• Non ci sono risultati.

Bibliografia 90

N/A
N/A
Protected

Academic year: 2021

Condividi "Bibliografia 90"

Copied!
10
0
0

Testo completo

(1)

90

(2)

91

Abdalla S., Makhoul G., Duong M., Chiu R.C., Cecere R. "Hyaluronic

acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction." Interact Cardiovasc Thorac Surg, 2013;

17(5): 767-772.

Aranaz I., Mengibar M., Harris R., Panos I., Miralles, B., Acosta N., Galed G., Heras A. "Functional characterization of chitin and chitosan." Curr Chem Biol, 2009; 3(2): 203-230.

Aranaz I., Harris R., Heras A. “Chitosan amphiphilic derivatives. Chemistry

and applications.” Curr Organic Chem, 2010; 14(3): 308-330.

Barone P.W., Strano M.S. “Single Walled Carbon Nanotubes as Reporters

for he Optical Detection of Glucose.” J Diabetes Sci Technol, 2009; 3(2):

242–252.

Berger J., Reist M., Mayer J.M., Felt O., Gurny R. “Structure and interactions

in chitosan hydrogels formed by complexation or aggregation for biomedical applications.” Eur J Pharm Biopharm, 2004; 57(1): 35-52.

Birla R.K., Borschel G.H., Dennis R.G., Braun D.L. "Myocardial engineering

in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue." Tissue Eng, 2005; 11(5-6): 803-813.

Borenstein J.T., Weinberg E.J., Orrick B.K., Sundback C., Kaazempur-Mofrad M.R., Vacanti J.P. "Microfabrication of threedimensional engineered

scaffolds." Tissue Eng, 2007; 13(8): 1837-1844.

Boucard N., Viton C., Domard A. “New aspects of the formation of physical

hydrogels of chitosan in a hydroalcoholic medium.” Biomacromolecules,

2006; (6): 3227–3237.

Boyle A. "Current status of cardiac transplantation and mechanical circulatory

support." Curr Heart Fail Rep, 2009; 6(1): 28-33.

Branco A.F., Sampaio S.F., Wieckowski M.R., Sardã, V.A., Oliveira P.J. “Mitochondrial disruption occurs downstream from β-adrenergic

(3)

92

overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblast.” Differential activation of stress and survival pathway.” Int J

Biochem Cell Biol; 2013; 45(11): 2379-2391

Braunwald E. "Heart failure: An Overview." New York : Mc Graw Hill, 1997. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. “The MIQE guidelines: minimum information for publication of

quantitative real-time PCR experiments.” Clin Chem, 2009; 55: 611–622.

Cabiati M., Raucci S., Caselli C., Guzzardi M.A., D’Amico A., Prescimone T., Giannessi D., Del Ry S. “Tissue-specific selection of stable reference genes

for real-time PCR normalization in an obese rat model ” J Molec Endocrinol,

2012; 48: 251–260.

Chen H.H., Burnett J.C. "C-type natriuretic peptide: the endothelial

component of the natriuretic peptide system." J Cardiovasc Pharmacol, 1998;

32(3): 22-28.

Chung J.C.Y., Shum-Tim D. "Neovascularization in tissue engineering." Cells, 2012;1(4): 1246-1260.

Comelli M., Domenis R., Bisetto E., Contin M., Marchin M., Ortolani F., Tomasetig L., Mavelli I. “Cardiac differentation promotes mitochondrai

development and ameliorates oxidative capacity in H9c2 cardiomyoblasts.”

Mitochondrion, 2011; 11: 315-326

Del Ry S., Cabiati M., Clerico A. “Natriuretic peptide system and the heart.” Front Horm Res, 2014; 43: 134-143.

Clerico A., Emdin M. “Diagnostic accuracy and prognostic relevance of

measurement of cardiac natriuretic peptides: a review.” Clin Chem, 2004;

50(1): 33-50

Crea F., Camici P.G., Merz C.N.B. "Coronary microvascular dysfunction: an

update." Eur Heart J, 2013; 35(17): 1101-1111.

Cui H.F., Vashist S.K., Al-Rubeaan K., Luong J.H., Sheu F.S. "Interfacing

carbon nanotubes with living mammalian cells and cytotoxicity issues." Chem

(4)

93

D’Angelo E., Peres A. “Fisiologia, molecule, cellule e sistemi” Vol II, ed. edi-ermes, 2007; 437-439.

Dahm M., Lyman W.D., Schwell A.B., Factor S.M., Frater R.W.

“Immunogenicity of glutaraldehyde-tanned bovine pericardium.” J Thorac

Cardiovas Surg, 1990; 99(6): 1082-1090.

Del Ry S., Andreassi M.G., Clerico A., Biagini A., Giannessi D. “Endothelin-1,

endothelin-1 receptors and cardiac natriuretic peptides in failing human heart.” Life Sci, 2001; 68(24): 2715-2730.

Del Ry S., Cabiati M., Vozzi F., Battolla B., Caselli C., Forini F., Segnani C., Prescimone T., Giannessi D., Matti L. "Expression of C-type natriuretic

peptide and its receptor NPR-B in cardiomyocytes." Peptides, 2011; 32(8):

1713-1718.

Del Ry S., Maltinti M., Piacenti M., Passino C., Emdin M., Giannessi D.

"Cardia production of C-type natriuretic peptide in heart failure." J Cardiovasc

Med (Hagerstown) , 2006; 7(6): 397-399.

Domb A.J., Kumar N. “Biodegradable Polymers in Clinical Use and Clinical

Development.” Wiley ed. 2011.

El-Sherbiny I.M., Yacoub M.H. "Hydrogel scaffolds for tissue engineering:

Progress and challenges." Glob Cardiol Sci Pract, 2013; 3: 316–342.

Eschenhagen T., Zimmermann W.H. "Engineering Myocardial Tissue." Circ Res, 2005; 97(12): 1220-1231.

Fakirov S., Sarac Z., Anbar T., Boz B., Bahar I., Evstatiev M., Apostolov A.A., Mark J.E., Kloczkowski A. "Mechanical properties and transition

temperatures of cross-linked oriented gelatin." Colloid and Polymer Science,

1996; 274(4): 334–341.

Finosh G.T., Jayabalan M. "Regenerative therapy and tissue engineering for

the treatment of end-stage cardiac failure." Biomatter, 2012; 2(1): 1-14.

Garibaldi S., Brunell C., Bavastrello V., Ghigliotti G., Nicolini C. "Carbon

nanotube biocompatibility with cardiac muscle cells." Nanotechnology, 2006;

(5)

94

Generali M., Dijkman P.E., Hoerstrup S.P. “Bioresorbable scaffolds for

cardiovascular tissue engineering.” EMJ Int Cardiol, 2014; 1: 91-99.

Gensini G.F., Rostagno C. “Lo scompenso cardiaco.” SEE Firenze, 1996. Han B., Hasin Y. "Cardiovascular effects of natriuretic peptides and their

interrelation with Endothelin-1." Cardiovasc Drugs Ther, 2003; 17(1): 41-52.

Harrison B.S., Atala A. "Carbon nanotube applications for tissue

engineering." Biomaterials, 2007; 28(2): 344–353.

He H., Pham-Huy L.A., Dramou P., Xiao D., Zuo P.,Pham-Huy C. "Carbon

Nanotubes: Applications in Pharmacy and Medicine." BioMed Research

International, 2013; 344–353.

Heister E., Brunner E.W., Dieckmann G.R., Jurewicz I., Dalton A.B. "Are

Carbon Nanotubes a Natural Solution? Applications in Biology and Medicine." ACS Applied Materials & Interfaces, 2013; 5(6): 1870–1891.

Ibrahim M., El-Sherbiny I.M., Yacoub M.H. “Hydrogel scaffolds for tissue

engineering: Progress and challenges.”, Glob Cardiol Sci Pract, 2013; (3):

316–342.

Iyer R.K., Chiu L.L.Y., Reis L.A., Radisic M. "Engineered cardiac tissues." Curr Opin Biotechnol, 2011; 22(5): 706-714.

Jorge-Herreroa E., Fernández P., Turnay J., Olmoc N., Caleroa P., Garcı́aa R., Freilea I., Castillo-Olivaresa J.L. “Influence of different chemical

cross-linking treatments on the properties of bovine pericardium and collagen.”

Biomaterials, 1999; 20(6): 539-545.

Karagiannis T.C., Lin A.J., Ververis K., Chang L., Tang M.M., Okabe J., El-Osta, A. “Trichostatin A accentuates doxorubicin-induced hypertrophy in

cardiac myocytes.” Aging, 2010; 2(10): 659-68

Katz AM. "Cardiomyopathy of overload. A major determinant of prognosis in

congestive heart failure." N Engl J Med., 1990, 322(2): 100-110.

Kazemirad S., Heris H.K., Mongeau L. "Viscoelasticity of hyaluronic

acid-gelatin hydrogels for vocal fold tissue engineering." J Biomed Mater Res B

(6)

95

Khor, E. “Methods for the treatment of collagenous tissues for

bioprostheses.” Biomaterials, 1997; 18(2): 95-105.

Kirk J.F., Ritter G., Finger I., Sankar D., Reddy J.D., Talton J.D., Nataraj C., Narisawa S., Millán J.L., Cobb R.R. "Mechanical and biocompatible

characterization of a cross-linked collagen-hyaluronic acid wound dressing."

Biomatter, 2013; 3(4): 10.4161/biom.25633.

Koller K.G., Lowe D.G., Bennet G.L., Minamoto N., Kangawa K., Matsuo H., Goeddel D.V. "Selective activation of the B natriuretic peptide receptor by

C-type natriuretic peptide (CNP)." Science, 1991; 252(5002): 120-123.

Lange R., Vacanti J.P. "Tissue engineering." Science, 1993; 260(5110): 920-6.

Lee F., Kurisawa M. "Formation and stability of interpenetrating polymer

network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering." Acta Biomater, 2012; 9(2): 5143-5152.

Liu X., Liu W., Yang L., Xia B., Li J., Zuo J., Li X. “Increased connexin 43

expression improbe the migratory and proliferative ability of H9c2 CELLS BY Wnt-3a overexpression”. Acta Biochim Biophys Sin, 2007; 39(6): 391-398

Lohre J.M., Baclig L., Wickham E., Guida S., Farley J., Thyagarajan K., Tu R., Quijano R.C. "Evaluation of epoxy ether fixed bovine arterial grafts for

mutagenic potential." ASAIO Journal, 1993; 39(2); 106-113.

Ma K.K., Ogawa T., de Bold A.J. "Selective upregulation of cardiac brain

natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase." J Mol Cell Cardiol, 2004; 36(4):

505-513.

Maack T., Okolicany J., Koh G.Y., Price D.A. "Functional properties of atrial

natriuretic factor recepetors." Sem Nephrolgy, 1993; 13(1): 50-60.

MacDonald R.A., Laurenzi B.F., Viswanathan G., Ajayan P.M., Stegemann J.P. "Collagen-carbon nanotube composite materials as scaffolds in tissue

(7)

96

Madani S.Y., Mandel A., Seifalian A.M. "A concise review of carbon

nanotube's toxicology." Nano Reviews, 2013; 4: doi:

10.3402/nano.v4i0.21521.

Madihally S.V., Matthew H.W.T. "Porous chitosan scaffolds for tissue

engineering." Biomaterials, 1999; 20(12): 1133–1142.

Martinelli V., Cellot G., Fabbro A., Bosi S., Mestroni L., Ballerini L. "Improving

cardiac myocytes performance by carbon nanotubes platforms." Front

Physiol., 2013; 4: doi: 10.3389/fphys.

Martinelli V., Cellot G., Toma F.M., Long C.S., Caldwell J.H., Zentilin L., Giacca M., Turco A., Prato M., Ballerini L., Mestroni L. "Carbon nanotubes

promote growth and spontaneous electrical activity in cultured cardiac myocytes." Nano Lett, 2012; 12(4): 1831–1838.

Martinelli V., Cellot G., Toma F.M., Long C.S., Caldwell J.H., Zentilin L., Giacca M., Turco A., Prato M., Ballerini L., Mestroni L. "Carbon nanotubes

instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes." ACS Nano, 2013; 7(7): 5746–5756.

Masuda S., Shimizu T., Yamato M., Okano T. "Cell sheet engineering for

heart tissue repair." Adv Drug Deliv Rev, 2008; 60(2): 277–285.

Meng J., Yang M., Jia F., Xu Z., Kong H., Xu H. “Immune responses of

BALB/c mice to subcutaneously injected multi-walled carbon nanotubes.”

Nanotoxicology, 2011; 5(4): 583-591

Mihic A., Li J., Miyagi Y., Gagliardi M., Li S.H., Zu J., Weisel R.D., Keller G., Li R.K. "The effect of cyclic stretch on maturation and 3D tissue formation of

human embryonic stem cell-derived cardiomyocytes." Biomaterials, 2014;

35(9): 2798-808.

Modesti P.A., Cecioni I., Costoli A., Poggesi L., Galanti G., Serneri G.G.

"Renal endothelin in heart failure and its relation to sodium excretion.” Am

Heart J, 2000; 150(4): 617-622.

Monaco A.M., Giugliano M. "Carbon-based smart nanomaterials in

biomedicine and neuroengineering." Journal of Nanotechnoly, 2014;

(8)

97

Mundra R.V., Wu X., Sauer J., Dordick J.S., Kane R.S. "Nanotubes in

biological applications." Current Opinion in Biotechnology, 2014; 5: 25–32.

Nakanishi M., Saito Y., Kishimoto I. "Role of natriuretic peptide receptor

guanylylcyclase-A in myocardial infarction evalueted using genetically engineered mice." Hypertension, 2005; 46(2): 441-447.

Nazario B., Hu R.M., Pedram A., Prins B., Levin E.R. "Atrial and brain

natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells." J Clin Invest, 1995;

95(3): 1151-1157.

Nishi C., Nakajima N., Ikada Y. "In vitro evaluation of cytotoxicity of diepoxy

compounds used for biomaterial modification." J Clin Invest, 1995; 95(3):

829-834.

Oliver P.M., Fox J.E. Kim R., Rockman H.A., Kim H.S., Reddick R.L., Pandeys K.N., Milgram S.L., Smithies O., Maedda N. “Hypertension, cardiac

hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A.” Proc Natl Acad Sci U S A , 1997; 94: 14730-14735.

Organization World Health. "The top ten causes of death." 2008.

Perng C.K., Wang Y.J., Tsi C.H., Ma H. “In vivo angiogenesis effect of

porous collagen scaffold with hyaluronic acid oligosaccharides.”, J Surg Res,

2011; 168(1):9-15.

Rane, K.D., Hoover, D.G. “Production of Chitosan by fungi.” Food Biotechnol, 1993; 7(1) : 11-33.

"Report Istat, malattie cardiovascolari ancora prima causa di morte in Italia." www.istat.it/it/files/2013/03/1, 2014.

Rinaudo, M. “Chitin and chitosan: properties and applications.” Progress in Polymer Scienc, 2006; 31(7) : 603-632.

Rose P.J., Mark H.F., Bikales N.M., Overberger C.G., Menges G., Kroschwitz J.I. "Encyclopedia of polymer science and engineering." 1987; 7(2).

Rubanyi G.M., Polokoff M.A. "Endothelins: molecular biology, biochemistry,

pharmacology, physiology, and pathophysiology." Pharmacol Rev, 1994;

(9)

98

Rugarli C. “Medicina interna sistematica.” Elsevier, 2010.

Ruskoaho H. “Cardiac hormones as diagnostic tools in heart failure” Endocr Rev 2003; 24(3): 341-346.

Russell F.D., Davenport A.P. "Secretory pathways in endothelin synthesis." British J Pharm, 1995; 126(2): 391–398.

Saito N., Usui Y., Aoki K., Narita N., Shimizu M., Hara K., Ogiwara N., Nakamura K., Ishigaki N., Kato H., Taruta S., Endo M. "Carbon nanotubes:

biomaterial applications." Chem Soc Rev, 2009; 38(7): 1897-903.

Schussler O., Chachques J.C., Mesana T.G., Suuronen E.J., Lecarpentier Y., Ruel M. “3-Dimensional Structures to Enhance Cell Therapy and Engineer

Contractile Tissue.” Asian Cardiovasc Thorac Ann., 2010; 18(2):188-198.

Selbert S., Franz W.M. "Myocardial tissue engineering." Ernst Schering Res Found Workshop, 2002; 35:47-66.

Selbert, S., W.M. Franz. “Myocardial tissue engineering: a review.” J Tissue Eng Regen Med., 2007; 1(5):327-42.

Shekhar S., Stokes P., Khondaker S.I. “Ultrahigh density alignment of carbon

nanotube arrays by dielectrophoresis.”. ACS Nano, 2011; 5(3):1739-1746.

Shin S.R., Jung S.M., Zalabany M., Kim K., Zorlutuna P., Kim S.B., Nikkhah

M., Khabiry M., Azize M., Kong J., Wan K.T., Palacios T., Dokmeci M.R., Bae H., Tang X.S., Khademhosseini “A Carbon-nanotube-embedded hydrogel

sheets for engineering cardiac constructs and bioactuators." ACS Nano,

2013; 7(3): 2369-2380.

Shin S.R., Jung S.M., Zalabany M., Kim K., Zorlutuna P., Kim S.B., Nikkhah M., Khabiry M., Azize M., Kong J., Wan K.T., Palacios T., Dokmeci M.R., Bae H., Tang X.S., Khademhosseini A. Shinako Masuda, Tatsuya Shimizu, Masayuki Yamato, Teruo Okano. “Cell sheet engineering for heart tissue

repair.” Adv Drug Deliv Rev, 2008; 60(2):277-85.

Sisson DD. “Neuroendocrine evaluation of cardiac disease.” Veterinary Clinics Small Animal Practice, 2004; 34: 1105-1126.

(10)

99

Sung, H.W., Chang, Y., Chiu, C.T., Chen, C.N., Liang, H.C. “Mechanical

properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.” Biomaterials, 1999; 20(19):1759-72.

Sung H.W., Huang R.N., Huang L.L.H., Tsai C.C. “In vitro evaluation of

cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation.” J Biomater Sci Polym, 1999; 10(1):63-78.

Tamura N., Ogawa Y., Yasoda A., Itoh H., Saito Y., Nakao K. “Two cardiac

natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes.” J Mol

Cell Cardiol, 1996; 28(8): 11-15.

Vanhoutte P.M. "Endothelium-derived free radicals: for worse and for better." J Clin Invest, 2001; 107(1): 23–25.

Veetil J.V., Ye K. “Tailored Carbon Nanotubes for Tissue Engineering

Applications.” Biotechnol Prog, 2009; 25(3):709-721.

Wang B., Borazjani A., Tahai M., Curry A.L.D.J., Simionescu D.T., Guan J., To F., Elder S.H., Liao J. "Fabrication of cardiac patch with decellularized

porcine myocardial scaffold and bone marrow." J Biomed Mater Res A, 2010;

94(4): 1100-1110.

Wu X., Black L., Santacana-Laffitte G., Patrick C.W. Jr. "Preparation and

assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering." J Biomed Mater Res A., 2007; 81(1): 59-65.

Yao C.H., Sun J.S., Lin F.H., Liao C.J., Huang C.W. "Biological effects and

cytotoxicity of tricalcium phosphate and formaldehyde crosslinked gelatin composite." Materials Chemistry and Physics, 1996; 45(1): 6–14.

Ye K.Y. "Strategies for tissue engineering cardiac constructs to affect

functional repair following myocardial infarction." J Cardiovasc Transl Res,

2011; 4(5):575-91.

Zhenqing. L., Jianjun G. “Hydrogels for Cardiac Tissue Engineering.” Polymers, 2011; 3(2): 740-761.

Zimmermann W.H., Melnychenkoa I., Eschenhagen T. "Engineered heart

tissue for regeneration of diseased hearts." Biomaterials , 2004; 25(9):

Riferimenti

Documenti correlati

With the only exception of Italy (-0.3% mom), in August industrial production grew in all major Eurozone economies after a negative start for the third quarter: Germany recorded

In the 18th century, Swedish bands of Gypsies often included members born in Finland as well as in other nearby regions.26 Separation of Finland and Sweden from 1808 onwards

To address this issue, we propose an approach to teaching undergraduate statistics that makes use of the psychometric Item Response Theory based on latent class categorization

Rogers and Kesner 18 have found that rats with selective lesions of the right posterior parietal cortex were impaired in the acquisition of the egocentric

These solutions, as such or purified on ZipTip C18 cartridges, were analysed through MALDI-TOF and results compared with those obtained for the same substances,in the

Works made available under a Creative Commons license can be used according to the terms and conditions of said license.. Use of all other works requires consent of the right

Pooled Analysis of the Prognostic and Predictive Value of KRAS Mutation Status and Mutation Subtype in Patients with Non-Small Cell Lung Cancer Treated with Epidermal Growth

Nell’appassionante descrizione delle risorse messe in atto da Rainsford per sfuggire alla caccia, ritorna più e più volte l’impiego di rami strappati dagli alberi; proprio come in