• Non ci sono risultati.

LetN be any natural number that is not a multiple of 10

N/A
N/A
Protected

Academic year: 2021

Condividi "LetN be any natural number that is not a multiple of 10"

Copied!
1
0
0

Testo completo

(1)

Problem 12034

(American Mathematical Monthly, Vol.125, April 2018) Proposed by G. Galperin and Y. J. Ionin (USA).

LetN be any natural number that is not a multiple of 10. Prove that there is a multiple of N each of whose digits in base10 is 1, 2, 3, 4, or 5.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We first show three claims.

i) 2d has a multiple m2(d) of d digits containing only digits 1 or 2.

Let m2(1) = 2 and

m2(d + 1) =

(2 · 10d+ m2(d) if m2(d)/2d≡ 0 (mod 2), 1 · 10d+ m2(d) if m2(d)/2d≡ 1 (mod 2).

Hence if m2(d)/2d≡ r (mod 2) then

m2(d + 1) = (2 − r)10d+ m2(d) = (2 − r)10d+ (2k + r)2d = 2d+1



(5d+ k) −(5d− 1)

2 r



and, since 2 divides 5d− 1, it follows that 2d+1 divides m2(d + 1).

ii) 5d has a multiple m5(d) of d digits containing only digits 1, 2, 3, 4, or 5.

Let m5(1) = 5 and

m5(d + 1) =













5 · 10d+ m5(d) if 3dm5(d)/5d≡ 0 (mod 5), 4 · 10d+ m5(d) if 3dm5(d)/5d≡ 1 (mod 5), 3 · 10d+ m5(d) if 3dm5(d)/5d≡ 2 (mod 5), 2 · 10d+ m5(d) if 3dm5(d)/5d≡ 3 (mod 5), 1 · 10d+ m5(d) if 3dm5(d)/5d≡ 4 (mod 5).

Hence if 3dm5(d)/5d≡ r (mod 5) then

3dm5(d + 1) = 3d(5 − r)10d+ 3dm5(d) = (5 − r)30d+ (5k + r)5d= 5d+1



(6d+ k) −(6d− 1)

5 r



and, since 5 divides 6d− 1, it follows that 5d+1 divides m5(d + 1).

iii) Let a be a positive integer such that gcd(a, 10) = 1. Then for any d ≥ 1 there is a positive integer n such that

Rn(d) :=

n−1

X

k=0

10kd=

n digits 1

z }| {

1 00 . . . 01

| {z }

d

. . . 00 . . . 01

| {z }

d

00 . . . 01

| {z }

d

is a multiple a.

Since the sequence {Rn(d)}n is infinite, there are two distinct positive integers n1< n2 such that Rn2(d) ≡ Rn1(d) (mod a)

which implies that a divides

Rn2(d) − Rn1(d) = 10n1dRn2n1(d).

Since gcd(a, 10) = 1 it follows that a divides Rn2n1(d).

Finally, let N be a positive integer which is not a multiple of 10. Then N can be written as 2d· a or 5d· a with d ≥ 0 and gcd(a, 10) = 1. If d = 0 then, by iii), Rn(1) is a multiple of N which contains only the digit 1. If d ≥ 1 and N = 2d· a then, by i) and ii), Rn(d)m2(d) is a multiple of N which contains only the digits 1 or 2. If d ≥ 1 and N = 5d· a then, by i) and iii), Rn(d)m5(d) is a multiple

of N which contains only the digits 1, 2, 3, 4, or 5. 

Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,