmospheric n oscillation (SK)

2005 Confirm n oscillation by accelerator n (K2K)

SK-I

SK-II

SK-III

SK-IV 2009 data taking

(24)

Measurement of contained events and

SuperKamiokande (Japan)

1000 m Deep Underground

50.000 ton of Ultra-Pure Water

11000 +2000 PMTs

(25)

As a charged particle travels, it disrupts the local electromagnetic field (EM) in a medium.

Electrons in the atoms of the medium will be displaced and

polarized by the passing EM field of a charged particle.

Photons are emitted as an insulator's electrons restore themselves to equilibrium after the disruption has passed.

In a conductor, the EM disruption can be restored without emitting a photon.

In normal circumstances, these photons destructively interfere with each other and no radiation is detected.

However, when the disruption travels faster than light is

propagating through the medium, the photons constructively

interfere and intensify the

observed Cerenkov radiation.

Cherenkov Radiation

(26)

Cherenkov Radiation

One of the

13000 PMTs of

SK

(27)

How to tell a n

m

from a n

e

:

Pattern recognition

(28)

n

m

(29)

n

e

(30)

e or m

Fully Contained (FC)

m

No hit in Outer Detector One cluster in Outer Detector

Partially Contained (PC)

Reduction Automatic ring fitter Particle ID

Energy reconstruction Fiducial volume (>2m from wall, 22 ktons)

Evis > 30 MeV (FC), > 3000 p.e. (~350 MeV) (PC) Fully Contained

8.2 events/day

Evis<1.33 GeV : Sub-GeV Evis>1.33 GeV : Multi-GeV

Partially Contained 0.58 events/day

Contained event in

SuperKamiokande

(31)

Contained events. The

up/down

symmetry in SK and n

m

/n

e

ratio.

Up/Down asymmetry interpreted as neutrino oscillations

Expectations:

events inside the detector.

For En > a few GeV,

Upward /

downward = 1

En=0.5GeV En=3 GeV En=20 GeV

(32)

Zenith angle

distributio

SK:1289 days

n

(79.3 kty)

m /e

DATA

m /e M C = 0.638

0.017  0.050

Data

• Electron neutrinos = DATA and MC (almost) OK!

• Muon

neutrinos =

Large deficit of DATA w.r.t.

MC !

Zenith angle distributions for e-like and µ-like contained atmospheric

neutrino events in SK. The lines show the best fits with (red) and without (blue) oscillations; the best-fit is m2 = 2.0 × 10−3 eV2 and sin2 2θ = 1.00.

(33)

Zenith Angle Distributions (SK- I + SK-II)

nm–nt oscillation (best fit)

null oscillation

m-like e-like

P<400MeV/c

P>400MeV/c

P<400MeV/c

P>400MeV/c

NOTE: All topologies, last results (September 2007)

Livetime

SK-I

1489d (FCPC) 1646d (Upmu)

SK-II

804d (FCPC) 828d(Upmu)

(34)

Main features of Macro as n detector

• Large acceptance (~10000 m 2sr for an isotropic flux)

• Low downgoing m rate (~10 -6 of the surface rate )

• ~600 tons of liquid scintillator to measure T.O.F.

(time resolution ~500psec)

• ~20000 m 2 of streamer tubes (3cm cells) for tracking (angular resolution < 1° )

More details in Nucl. Inst. and Meth. A324 (1993) 337.

7.6 Upgoing muons and MACRO (Italy)

R.I.P December 2000

(35)

The Gran Sasso National Labs

http://www.lngs.infn.it/

(36)

Up stop

In down

1) 2)

4) 3)

Neutrino event topologies in MACRO

In up Up throughgoing

Absorber Streamer Scintillator

Liquid scintillator

counters, (3 planes) for the measurement of

time and dE/dx.

Streamer tubes (14 planes), for the

measurement of the track position;

• Detector mass: 5.3 kton

• Atmospheric muon neutrinos produce upward going muons

• Downward going muons

~ 106 upward going muons

• Different neutrino topologies

(37)

Energy spectra of n

m

events in MACRO

• <E>~ 50 GeV throughgoing m

• <E>~ 5 GeV, Internal Upgoing (IU) m;

• <E>~ 4 GeV , internal downgoing (ID) m and for upgoing stopping (UGS) m;

(38)

+1 m -1 m T1

T2

Streamer tube track

Neutrino induced events are upward throughgoing muons, Identified by the time-of-flight method

Atmospheric m:

downgoing m from n: upgoing

L

c T

T 1 2 1

L

c T

T1 2 1

(39)

MACRO Results: event deficit and distortion of the angular

distribution

Observed= 809 events

Expected= 1122 events (Bartol)

Observed/Expected

= 0.721±0.050(stat+sys)

±0.12(th)

- - - - No oscillations

____ Best fit m2= 2.2x10-3 eV2 sin22q=1.00

(40)

MACRO Partially contained events

consistent with up

throughgoing muon results

Obs. 262 events Exp. 375 events

Obs./Exp. = 0.70±0.19) Obs. 154 events Exp. 285 events

Obs./Exp. = 0.54±0.15

IU

ID+UGS

MC with oscillations

(41)

underground detector

Effects of n

m

oscillations on upgoing events

n Earth

m

n n

nm m q

E L P m

2 2

2 2 sin 1.27 sin

1

q

• If q is the zenith angle and D=

Earth diameter L=Dcosq

• For throughgoing neutrino-induced muons in MACRO, En = 50 GeV

(from Monte Carlo)

cosq

m mn

Pn

(42)

Oscillation Parameters

• The value of the “oscillation parameters” sin2q and

m2 correspond to the values which provide the best fit to the data

• Different experiments  different values of sin2q and m2

• The experimental data have an associated error.

All the values of (sin2q, m2) which are compatible with the experimental data are “allowed”.

• The “allowed” values span a region in the parameter space of (sin2q, m2)





  

n n

nm m q

E L P m

2 2

2 2 sin 1.27 sin

1

1.9 x 10-3 eV2 < m2 < 3.1 x 10-3 eV2 sin2 2q > 0.93 (90% CL)

(43)

“Allowed” parameters region

90% C. L. allowed regions for νm → νt oscillations of atmospheric neutrinos for Kamiokande, SuperK,

Soudan-2 and MACRO.

(44)

Why not ν

μ

ν

e

?

Apollonio et al., CHOOZ Coll., Phys.Lett.B466,415

(45)

n

m

disappearance: History

Anomaly in R=(m/e)observed/ (m/e)predicted

Kamiokande: PLB 1988, 1992

Discrepancies in various experiments

Kamiokande: Zenith-angle distribution

Kamiokande: PLB 1994

Super-Kamiokande/MACRO:

Discovery of nm oscillation in 1998

Super-Kamiokande: PRL 1998

MACRO, PRL 1998

K2K: First accelerator-based long baseline experiment:

1999 – 2004 Confirmed

atmospheric neutrino results

Final result 4.3s: PRL 2005, PRD 2006

MINOS: Precision measurement: 2005 -

First result: PRL2006

Kajita: Neutrino 98

(46)

See for review:

The “Neutrino Industry”

http://www.hep.anl.gov/ndk/hypertext/

Janet Conrad web pages:

http://www.nevis.columbia.edu/~conrad/n upage.html

Fermilab and KEK “Neutrino Summer School”

http://projects.fnal.gov/nuss/

Torino web Pages:

http://www.nu.to.infn.it/Neutrino_Lectures /

Progress in the physics of massive

neutrinos, hep-ph/0308123

(47)

Appendice:

La radiazione Cerenkov

(48)

Effetto Cerenkov

Per una trattazione classica dell’effetto Cerenkov:

Jackson : Classical Electrodynamics, cap 13 e par. 13.4 e 13.5

La radiazione Cerenkov e’ emessa ogniqualvolta una particella

carica attraversa un mezzo (dielettrico) con velocita’ c=v>c/n, dove v e’ la velocita’ della particella e n l’indice di rifrazione del mezzo.

Intuitivamente: la particella incidente polarizza il dielettrico  gli atomi diventano dei dipoli. Se >1/n  momento di dipolo elettrico

 emissione di radiazione.

<1/n 1/n

(49)

L’ angolo di emissione qc puo’ essere interpretato

qualitativamente come un’onda d’urto come succede per una barca od un aereo supersonico.

Esiste una velocita’ di soglia s = 1/n  qc ~ 0 Esiste un angolo massimo qmax= arcos(1/n)

La cos(q) =1/n e’ valida solo per un radiatore

infinito, e’ comunque una buona approssimazione

ogniqualvolta il radiatore e’ lungo L>>l essendo l la lunghezza d’onda della luce emessa

lpart=ct llight=(c/n)t

q 1 with ( ) 1

cos l

q n n

C n

qC

(50)

Numero di fotoni emessi per unita’ di percorso e intervallo unitario di

lunghezza d’onda. Osserviamo che decresce al crescere della l

. with

1

2 sin 1 1

2

2 2

2

2 2

2 2

2 2

2 2

const dxdE

N d E

hc c

dxd N d

z n

z dxd

N d

C





l n l

l

l q

p

l

p l

dN/dl

l

dN/dE

Il numero di fotoni emessi per unita’ di percorso non dipende dalla frequenza

(51)

L’ energia persa per radiazione Cerenkov cresce con

. Comunque anche con   1 e’ molto piccola.

Molto piu’ piccola di quella persa per collisione (Bethe Block), al massimo 1% .

 

 

d

n z c

dx

dE

 

2 2 12

 1

medium n qmax (=1) Nph (eV-1 cm-1) air 1.000283 1.36 0.208

isobutane 1.00127 2.89 0.941

water 1.33 41.2 160.8

quartz 1.46 46.7 196.4

(52)

1) Esiste una soglia per emissione di luce Cerenkov

2) La luce e’ emessa ad un angolo particolare

Facile utilizzare l’effetto Cerenkov per identificare le particelle.

Con 1) posso sfruttare la soglia  Cerenkov a soglia.

Con 2) misurare l’angolo  DISC, RICH etc.

La luce emessa e rivelabile e’ poca.

Consideriamo un radiatore spesso 1 cm un angolo qc = 30o ed un E = 1 eV ed una particella di carica 1. 370 sin 370 0.25 92.5

sin

2 2 2

E L

N

c z dEdx

dN

c ph

c

 

Considerando inoltre che l’efficienza quantica di un fotomoltiplicatore e’

~20%  Npe=18  fluttuazioni alla Poisson

Riferimenti

Documenti correlati

The synchronization mechanism studied in this paper is quite particular, since it implies a complete collapse of the distance between the master and the slave. The strong

Inizialmente erano stati scelti gli 82 SLL elaborati da Sforzi a specializzazione turistica (elaborati cioè in base agli addetti nel settore HoReCa); nel procedere, ci si è resi conto

For the point-like source search using the direction information of upward-going muons, we evaluate the background due to atmospheric neutrino induced muons randomly mixing for

better understanding of the core collapse mechanism from the feature of the time and energy spectra, and constraints the supernova models. • Moreover, an estimation of the

• Super-K is a large water Cherenkov detector used to study proton decay and neutrinos from different sources including the Sun, supernovae, the atmosphere and accelerators. •

Principal component analysis performed using haplogroup frequencies in the Sardinian samples of the present study compared with those of relevant populations from the literature at

These results do not correctly support decision making activities (e.g., about performance of a novel measurement procedure), since the risk of wrong decision cannot be

A key ingredient is to account for the fact that the clustering properties of the c-halos depend only on the CDM field [23, 55] (this is called the cold dark matter prescription),