• Non ci sono risultati.

Nonabelian Gauge Theories

N/A
N/A
Protected

Academic year: 2021

Condividi "Nonabelian Gauge Theories"

Copied!
51
0
0

Testo completo

(1)Tokyo, 16 March 2004. Electromagnetic Duality and Dynamics of ( Supersymmetric ) Gauge Theories. K. Konishi (Univ. Pisa) 1.

(2) M-Theory S-D ua T-d lity ual ity nes. AD. S-. CF. T. Bra. 4D Field-Theory EM-Duality Di. CFT. Statistical Mechanics. Maxwell Equations ra. c. High T-Low T Duality Kink- Spin. Nonabelian Gauge Theories. QCD, Electroweak Theory Integrable systems. Supersymmetry. Exact SW Solution / Quantum Monopoles. Confinement. 2.

(3) EM Duality in 4D Gauge Theories. 2.

(4) Electro-Magnetic Duality ∇ · (E + i B) = 0;. ∇ × (E + i B) = i. ∂ (E + i B). ∂t. • Invariant under (E + i B) → ei φ (E + i B). (1). • Include E → B, B → −E ; • EM duality broken by charges ∇ · E = g δ 3(r);. ∇ · B = 0;. g + i gm → ei φ (g + i gm) • Magnetic monopoles possible if (Dirac, 1931) n g gm = , n = 0, ±1, ±2, . . . 2. (cfr. Eq.(2)). • Origin of the electric charge quantization ? • Dyons (gm 1, ge 1) , (gm 2, ge 2) are also possible if ge 1 gm 2 − ge 2 gm 1 = 3. n . 2. (2). (3).

(5) Nonabelian Gauge Symmetry • Invariance under ψ(x) → ei α(x) ψ(x),. ei α(x) ∈ U (1). leads to Electrodynamics (Gauge Principle). ∂µ ⇒ Dµ = ∂µ − i e Aµ(x),. 1 Aµ → Aµ + ∂µα e. • Invariance under ψi(x) → [ ei α. a (x)T a. ]ij ψj (x),. ei α. a (x)T a. =U ∈G. G = SU (2), SU (3), SO(10) etc., lead to Yang-Mills theories (Yang, Mills 1954) 1 2 ¯ L = − Fµν + ψ i γµDµ ψ 4. ∂µ ⇒ Dµ = ∂µ −i g Aaµ(x) ta,. 1 Aµ → U (Aµ + ∂µ)U † g. • G = SU (3), ψi = quarks: Quantum Chromodynamics (Theory of strong interactions): Asymptotic freedom, Confinement, Dynamical Symmetry Breaking 4.

(6) Spontaneously Broken Symmetries • Sp. Broken global symmetry ⇒ Nambu-Goldstone particles (pions ) • SSB of local gauge symmetry ⇒ Higgs mechanism L = |Dµφ|2 + . . . ⇒ g 2|φ|2 A2µ + . . . ,. MA = gφ. (4). • ⇒ Electroweak theory of Glashow-Weinberg-Salam • Standard Model of fundamental interactions (1974) SU (3)QCD × (SU (2)L × U (1))GW S • Spectrum of the theory ∼ elementary quanta and composite hadrons (γ, W ±, Z, leptons, Higgs, mesons and baryons ) • LHC (≥ 2007): Higgs, Extra Dimensions, Grand Unification, etc. • In more general Spont. Broken Gauge Theories (’t Hooft-Polyakov 1974) Spectrum of the theory ∼ elementary quanta and soliton magnetic monopoles. 5.

(7) Regular Monopoles in Nonabelian Gauge Theories Giorgi-Glashow model. φ=0. SU (2) −→ U (1)    1 1 H = d3x (Fija )2 + (Diφa)2 + V (φ) 4 2 has finite energy soliton solutions (’t Hooft-Polyakov): r→∞. Dφ −→ 0,. ⇒. φ ∼ U · φ · U. −1. ;. • Mass and a quantized magnetic charge φ M≥ = gm φ, g. Aai. ∼ (∂i n × n) ,. 1 gm = , g. a. ra n (r) = r a. ⇔ (4). (5). • Bogomolnyi-Prasad-Sommerfield (BPS) limit: Fija − &ijk Dk φa = 0, • For (BPS) dyons.  2 = v |g + i g | M (g, gm) = v g 2 + gm m. ( cfr. Eq.(2), Eq.(4) ) Symmetric for elementary quanta and solitons! 6. (6).

(8) Soliton. Elementary particles. They are actually not so dissimilar! • Symmetry [ solitons ⇔ elementary excitations ] in 4D particularly elegant in theories with Supersymmetry 7.

(9) Topology (Mapping: Space → G) • Charged particle ψ(x) in a monopole field   Ai dxi → exp ige dS · H = exp 4πige gm exp ige S2. ∂Ω. 2 ge gm = n,. n ∈ Z,. (H = ∇. gm ). r. Π1(U (1)) = Z. • U (1) in a nonabelian theory G (Wu, Yang): monopole ∼ Π1(G) = ∅. • ’t Hooft-Polyakov monopoles: Π2(SU (2)/U (1)) = Π1(U (1)) = Z; φ=0. • G −→ H : similar → monopoles with nonabelian charges if Π2(G/H) = ∅. 8.

(10) Topology and Confinement: SU (N ) YM. Q. Q ZN. Confinement. M. ZN. SU(N)/ZN) ~ ZN. 9.

(11) Phases of SU (N ) YM (M ). (E). • (ZN , ZN ) classification (’t Hooft): If field with x = (a, b) condense, particles X = (A, B) with x, X ≡ a B − b A = 0 (mod N ) are confined. (e.g. φ(0,1) =  0 → Higgs phase.)  0 → Confinement: What is χ ? • If χ(a,0) = QCD as Dual Superconductor (’t Hooft) (1981) •  ∃ Elementary/soliton monopoles • Monopoles as topological singularities (lines in 4D) of Abelian gauge fixing, SU (3) → U (1)2: Gauge dependence? • Dynamical SU (3) → U (1)2 Breaking?  • In Nature and in QCD, Meson ∼ N i=1 | qi q¯i : no dynamical abelianization; • Dynamics hard to analyse 10.

(12) Supersymmetry. 11.

(13) Supersymmetry Symmetry under ¯ Q,Q. |Boson ⇐⇒ |F ermion ¯ α˙ } = 2E δαα˙ {Qα , Q • H ≥ 0 ⇒ Solution to Λcosm  0 ? • Solution of the Naturalness problem ( MMW. P lanck. ∼ 10−16). • No Experimental Evidence Yet (MSSM → LHC (≥ 2007) ? ) • Extra dimensions ? • Solvable Theories of Strong Interactions (cfr. Ising model) ⇒ Mechanism of Confinement and Dynamical Symmetry Breaking • “A truely beautiful idea never really dies... ” (Nambu) • Many exact nonperturbative results (1985-1994). 12.

(14) Complex Structure of Susy 4D Gauge Theories • Chiral superfields ¯ = φ(y) + Φ(x, θ, θ). √. 2 θ ψ(x) + θθF (y),. y = x + iθσ θ¯. • Verctor superfields V † = V, 1 ¯ 2 −V µ Wα = − D e Dα eV = −iλ + (σ µ σ ¯ ν )βα Fµν θβ + . . . 4 2  • Supersymmetric Lagrangian ( dθ1 θ1 = 1, etc)     1 4 † V 2 1 α Im τcl d θ Φ e Φ + d θ Wα W + d2 θ W (Φ) L= 8π 2 • W (Φ) = superpotential;. τcl =. θ 2π. +. 4πi g2. • Potential (F term and D term). 2. ∂W 2 1 . ∗ a. φ t φ. Vsc =. ∂φ + 2. mat a mat. Vacuum Degeneracy (Space of Vacua) • Non-renormalization Theorem (perturbative) (cfr. Anomaly) • Q: Superpotential Dynamically Generated ? 13.

(15) Phases of SQCD; SCFT and Seiberg’s Duality ˜ i = (˜ W = (Aµ, λ), Qi = (qi, ψq i), Q qi, ψq˜ i) Nf. Deg.Freed.. Eff. Gauge Group. Phase. Symmetry. 0 (SYM). -. -. Confinement. -. 1 ≤ Nf < Nc. -. -. no vacua. -. Nc. ˜ M, B, B ˜ M, B, B. -. Confinement. U (Nf ). -. Confinement. Unbroken. q, q˜, M. ˜c ) SU (N ˜c ) or SU (Nc ) SU (N. Nc + 1 Nc + 1 < Nf < 3Nc 2. 3Nc 2. Nf = 3Nc. ˜ q, q˜, M or Q, Q ˜ Q, Q. Nf > 3Nc. ˜ Q, Q. < Nf < 3Nc. Free-magnetic Unbroken SCFT. Unbroken. SU (Nc ). SCFT (finite). Unbroken. SU (Nc ). Free Electric. Unbroken. ˜ c ≡ Nf − N c N. g* g*D. 14.

(16) Seiberg-Witten Solution (1994) of N = 2 Theories SU(2). u. Massless (1,1) dyon. u. Massless (1,0) monopole. u. = -. u = < Tr. 2>. =. Semi-classical. u. • W = (Aµ, λ), Φ = (φ, ψ): vacua at Φ = Lef f. a. 0. =.

(17). ⇒ −a    2 (A) F (A) ∂F 1 ∂ p p = Im d4θ A¯ Wα W α + d2θ 2 ∂A 2 ∂A 0. • Shape parameter of auxiliary curve ∼ τef f = 15. dAD dA. =. ∂ 2 Fp (A) ∂A2.

(18) Breakthrough: • Exact mass formula (BPS) ( N = 2 Susy algebra ) : √ cf r. (6) Mnm,ne = 2 | nmAD + neA | ˜; • At the singularities u = ±Λ2, massless monopoles M, M • Theory invariant under SL(2, Z) ( ad − bc = 1 ): ( ⊃ EM Duality ).

(19) δL

(20)

(21).

(22)

(23) δL

(24). a b a b AD AD + + δFµν δFµν → → , + + c d A c d A Fµν Fµν • Dirac’s condition (3) ⇒ τD · τ = −1, where τ =. θ 2π. + 4πi g2. • Complete nonperturbative (instanton) effects encoded in the curve  dx dA D y 2 = (x − u)(x + Λ2)(x − Λ2), = , etc. du y α • Mass term (µ) for Φ induces M  =. . µΛ. Confinement of “electric” charges (dual ANO Vortex) 16.

(25) Seiberg-Witten Curves of SU (N ), U Sp(2N ), SO(N ) • SU (N ) with Nf Quarks Nf N. y2 = (x − φi)2 − Λ2N −Nf (x + ma); a=1. i=1. • SO(N ) with Nf Quarks in Vector Reprentation. Nf. (x − φ2i )2 − 4Λ2(N −2−Nf )x2+& (x − m2a),. [N/2]. y2 = x. a=1. i=1. where & = 1 if N is even; & = 0 if N is odd.. Genus R(= Rank of Gauge Group) Hypertorus. • “After Seiberg-Witten, everybody is more intelligent than used to be ....” 17.

(26) Vacua of N = 2 Theories SU(n) Theory with nf Quarks. USp(2n) Theory with nf Quarks Higgs Branches. (Non-baryonic) Higgs Branches. Special Higgs Branch. Baryonic Higgs Branch <Q> <Q>. r = nf /2. -- -. SCFT SCFT. r=1 r=0. Non Abelian monopoles. Dual Quarks. Non Abelian monopoles. Dual Quarks. Abelian monopoles. Coulomb Branch. Coulomb Branch N=1 Confining vacua (with N=1 vacua (with. perturbation). perturbation) in free magnetic phase. • Gef f ∼ SU (r) × U (1)nc−r−1; Confining for r ≤. nf 2 ;. SCFT at r =. nf 2. • U Sp(2nc): All confining vacua ( with µ Φ2 ) are SCFT, with global SO(2 nf ) → U (nf ) Symmetry Breaking (cfr ψ¯ ψ(QCD) = 0) 18.

(27) Phases of Softly Broken N = 2 Gauge Theories ˜ i = (˜ W = (Aµ, λ), Φ = (φ, ψ), Qi = (qi, ψq i), Q qi, ψq˜ i) label (r). Deg.Freed.. Eff. Gauge Group. Phase. Global Symmetry. 0 (NB). monopoles. U (1)nc −1. Confinement. U (nf ). 1 (NB). monopoles. U (1)nc −1. Confinement. U (nf − 1) × U (1). SU (r) × U (1)nc −r. Confinement. U (nf − r) × U (r). n −1 2, .., [ f2 ]. (NB) NA monopoles. nf /2 (NB). rel. nonloc.. -. Confinement. U (nf /2) × U (nf /2). BR. NA monopoles. SU (˜ nc ) × U (1)nc −˜nc. Free Magnetic. U (nf ). Table 1:. 1st Group. Phases of SU (nc ) gauge theory with nf flavors. n ˜ c ≡ nf − nc .. Deg.Freed.. Eff. Gauge Group. Phase. Global Symmetry. rel. nonloc.. -. Confinement. U (nf ). 2nd Group dual quarks U Sp(2˜ nc ) × U (1)nc −˜nc Free Magnetic Table 2:. SO(2nf ). Phases of U Sp(2nc ) gauge theory with nf flavors with mi → 0. n ˜ c ≡ nf − nc − 2.. 19.

(28) Confining Vacua in Softly-Broken N = 2 Theories • Abelian dual superconductor (’t Hooft, Mandelstam), always accompanied by Dynamical abelianization SU (N ) → U (1)N −1 ( enrichment of the meson spectrum ); • Nonabelian dual superconductor (r - vacua with Gef f = SU (r)×U (1)N −r ). In particular, “dual quarks” = nonabelian monopoles (cfr. Seiberg’s dual quarks) • Nonabelian dual superconductor with relatively nonlocal dyons. The theory is near a strongly-coupled superconformal point (SCFT). Nonlocal theory: difficult to analyse • Both at generic r - vacua and at the SCFT vacua, Miα  = δαi v = 0,. (α = 1, 2, . . . , r;. (“Color-Flavor-Locking” phase ). 20. i = 1, 2, . . . , Nf ).

(29) “Almost-Superconformal” Confining Vacua Auzzi, Grena, Konishi ’02. An example: “r = 2” Vacua of N = 2, SU (3) theory with Nf = 4 • Gef f = SU (2) × U (1) • Low energy effective deg. freedom = 4 monopole doublets, 1 dyon doublet, 1 electric doublet • Nonlocal cancellation of beta function (τ ∗ =  0 • µ = 0 → M1 M4 = Matrix. gm1, gm2; ge1, ge2. M1, M4 (±1, 1, 0, 0)4 A3 , A6. (±2, −2, ±1, 0). M3, M6 (0, 2, ±1, 0) Table 3:. 21. −1+i 2 )..

(30) Duality and Dynamics Instantons g( ). ~ bD log Asymptotic Freedom Quark loops. SCFT ~ gD(. 1 b log. 1 bD log. Monopole loops (IR-freedom). • cfr. Old puzzle ge(µ) · gm(µ) = n2 ,. ∀µ. • EM duality two different languages to describe the same theory in appropriate regions, rather than being a symmetry (cfr. N = 4 ) • Limiting case, SCFT. Hardest but might be most relevant for QCD 22.

(31) Non-Abelian Superconductor. QCD Vacuum. =. Non-Abelian Dual Superconductor. Definition • Both condensing entity ( e.g. monopoles∗ ) and confined entity ( e.g. quarks∗ ) carry non-Abelian gauge charges; • Confining ( e.g. electric∗ ) vortex also carries a non-Abelian flux •. ∗. Refer to dual superconductors; in the non-Abelian generalization of the standard superconductors in Nature, monopoles ⇔ quarks,. electric ⇔ magnetic. 23.

(32) Quantum Nonabelian Monopoles. 24.

(33) Nonabelian Monopoles Basic results. Goddard-Nuyts-Olive-E.Weinberg φ=0. G −→ H φ ∼ U · φ · U −1 ∼ Π2(G/H) = Π1(H); rj Aai ∼ U · ∂iU † → &aij 3 βk Tk , Ti ∈ Cartan S.A. of G r Topological quantization =⇒ 2 α · β ⊂ Z (α = root vectors of G) r→∞. Dφ −→ 0,. ⇒. (cfr. Eq.(3)) ˜ (= dual of H). βi = weight vectors of H Dual Group: Def. α ˜ = α/α · α SU (N )/ZN ⇔ SU (N ) SO(2N ) ⇔ SO(2N ) SO(2N + 1) ⇔ U Sp(2N ). ˜ • Monopoles “live” in H 25. (7).

(34) Simple Example:  SU (2) × U (1) SU (3)−→ , Z2  0 1 1 S = 0 2 1. 0 0 0.  1 0; 0. .  0 1 2 S = 0 2 i. − 12 v.  φ(r) =   0 0. v 0. 0.  φ =  0 v. φ. 0 0 0.  −i 0 ; 0. .  0  0 0 −2v.  1 1 3 S = 0 2 0. 0 0 0.  0 0  −1.  0. 0.  ˆ v 0   + 3 v S · rˆφ(r), 0 − 12 v. @ A(r) = Sˆ ∧ rˆA(r), φ(r) and A(r) are BPS- ’t Hooft’s fnc with φ(∞) = 1, φ(0) = 0, A(∞) = −1/r. ⇒ two degenerate SU (3) solutions (1) )=Z Topology: Π1( SU (2)×U Z2. 26. (8).

(35) Quantum Numbers of NA Monopoles G. H. Dual Group. Irrep. U (1). SU (N + 1). SU (N ) × U (1)/ZN. SU (N ) × U (1). N. 1/N. U Sp(2N + 2). U Sp(2N ) × U (1). SO(2N + 1) × U (1). 2N + 1. 1. U Sp(2N ) × U (1). 2N. 1. SO(2N + 3) SO(2N + 1) × U (1) SO(2N + 2). SO(2N ) × U (1). SO(2N ) × U (1). 2N. 1. U Sp(2N ). SU (N ) × U (1)/ZN. SU (N ) × U (1). N. 1/N. SO(2N ). SU (N ) × U (1)/ZN. SU (N ) × U (1). N (N − 1)/2 2/N. SO(2N + 1). SU (N ) × U (1)/ZN. SU (N ) × U (1). N (N + 1)/2 2/N. Table 4:. 27.

(36) Do Nonabelian Monopoles Really Exist? • No “Colored dyons” exist. (e.g. SUGU T (5) → SUcolor (3) × SU (2) × U (1)). ˜ group • Monopoles ∼ multiplets of the dual H ˜ • The no-go theorem → Ggauge = H ⊗ H • NA monopoles never really semi-classical, even if φ ' ΛH : ˜ - ONLY if H unbroken ⇒ nonabelian monopoles in irreps of H. • They appear in the r vacua of N = 2 SQCD with Gef f = SU (r)×U (1)nc−r+1; • The r-vacua only for r < (dual). b0. nf 2. ⇐ Sign-flip of the beta function:. ∝ −2 r + nf > 0,. b0 ∝ −2 nc + nf < 0.. • When sign flip not possible (e.g., pure N = 2 YM ) ⇒ Dynamical Abelianization ! • Moral: Quantum mechanical NA monopoles require massless fermions • Existence proof: NONABELIAN VORTEX. 28.

(37) Quantum Nonabelian Vortices. 29.

(38) Vortices in Gauge Theories Laudau-Ginzburg ( U (1) Higgs ) Model    1 1 H = d3x (Fij )2 + |(∂i − i e Ai) φ|2 + V (φ) 4 2. A. B. B~0 ei. 30. |v|.

(39)

(40) Vortices in Nonabelian Theories φ=0. H −→ C i Ai ∼ U (ϕ)∂iU †(ϕ); g Quantization. =⇒. Vortex ∼ Π1(H/C). φA ∼. (0) U φA U †,. U (ϕ) = exp i. r. βj Tj ϕ. j. α · β ⊂ Z: ˜ (= dual of H). βi = weight vectors of H. • For H = U (1) (Abrikosov-Nielsen-Olesen vortices) Π1(U (1)) = Z; • ZN vortices: SU (N )/ZN ⇒ ∅ ( Π1(SU (N )/ZN ) = ZN ) Non BPS : difficult to analyse. Tension ratios. Tk ∝ sin πNk. k quarks. ?. TC + Tm < TC+m ?. Tk k antiquarks. 31.

(41) Non-Abelian Vortices (’03) Auzzi, Bolognesi, Evslin, Konishi, Yung;. φ=0. φ* =0. G −→ H −→ ∅,. Hanany, Tong. φ ' φ*,. • An exact global symmetry HC+F ⊂ H ⊗ GF (not spontaneously broken), but broken by the vortex to G0 ⇒ Vortex zero modes (moduli) ∼ HC+F /G0 • SU (N + 1) →. SU (N )×U (1) ZN. → ∅ with 2N + 2 > Nf ≥ 2N. ⇒ Vortex with 2(N − 1) - parameter family of zeromodes SU (N )F +C ∼ CPN −1. SU (N − 1) × U (1) • Monopoles of G/H are confined by magnetic vortices of H → ∅; • Monopoles and vortices are “incompatible” (as static configurations); • Q-M’ly, NA vortices also requires massless quarks! • Proof of nonabelian monopoles 32.

(42) Flux matching Plane Vortex. Sphere (rv 2 <<1). B. Monopole. Figure 1:. 33.

(43) New Development in Susy Gauge Theories. 34.

(44) New Results in N = 1/N = 2 Susy Gauge Theories ˜ i = (˜ W = (Aµ, λ), Φ = (φ, ψ), Qi = (qi, ψq i), Q qi, ψq˜ i)  gk k+1 • U (N ) theory with superpotential W (Φ) = k+1 Tr Φ U (N ) → U (N1) × . . . U (Nn) →. Ui(1). i. where diag Φ = (a1, a1, . . . , a1, a2, . . . , a2, a3, . . .) classically (W *(ai) = 0.) • 4D Functional-integral effectively replaced by matrix-integrals (DijkgraafVafa ’02). . Nˆ d M exp − Tr W (M ) gm ˆ2 N. • Field-theoretic rederivation/explanation by Cachazo-Douglas-SeibergWitten (’02) by using: Symmetry, Holomorphy and Generalized Konishi Anomaly; • Elegant determination of all chiral ring operator VEV TrΦn,. TrWα Φn, 35. TrW α Wα Φn..

(45) Key Formulae 1 T (z) = Tr , z−Φ. Wα wα (z) = Tr , z−Φ. Wα W α R(z) = Tr ; z−Φ. ˜ M (z) = Q. 1 Q. z−Φ. • “Loop equation” from Generalized Konishi Anomaly (W *(Φ) − W *(z))Wα W α f (z) = Tr ; z−Φ  * 2 R(z) = W (z) − W *(z)2 + f (z). 1 R(z) = W (z) R(z) + f (z), 4 2. *. • Effective superpotential 1 Si = (Wα W α )i = 2. . 1 dz R(z) = 2 Ci.  . W *(z)2 + f (z). Ci. • Matrix model curve y 2 = W *(z)2 + f (z) • Solve for M (z) and T (z) defined on a double sheeted Riemann surface. 36.

(46) Phases and Multiplication Maps (Cachazo-Seiberg-Witten (’03)) • Precise relation between N = 1 superpotential W(Φ) and singularities of N = 2 curve (E). • Confinement index = the smallest possible ZN for which Wilson loop displays no area law e.g., SU (N ) YM: r = N completely confining; r = 1 totally Higgs • Multiplication Map U (N ) and U (tN ) theories with the same W(Φ) Tr. 1 1  = t Tr  x−Φ x − Φ0. • All confining vacua with r = t in the U (tN ) theory, arise from the Coulomb vacua of U (N ) theory • Confinement Index r gets simply multiplied by t. • New types of duality 37.

(47) Summary. 38.

(48) Lessons from Susy World • Abelian superconductor always accompanied by dynamical abelianization; • Confining vacua typically nonabelian superconductor (condensation of non-abelian monopoles ) • Also, Confining vacua but with mutually nonlocal monopoles and dyons • Quantum mechanical nonabelian monopoles and nonabelian vortices exist - both require massless fermions in the underlying theory; • Many exact results and relations among vacua in different theories.. Electromagnetic Duality • Powerful method of solution, helping understanding physics, rather than being an exact symmetry. 39.

(49) QCD • No dynamical abelianization • QCD with nf flavor (˜ nc = 2, 3, nf = 2, 3) b0 = 11 nc − 2 nf. ⇒. ˜b0 = 11 n ˜ c − nf. No sign flip (no weakly-coupled nonabelian monopoles) • Strongly-interacting nonabelian superconductor? • Hint from r-vacua and from the almost SCF vacua MiL,α  = δαi vR = 0,. MαR,i = δiα vL = 0,. (α = 1, 2, . . . n ˜ c; i = 1, 2, . . . nf ). • A better picture? MiL,α MαR,j  = const. δji = 0; for n ˜ c = 2, nf = 2 GF = SUL(2) × SUR (2) ⇒ SUV (2) 40.

(50) Symmetry, Quantization, Phase Factor “Melodies of Theoretical Physics of the 20th Century”. C.N. Yang (TH2002). Theoretical Physics of the 21st Century:. What new melody ?. 1.

(51) Nonabelian Vortices v. 1 SU (N + 1) −→. Auzzi-Boplognesi-Evslin-Konishi-Yung, Hanany-Tong ’03. SU (N ) × U (1) v2 −→ ∅, ZN. v1 ' v2 ,. (9). • HE theory has Monopoles; LE (monopoles heavy) has Vortices e.g. SU (3), N  m 1  Φ = −√  0 2 0. = 2 with 4 ≤ nf ≤ 5 with bare mass m ( adj mass µ Φ2): )     0 0  √ kA ¯˜kA >= ξ 1 0 , < q ξ = >=< q µm , m m 0   2 0 1 0 −2m. Set Φ = Φ; q = q˜†; and q → 12 q:    2 2 .       1 1 g g 2 2 2 2 2 a 8 S = d4x , Fµν + 2 Fµν + ∇µq A + 2 q¯Aτ aq A + 1 q¯Aq A − 2ξ 2 4g2 4g1 8 24  3 

(52) 2  1 (a) g2 qAτ aq A &ij T = d2x Fij ± (¯ 2g2 4 a=1 2 .  1 (8) g1  A 2 1. ξ A A 2 + Fij ± √ |q | − 2ξ &ij + ∇i q ± i&ij ∇j q ± √ F˜ (8)) 2g1 2 4 3 2 3 42.

(53) Non-Abelian Bogomolny equations 1 (a) g2 Fij ± (¯ qAτ aq A)&ij = 0, 2g2 4. (a = 1, 2, 3);.  1 (8) g1  Fij ± √ |q A|2 − 2ξ &ij = 0, 2g1 4 3. ∇i q A + iε&ij ∇j q A = 0,. A = 1, 2.. Abelian (particular) solutions of SU (3) → U (1) × U (1) by e.g. setting A1µ = A2µ = 0, and with squark fields of the 2 × 2 color-flavor diag. form: kA q kA(x) = q¯˜ (x) = 0, for k = A = 1, 2.   inϕ 0 e φ1(r) , q kA(x) = 0 ei k ϕφ2(r) √ xj xj 3 8 Ai (x) = −ε&ij 2 ((n − k) − f3(r)) , Ai (x) = − 3 ε&ij 2 ((n + k) − f8(r)) r r where. d 1 d 1 r φ2(r) − (f8(r) − f3(r)) φ2(r) = 0, φ1(r) − (f8(r) + f3(r)) φ1(r) = 0, dr 2 dr 2   1 d g12  1 d g22  2 2 − − f8(r)+ φ1(r) + φ2(r) − 2ξ = 0, f3(r)+ φ1(r)2 − φ2(r)2 = 0. r dr 6 r dr 2 r. 43.

(54) with boundary conds for the gauge fields: f3(0) = εn,k (n − k) ,. f8(0) = εn,k (n + k) ,. f3(∞) = 0,. f8(∞) = 0. and the requirement that the squark fields be everywhere regular. Also   φ1(∞) = ξ, φ2(∞) = ξ 1 0.8 0.6 0.4 0.2. 2. 4. 6. 8. 10. Figure 2: Vortex profile functions φ1 (r) and φ2 (r) of the (1, 0)-string. Note φ1 (0) = 0.. 44.

(55) 1 0.8 0.6 0.4 0.2. 2. 4. 6. 8. 10. Figure 3: The profile functions f3 (r) and f8 (r) for the (1, 0)-string.. • Vortex flux (SU N ))  @ = ∇ ∧ A, @ B. Fv =. R2. dS ·. Tr φ B = 2π · √1 (Tr φφ)1/2 2. . 2(N + 1) . N. (10). • Exact Symmetry The SU (3) → SU (2) × U (1) → ∅ theory has unbroken global symmetry, SU (2)C+F . SU (2)C+F broken (to a U (1)) by a vortex configuration ⇒ zeromodes: continuous family of vortex solutions (moduli) of SU (2)/U (1) = S 2 = CP1 45.

(56) Remarks v. 1 SU (N + 1) −→. SU (N ) × U (1) v2 −→ 0, ZN. v1 ' v2 ,. (11). ˜ fluxes match exactly . • Monopole and Vortex H • Monopoles (HE theory ) and vortices (LE theory) are solutions of different effective Lagrangians, valid at different mass scales and with different effec. deg. freedom. • Actually they are incompatible - as static configurations: SU (N +1) HE theory (v2 = 0): monopoles ∼ Π2( SU (N )×U (1)/Z ); Π2 (SU (N + 1)) = ∅ N. LE theory (v1 → ∞): vortices ∼ Π1( SU (NZ)×U (1) ); Π1(SU (N + 1)) = ∅. N. • Physically, perfectly OK to consider both together: “mesons” ∼ Monopole-vortex-antimonopole, rotating and dynamically stable • Mesons in QCD are similar • In N = 2 models v1 ∼ m; v2 ∼. √. µm. 46.

(57) Minimum vortex of generic orientation:  q kA = U. iϕ. e φ1(r). 0. 0. φ2(r). .  i. U −1 = e 2 ϕ(1+n. aτ a). U. φ1(r). 0. 0. φ2(r). . xj τ 3 xj 1 Ai(x) = U [− &ij 2 [1 − f3(r)]]U −1 = − naτ a&ij 2 [1 − f3(r)], 2 r 2 r √ xj A8i (x) = − 3 &ij 2 [1 − f8(r)] r where U ∈ SU (2)C+F na = (sin α cos β, sin α sin β, cos α), The tension T = 2πξ independent of U .. 47. U = e−iβ τ3/2 e−iα τ2/2.. U −1,.

(58) Remarks • Reduction of the vortex spectrum (meson spectrum): (Fig) Π1 ( to Π1 (. U (1) × U (1) ) = Z2 Z2. SU (2) × U (1) )=Z Z2. • Transition from abelian (mi = mj ) to nonabelian (mi = m) superconductivity reliably and quantum mechanically known; • (Indirect) solution to the “existence problem” of nonabelin monopoles; • Dynamics of vortex zero modes n → n(z, t) 1 Sσ(1+1) = β d2x (∂ na)2 + fermions. 2 O(3) = CP1 sigma model! Dual (Shifman et.al.; Vafa-Hori) to a chiral theory with two vacua → . No spontaneous breaking of SU (2)C+F ⇔ confining, dual SU (2) (Witten index = 2).. 48.

(59) Reduction of the vortex spectrum (meson spectrum) (0,2). (2,0). (1,1). (0,1). (1,0). (1,-1). Figure 4: Lattice of (n, k) vortices in the theory SU (3) → U (1)2 .. (0,2). (1,1). (0,1). (1,0). (2,0). Level 2. Level 1. Figure 5: Reduced lattice of Z vortices SU (3) → SU (2) × U (1).. 49.

(60)

Riferimenti

Documenti correlati

Now, as a comment, let us recall briefly the implementation of an Abelian gauge theory on a lattice with a continuous electric field ˆ E x,x+1 and a vector potential ˆ A x,x+1 ,

The primary study endpoints included pre-infusion serum IgG concentrations for the retrospective and prospective periods; IgG concentration 7 days after subcutaneous injec- tion

Subject 5: Consistent right thumb flexion and recurrent left thumb flexion are seen despite instructions to keep the thumb out (1’27”) and a repeat attempt with the right hand.

63   L’arrestation de Pescio, ordonnée début mars après avoir entendu différents témoignages, est effectuée par le gardien Gien Maria Torre – qui était au service

Total achievable accuracy continued to increase as informatively varying peptides were sampled from up to 500 total proteins, thus addressing potential pitfalls of single gene

The relatively low number of the carriers needs to be perceived in the light of the low population frequency of the CDKN2A mutation and while the majority of carriers

proof of the next theorem, which solves completely Problem 1.4 for the string number and the null string number in the case of torsion abelian groups, in view of the previous

To summarize, we showed that the theory ( 5.30 ) of two bulk gauge fields coupled to two Dirac fermions has two additional duality frames ( 5.39 ) in which the boundary theory is