• Non ci sono risultati.

Simulazione del processo westinghouse di water-splitting per la produzione di idrogeno mediante l’utilizzo di energia solare, università di pisa

N/A
N/A
Protected

Academic year: 2021

Condividi "Simulazione del processo westinghouse di water-splitting per la produzione di idrogeno mediante l’utilizzo di energia solare, università di pisa"

Copied!
3
0
0

Testo completo

(1)

Bibliografia

[1] Ohta T. Solar hydrogen energy system. 1979.

[2] M. Vignolini A. Maccari. Progetto di massima di un impianto pilota per la produzione di 2000 metri cubi al giorno di idrogeno solare basato sul processo ut-3. 25 agosto 2001.

[3] Ambra Alessi. Simulazione del processo westinghouse di water-splitting per la produzione di idrogeno mediante l’utilizzo di energia solare, università di pisa.

Master’s thesis, Dipartimento di ingegneria meccanica, 2008-12-03.

[4] MED-CSP. Concentrating solar power for the mediterranean region dlr 16-4-2005 - http://www.dlr.de/tt/med-csp.

[5] C. Rubbia et al. Solar thermal energy production: Guidelines and future programmes of enea. 1 June 2001.

[6] M. FALCHETTA. Il programma enea sull’energia solare a concentrazione ad alta temperatura. 17/12/2006.

[7] Alberto Martella. Analisi termodinamica di processi di water splitting per la produzione di idrogeno mediante l’utilizzo di energia solare. Master’s thesis, Univeristà degli studi Pisa, 2005 / 2006.

[8] Louis K. Mansur Lee Trowbridge Charles Forsberg, Brian Bischoff and P. Tor- torelli. A lower-temperature iodine–westinghouse–ispra sulfur process for thermochemical production of hydrogen. September 3,2003.

[9] J.F. Funk L.C. Brown and S.K. Showalter. High efficiency generation of hydrogen fuels using nuclear power. ANNUAL REPORT TO THE U.S. DEPARTMENT OF ENERGY, AUGUST 1, 1999 THROUGH JULY 31, 2000.

[10] et al. K. YOSHIDA, H. Kameyama. A simulation study of the ut-3 thermochemical hydrogen production process. 1990.

[11] Beghi G.E. A decade of research on thermochemical hydrogen at the join research center. Ispra. Int. J. Hydrogen Energy, 11, (12), 761-771, 1986.

85

(2)

BIBLIOGRAFIA 86

[12] Funk J.E. Thermochemical hydrogen production: past and present. Int. J.

Hydrogen Energy,26, 185-190, 2001.

[13] Onuki K. Hwang G. Simulation study on the catalitic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-spitting is process. Membrane Sci., 194, 207-215, 2001.

[14] Besenbruch GE et al. General atomic sulfur-iodine thermochemical water-splitting process. 1982.

[15] Visentin V. Barbarossa V., Diamanti M. An experimental and numerical study on h2so4 thermal decomposition. Chem.Eng.Trans.,4, 223-226, 2004.

[16] Diamanti M. Sau S. De Maria G. Barbarossa V., Brutti S. Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production.

Int. J. Hydrogen Energy, 31,883-890, 2006.

[17] G.H. Parker and P.W.T.Lu. Laboratory model and electrolyzer development for the sulfur cycle hydrogen production process. 1979.

[18] Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. June 1978.

[19] D.Van Velzen et al. Development. Design and operation of a continuous laboratory –scale plant for hydrogen production by the mark-13cycle.

[20] Thermochemical water splitting cycle, bench scale investigation, and process engineering. May 1982.

[21] M. Lanchi R. Liberatore P. Tarquini A. Giaconia, R. Grena. Hydro- gen/methanol production by sulfur–iodine thermochemical cycle powered by combined solar/fossil energy. 25 July 2006.

[22] Lentsch RD Schultz KR Funk JF Pickard PS et al. Brown LC, Besenbruch GE.

High efficiency generation of hydrogen fuels using nuclear power. June 2003.

[23] A. Tsutsumi e K. Yoshida M. Sakurai, E.Bilgen. Solar ut-3 thermochemical cycle for hydrogen production. June 2003.

[24] Knoche KF Roth M. Thermochemical water splitting through direct hi decomposition from h2o–hi–i2 solutions. 1989.

[25] A. Ceroli M. Diamanti V. Barbarossa P. Tarquini S. Sau A. Giaconia, G. Ca- puto. Experimental study of two phase separation in the bunsen section of the sulfur–iodine thermochemical cycle. 25 September 2006.

(3)

BIBLIOGRAFIA 87

[26] Vitart X. Goldstein S, Borgard J. Upper bound and best estimate of the efficiency of the iodine sulphur cycle. 2005.

[27] Amir R Onuki K Shimizu S. Sakurai M, Nakajima H. Experimental studies on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. 2000.

[28] Williamson DG. O-Keefe DR, Norman JH. Catalysis research in thermochemical water-splitting processes. 1980.

[29] Hammache A. Bilgen E. Öztürk, I.T. An improved process for h2so4 decomposition step of the sulfur–iodine cycle. 1995.

[30] Ali T-Raissi Cunping Huang. Analysis of sulfur–iodine thermochemical cycle for solar hydrogen production. part i: decomposition of sulfuric acid. 23 January 2004.

[31] Brecher L.E.-Talko F. Spewock, S. The thermal catalytic decomposition of sulfur trioxide. hydrogen energy system in: Proceedings of the 1st world hydrogen energy conference. 1976.

[32] Miyamato Y et al. Program on hydrogen production system with high temperature cooled reactor. 1982.

[33] Knoche KF. Roth M. Thermochemical water splitting through direct hi decomposition from h2o–hi–i2 solutions. 1982.

[34] Seiji Kasahara Syunichi Higashi Tomoo Masaki Hiroyoshi Abe Kaoru Onuki Shi- nji Kubo∗, Hayato Nakajima. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process. 25 May 2004.

[35] SHIMIZU S. HWANG G.-J., ONUKI K. Separation of hydrogen from a h2-h2o-hi gaseous mixture using a silica membrane. 2000, vol. 46, no1, pp. 92-98 (14 ref.).

[36] Paci M. Dispense del corso di chimica industriale. 2005.

Riferimenti

Documenti correlati

NOTE: sul frontespizio: “Collegij S.ta Justina Salodij Congr.is De Somascha” TIMBRI: sul frontespizio: Carità laicale e ateneo di Salò. COLLOCAZIONI PRECEDENTI: sul dorso:

Infatti, l’approfondimento incentrato sul festival pechinese è lungo circa quarantacinque minuti ed è articolato in varie sezioni che ne spiegano l’organizzazione e ne illustrano

3.14 Dati relativi alle varie correnti del terzo modello di simulazione in Aspen Hysys  R del ciclo S-I. 65 3.15 Dati relativi alle varie correnti del terzo modello di

This activity loss was accompanied by leaching of P and lowered Co/P ratio suggested by EDX results.The formation of(oxy)phosphate(s) emerges concomitant with activity reduction

From available references we can mention some investigations devoted to modelling and performance evaluation of solar domestic hot water systems [2], investigation of

Aim is to assess the efficiency of the hybrid photo-thermal sulfur-ammonia cycle integrating a thermal energy storage system that is based on the process fluids rather than using

For such applications, PEM offers several decisive advantages: electrolysers are more compact (PEM water electrolysis cells can be operated in the multi A cm -2 range),

(2014) examined the mechanism and the parameters that affect the ammonium sulfite oxidation. He reported that the ammonium sulfite oxidation may include two