Modification and unification of the Apostol-type numbers and polynomials and their applications
Hacer Ozden
a,⇑, Yilmaz Simsek
baUniversity of Uludag, Faculty of Arts and Science, Department of Mathematics, Bursa, Turkey
bDepartment of Mathematics, Faculty of Science, University of Akdeniz, TR-07058 Antalya, Turkey
a r t i c l e i n f o
Keywords:
Bernoulli numbers and polynomials Euler numbers and polynomials Genocchi Bernoulli numbers and polynomials
Stirling numbers Catalan numbers
a b s t r a c t
In this paper, we construct generating functions for modification and unification of the Apostol-type polynomialsYðn;bvÞðx;k;a;bÞof order
v
. By using these generating functions, we derive many new identities related to the generalized Stirling type numbers of the second kind, array-type polynomials, Eulerian polynomials and the modification and unification of the Apostol-type polynomials and numbers. We give many applications related to these numbers and polynomials and PDEs.Ó2014 Elsevier Inc. All rights reserved.
1. Introduction, definitions and preliminaries
Throughout our paper, we use the following standard notation:N:¼ f1;2;3;. . .gdenotes the set of natural numbers, N0:¼N[ f0g;Zdenotes the set of integers,Qdenotes the set of rational numbers,Rdenotes the set of real numbers,Rþ denotes the set of positive real numbers andCdenotes the set of complex numbers. We also assume that logz denotes the principal branch of the multi-valued function logzwith the imaginary partIðlogzÞconstrained by
p
<IðlogzÞ6p
. For all 06k6n, letðnÞk¼k! nk (for example, see[31,32]).
Ozden[14]defined the following generating functions which are related to the unification of the Bernoulli, Euler and Genocchi polynomials:
gbðx;t;k;a;bÞ:¼21ktketx bbetab¼X1
n¼0
Yn;bðx;k;a;bÞtn
n!: ð1Þ
Note that forx¼1, Eq.(1)reduces to the generating functions for the unification of the Bernoulli, Euler and Genocchi numbers. In(1)we assume that ifb¼a, thenjtj<2
p
and ifb–a;k2N0;a;b2Cn f0g, thenjtj<blog ba . Also, by using the special values ofa;b;kandbin(1), the polynomialsYn;bðx;k;a;bÞprovides us with a generalization and unification of the Apostol–Bernoulli polynomials, Apostol–Euler polynomials and Apostol–Genocchi polynomials, respectively:Bnðx;bÞ ¼Yn;bðx;1;1;1Þ;
Enðx;bÞ ¼Yn;bðx;0;1;1Þ
http://dx.doi.org/10.1016/j.amc.2014.03.004 0096-3003/Ó2014 Elsevier Inc. All rights reserved.
⇑ Corresponding author.
E-mail addresses:[email protected](H. Ozden),[email protected](Y. Simsek).
Contents lists available atScienceDirect
Applied Mathematics and Computation
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a m c
and
Gnðx;bÞ ¼Yn;bðx;1;1;1Þ
(cf.[2–34]. Furthermore, for the classical Bernoulli polynomialsBnðxÞ, the classical Euler polynomialsEnðxÞand the classical Genocchi polynomialsGnðxÞ, we have
BnðxÞ ¼Bnðx;1Þ; EnðxÞ ¼Enðx;1Þ and
GnðxÞ ¼Gnðx;1Þ
(cf.[1–34]and the references cited in each of these earlier works). Forx¼0, we have the classical Bernoulli numbersBn, the classical Euler numbersEnand the classical Genocchi numbersGn, we have
Bn¼Bnð0Þ;
En¼Enð0Þ and
Gn¼Gnð0Þ
(cf.[1–36]and the references cited in each of these earlier works).
In analogy with the generating functions introduced by Ozden[14]and also[34]for the unification of the Apostol-type numbers and polynomials, we define generating functions for these polynomials. Now, we modify and unify(1)as follows:
Leta;b2Rþ(a–b). Thenmodification and unification of the Apostol-type polynomialsYðn;bvÞðx;k;a;bÞof order v are defined by means of the following generating function:
Mk;vðt;x;a;b;bÞ ¼ tk21k bbtat
!v bxt¼X1
n¼0
Yðn;bvÞðx;k;a;bÞtn
n!; ð2Þ
where
tln b a þlnb
<2
p
andx2R. We observe that
Yðn;bvÞð0;k;a;bÞ ¼Yðn;bvÞðk;a;bÞ;
which denotesmodification and unification of the Apostol-type numbers of orderv. Therefore, the numbersYðn;bvÞðk;a;bÞare defined by means of the following generating functions:
tk21k bbtat
!v
¼X1
n¼0
Yðn;bvÞðk;a;bÞtn
n!: ð3Þ
Remark 1.1. By substitutingk¼1 into(2), we have known results of[33]
BðnvÞðx;b;k;a;bÞ ¼Yðn;bvÞðx;1;a;bÞ (cf. see also[27,34]).
2. Some properties of the numbersYðn;bvÞðk;a;bÞand the polynomialsYðn;bvÞðx;k;a;bÞ
Here, by using generating functions, we give some properties of the numbers Yðn;bvÞðk;a;bÞ and the polynomials Yðn;bvÞðx;k;a;bÞ.
By using(1) and (2), we get
Mk;1ðt;x;a;b;bÞ ¼ ln b a k
gb xlnblna ln ba ;tln b
a ;k;1;1
! :
Thus, we get
Yn;bðx;k;a;bÞ ¼ ln b a nk
Yn;b
xlnblna ln ba ;k;1;1
!
;
whereYn;bðx;k;a;bÞdenotes the Apostol-type polynomials (cf.[14,16,32]; see also the references cited in each of these earlier works).
M1;vðt;x;1;e;1Þ ¼X1
n¼0
BðnvÞðx;bÞtn n!; where
BðnvÞðx;bÞ ¼Yn;bðx;1;1;eÞ
denotes the Apostol–Bernoulli polynomials of order
v
(cf.[2–34]and the references cited in each of these earlier works).M0;vðt;x;1;e;1Þ ¼X1
n¼0
ð1ÞvEðnvÞðxÞtn
n!; ð4Þ
where
ð1ÞvEðnvÞðxÞ ¼Yn;1ðx;k;1;eÞ
denotes the Euler polynomials of order
v
(cf.[2–34]; see also the references cited in each of these earlier works).Substitutingx¼0 and
v
¼1 into(2)and using the Umbral Calculus convention, we derive a recurrence relation for the modification and unification of the Apostol-type numbers,Yn;bðk;a;bÞ. Therefore, we settk21k¼betlnbetlna eYbðk;a;bÞt: From the above equation, we obtain
tk21k¼ bX1
n¼0
tlnb ð Þn
n! X1
n¼0
tlna ð Þn
n!
!X1
n¼0
Yn;bðk;a;bÞtn n!: Therefore
tk21k¼X1
n¼0
bXn
j¼0
n
j ðlnbÞnjYj;bðk;a;bÞ Xn
j¼0
n
j ðlnaÞnjYj;bðk;a;bÞ
!tn n!:
By comparing the coefficients oftnon both sides of the above equation, we arrive at the following theorem:
Theorem 2.1.The following recurrence relation holds true:
bðYbðk;a;bÞ þlnbÞnYbðk;a;bÞ þlnan
¼ 21kk! n¼k;
0 n–k:
(
where Y bðk;a;bÞm
is replaced conventionally by Ym;bðk;a;bÞ.
By substitutingn¼0 intoTheorem 2.1, we find that Y0;bð0;a;bÞ ¼ 2
b1 and
Y0;bð1;a;bÞ ¼0;
whereb–1. By substitutingn¼1 intoTheorem 2.1, we can easily calculate the numbersY1;bðk;a;bÞas follows:
Ifk¼1, we have Y1;bð1;a;bÞ ¼ 1
b1: Ifk¼0, we have
Y1;bð0;a;bÞ ¼2ðb1Þ 2ðblnblnaÞ ðb1Þ2 :
Consequently, applyingTheorem 2.1, we can easily calculate all the numbersYn;bðk;a;bÞ.
By using(3), we get X1
n¼0
Yðn;bvþpÞðk;a;bÞtn n!¼X1
n¼0
Yðn;bvÞðk;a;bÞtn n!
X1
n¼0
YðpÞn;bðk;a;bÞtn n!: Therefore
X1
n¼0
Yðn;bvþpÞðk;a;bÞtn n!¼X1
n¼0
Xn
j¼0
n
j Yðj;bvÞðk;a;bÞYðpÞnj;bðk;a;bÞ
!tn n!:
By comparing the coefficients oftn!non both sides of the above equation, we arrive at the following theorem:
Theorem 2.2. The following recurrence relation holds true:
Yðn;bvþpÞðk;a;bÞ ¼Xn
j¼0
n
j Yðj;bvÞðk;a;bÞYðpÞnj;bðk;a;bÞ:
By applying Theorem 2.2, we can calculate all the numbers Yðn;bvþpÞðk;a;bÞ. For example, if we substitute n¼1 and
v
¼p¼1 intoTheorem 2.2, we get Yð2Þ1;bðk;a;bÞ ¼X1j¼0
1
j Yj;bðk;a;bÞY1j;bðk;a;bÞ: Ifk¼1, we have
Yð2Þ1;bð1;a;bÞ ¼0:
Ifk¼0, we have
Yð2Þ1;bð0;a;bÞ ¼8ðb1Þ 8ðblnblnaÞ ðb1Þ3 :
Thus we are ready to generalizeTheorem 2.2as follows:
Theorem 2.3. Let n;j1;j2;. . .;jr2N0. Then we have Yðn;bv1þv2þþvrÞðk;a;bÞ ¼j1þj2Xþþjr¼n
j1;j2;...;jr¼0
j1þj2þ þjr
ð Þ!
j1!j2! jr! Yr
c¼1
YðjvcÞ
c;bðk;a;bÞ:
Proof. By using(3), we get
tk21k bbtat
!v1þv2þþvr
¼X1
n¼0
Yðn;bv1þv2þþvrÞðk;a;bÞtn n!:
By usingTheorem 2.2and mathematical induction, we complete proof of theorem. h By using(2) and (3), we easily arrive at the following theorem:
Theorem 2.4. Let n2N0. The we have Yðn;bvÞðx;k;a;bÞ ¼Xn
j¼0
n
j xnjðxlnbÞnjYðj;bvÞðk;a;bÞ:
3. PDEs for the generating functions
In this section, we give PDEs for the generating functions. By using these equations, we derive some derivative formulas and recurrence relations of themodification and unification of the Apostol-type polynomials of order
v
. Taking derivative of(2), with respect tox, we obtain the following PDE for the generating function:@m
@xmMk;vðt;x;k;a;b;bÞ ¼ ðtlnbÞmMk;vðt;x;k;a;b;bÞ: ð5Þ Taking derivative of(2), with respect tob, we obtain the following PDE for the generating function:
@
@bMk;vðt;x;k;a;b;bÞ ¼
v
21ktkMk;vþ1ðt;xþ1;k;a;b;bÞ ð6Þ
or
@
@bMk;vðt;x;k;a;b;bÞ ¼
v
21ktkMk;v1ðt;xþ1;k;a;b;bÞMk;2ðt;k;a;b;bÞ: ð7Þ Taking derivative of(2), with respect tot, we obtain the following PDE for the generating function:
@
@tMk;vðt;x;k;a;b;bÞ ¼k
v
t Mk;vðt;x;k;a;b;bÞ blnb
21ktkMk;vþ1ðt;xþ1;k;a;b;bÞ þ lna
21ktkatMk;vþ1ðt;x;k;a;b;bÞ þxlnbMk;vðt;x;k;a;b;bÞ: ð8Þ By using the above PDEs, we derive the following theorems.
Theorem 3.1.Let m and n be positive integers with nPm. Then we have
@m
@xmYðn;bvÞðx;k;a;bÞ ¼m! n m
lnb
ð ÞmYðnm;bvÞ ðx;k;a;bÞ
Proof. By using(5)with(2), we obtain X1
n¼0
@m
@xmYðn;bvÞðx;k;a;bÞtn n!¼X1
n¼0
m! n m
ðlnbÞmYðnm;bvÞ ðx;k;a;bÞtn n!:
By comparing the coefficients oftn!non both sides of the above equation, we obtain the result. h
Theorem 3.2. Let v and n be positive integers. Then we have
@
@bYðn;bvÞðx;k;a;bÞ ¼ 21k
v
nþk k
Yðnþk;bvþ1Þðxþ1;k;a;bÞ
or
@
@bYðn;bvÞðx;k;a;bÞ ¼ 21k
v
nþk k Xnþk
j¼0
nþk j
Yðj;bv1Þðxþ1;k;a;bÞYð2Þnþkj;bðk;a;bÞ: ð9Þ
Proof. By using(6)with(2), we obtain X1
n¼0
@
@bYðn;bvÞðx;k;a;bÞtn n!¼
v
21k X1
n¼0
Yðn;bvþ1Þðxþ1;k;a;bÞtnk n! :
Therefore X1
n¼0
@
@bYðn;bvÞðx;k;a;bÞtn
n!¼ 21k
v
X1
n¼0
nþk k 1
Yðnþk;bvþ1Þðxþ1;k;a;bÞtn n!:
By comparing the coefficients oftn!non both sides of the above equation, we obtain the result. h By using(7), we easily obtain the assertion(9)ofTheorem 3.2.
Theorem 3.3(Convolution recurrence relation). Let n2N0. The following relationship hold true:
nþ1
v
knþ1 Yðnþ1;bvÞ ðx;k;a;bÞ þ2k1blnb nþk
k
Yðnþk;bvþ1Þðxþ1;k;a;bÞ
¼xlnbYðn;bvÞðx;k;a;bÞ þ 2k1 nþk
k Xnþk
j¼0
nþk j
ðlnaÞnþkþ1jYðj;bvþ1Þðxþ1;k;a;bÞ: ð10Þ
Proof. By using(8)with(2), after some elementary calculations, we obtain X1
n¼1
Yðn;bvÞðx;k;a;bÞ tn1
ðn1Þ!xlnbX1
n¼0
Yðn;bvÞðx;k;a;bÞtn n!¼
v
kX1n¼0
Yðn;bvÞðx;k;a;bÞtn1
n! 2k1blnbX1
n¼0
Yðn;bvþ1Þðx;k;a;bÞtnk n!
þX1
n¼0
2k1 nþk
k Xnþk
j¼0
nþk j
ðlnaÞnþkþ1jYðj;bvþ1Þðxþ1;k;a;bÞtn n!:
By comparing the coefficients oftn!non both sides of the above equation, we obtain the result. h Substitutinga¼k¼
v
¼1 andb¼einto(10), we obtain the following corollary:Corollary 3.1. Let n2N0. The following relationship hold true:
bBð2Þnþ1ðxþ1;bÞ ¼ ðnþ1ÞxBnðx;bÞ nBnþ1ðx;bÞ: ð11Þ Substitutingb¼1 into(11)and usingTheorem 2.2, we obtain the following corollary:
Corollary 3.2. Let n2N0. The following relationship hold true:
Xnþ1
j¼0
nþ1 j
ðjxj1þBjðxÞÞBnþ1j¼xðnþ1ÞBnðxÞ nBnþ1ðxÞ: ð12Þ Substitutingx¼0 into(12), one can easily arrive at the following convolution recurrence relation for the Bernoulli numbers:
Corollary 3.3. Let n2N0. The following relationship hold true:
Bnþ1þ1 2Bnþ 1
nþ1 Xnþ1
j¼2
nþ1 j
BjBnþ1j¼0; ð13Þ
where B0¼1.
Remark 3.1. A convolution recurrence relation in(13)give us modification of the Euler’s convolution recurrence relation for the Bernoulli numbers:
1 n
Xn
j¼1
n
j BjBnj¼ BnBn1; wherenP1 (cf.[7,8,6,27,30]).
Substitutinga¼
v
¼1;k¼0;b¼ 1 andb¼einto(10), we obtain the following corollary:Corollary 3.4.
Eð2Þn ðxþ1Þ ¼2Enþ1ðxÞ 2xEnðxÞ: ð14Þ
By(14), we have Xn
j¼0
n
j Ejðxþ1ÞEnj¼2Enþ1ðxÞ 2xEnðxÞ:
Substituting the following well-known identity Enðxþ1Þ ¼2xnEnðxÞ
into the above equation, we easily obtain the following convolution recurrence relation for the Euler polynomials:
Xn
j¼0
n
j ð2xnEnðxÞÞEnj¼2Enþ1ðxÞ 2xEnðxÞ:
Substitutingx¼0 into the above equation, we arrive at the known result due to convolution recurrence relation for the Euler numbers:
Xn
j¼1
n
j EjEnj¼En2Enþ1
(cf.[7,8,6,27,30]).
4. Identities related to the polynomialsYðn;bvÞðx;k;a;bÞandb-Stirling type numbers
By using an approach similar to that of Srivastava[27]as well as some well-known properties of the Stirling numbers of the second kind, we can derive some known and some new identities and formulas for themodification and unification of the Apostol-type polynomials Yðn;bvÞðx;k;a;bÞof order v and theb-Stirling type numbers.
We need the following generating function for generalizedb-Stirling type numbers of the second kind, related to nonneg- ative positive real parameters.
Definition 4.1 (cf.[25, p. 3, Definition 2.1]). Leta;b2Rþ(a–b),b2Cand
v
2N0. The generalizedb-Stirling type numbers of the second kindSðn;v
;a;b;bÞare defined by means of the following generating function:fS;vðt;a;b;bÞ ¼bbtatv
v
! ¼X1
n¼0
Sðn;
v
;a;b;bÞn!tn: ð15ÞBy settinga¼1 andb¼ein(15), we have theb-Stirling numbers of the second kind Sðn;
v
;1;e;kÞ ¼Sðn;v
;kÞ;which are defined by means of the following generating function:
bet1 ð Þv
v
! ¼X1
n¼0
Sðn;
v
;bÞtn n!;(cf.[9,27,30]). Substitutingb¼1 into above equation, we have the Stirling numbers of the second kindSðn;
v
;1Þ ¼Sðn;v
Þ(cf.[7,9,19,27,29,30]).
In[25, p. 3, Theorem 2.2], Simsek gave the following formulas for the generalizedb-Stirling type numbers of the second kindSðn;
v
;a;b;bÞ:Theorem 4.1.We have Sðn;
v
;a;b;bÞ ¼v
1!Xv
j¼0
ð1Þj
v
j bvjðjlnaþ ð
v
jÞlnbÞn ð16Þand
Sðn;
v
;a;b;bÞ ¼ 1v
!Xv
j¼0
ð1Þvj
v
j bjðjlnbþ ð
v
jÞlnaÞn: ð17ÞNote that by settinga¼1 andb¼ein the assertions(16)ofTheorem 4.1, we have the following result:
Sðn;
v
;bÞ ¼v
1!Xv
j¼0
v
j bvjð1Þjð
v
jÞn:The above relation has been studied by Srivastava[27]and Luo and Srivastava[9]. By settingb¼1 in the above equation, we have the following well-known result for the classical Stirling numbers of the second kind:
Sðn;
v
Þ ¼v
1!Xv
j¼0
v
j ð1Þjð
v
jÞn(cf.[1,6,5,7,9,19,22,25,27,30]).
In[25], Simsek constructed generating function of thegeneralized array type polynomialsas follows: Leta;b2Rþ, (a–b), k2Cand
v
2N0.gvðx;t;a;b;bÞ ¼ 1
v
! bbtat v
bxt¼X1
n¼0
Snvðx;a;b;bÞtn
n!: ð18Þ
The following definition provides a natural generalization and unification of the array polynomials:
Definition 4.2 [25]. Leta;b2Rþ(a–b),x2R;k2Cand
v
2N0. The generalized array type polynomialsSnvðx;a;b;kÞcan be defined bySnvðx;a;b;kÞ ¼1
v
!Xv
j¼0
ð1Þvj
v
j kjlnavjbxþjn
: ð19Þ
Remark 4.1. The polynomialsSnvðx;a;b;kÞmay be also called generalizedk-array type polynomials. By substitutingx¼0 into(19), we arrive at(17):
Snvð0;a;b;kÞ ¼Sðn;
v
;a;b;kÞ:Settinga¼k¼1 andb¼ein (19), we have SnvðxÞ ¼ 1
v
!Xv
j¼0
ð1Þvj
v
j ðxþjÞn;
a result due to Chang and Ha[3, Eq-(3.1)], Simsek[22]. It is easy to see that S00ðxÞ ¼SnnðxÞ ¼1;
Sn0ðxÞ ¼xn and for
v
>n,SnvðxÞ ¼0;
cf.[3, Eq-(3.1)].
By using(2) and (15), we derive the following functional equation:
2vðk1Þ
v
!tkv Mk;vðt;x;a;b;bÞfS;vðt;a;b;bÞ ¼btx: ð20Þ
Theorem 4.2. Let n;k;
v
2N. Thus we haveX
nþkv
l¼0
nþk
v
l
Sðnþk
v
l;v
;a;b;bÞYðl;bvÞðx;k;a;bÞ ¼ nþkv
k
v
xlnb ð Þn
2vðk1Þ
v
!: ð21ÞProof. By using(20), we get
2vð1kÞ
v
!X1
n¼0
xlnb ð Þntn
n!¼tkvX1
n¼0
Sðn;
v
;a;b;bÞtn n!X1
n¼0
Yðn;bvÞðx;k;a;bÞtn n!: Therefore
2vð1kÞ
v
!X1
n¼0
xlnb ð Þntn
n!¼X1
n¼0
X
nþkv
l¼v
nþk
v
l
nþk
v
k
v
Sðnþk
v
l;v
;a;b;bÞYðl;bvÞðx;k;a;bÞtn n!:By comparing the coefficients oftn!non both sides of the above equation, we obtain the result. h
Remark 4.2. Substitutingk¼a¼1;b¼einto(21), we obtain known result due to[27, p. 420, Theorem 15]see also[9].
Substitutingx¼0 into(21), we have the following results:
Corollary 4.1. If n¼0, then we have
Xkv
l¼0
k
v
l
Sðk
v
l;v
;a;b;bÞYðl;bvÞðk;a;bÞ ¼1 and if n–0, then we obtainX
nþkv
l¼0
nþk
v
l
Sðnþk
v
l;v
;a;b;bÞYðl;bvÞðk;a;bÞ ¼0: ð22ÞRemark 4.3. Fork¼a¼1;b¼e, Eq.(22)reduces to the known result given recently by Srivastava[27, p. 417, Theorem 13].
Corollary 4.2. We have YðnþkvÞv;bðk;a;bÞ ¼
v
!ðb1Þv X
nþkv1
l¼0
nþk
v
l
Sðnþk
v
l;v
;a;b;bÞYðl;bvÞðk;a;bÞ:Proof. By(21), we have
0¼nþkXv1
l¼0
nþk
v
l
Sðnþk
v
l;v
;a;b;bÞYðl;bvÞðk;a;bÞ þYðnþkvÞv;bðk;a;bÞSð0;v
;a;b;bÞ:By using the formula(16), we have Sð0;
v
;a;b;bÞ ¼ðbv
!1Þv:Substituting these numbers into the above equation, we obtain the desired result. h
Remark 4.4. By substituting
v
¼a¼k¼b¼1;b¼eintoCorollary 4.2, we obtain BðnþvÞvðbÞ ¼v
!ðb1Þv X
nþv1
l¼0
nþ
v
l
S nð þ
v
l;v
;bÞBðlvÞðbÞ(cf.[27, p. 418, Eq-(7.7)]). By same method of[27], for
v
¼a¼k¼b¼1;b¼eandSðn;1Þ ¼1, Eq.(22)reduces to the follow- ing well known results for the classical Bernoulli numbers:B0¼1 andBn¼ 1 nþ1
Xn1
l¼0
nþ1 l
Bl
(cf. see for detail[27, p. 418, Eq-(7.8)]).
We now define modification and unification of the Apostol-type polynomials of order
v
;Yðn;bvÞðx;k;a;bÞby means of the following generating functionMk;vðt;x;a;b;bÞ ¼ bbtat tk21k
!v bxt¼X1
n¼0
Yðn;bvÞðx;k;a;bÞtn
n!: ð23Þ
In work of Srivastava, we know that the Apostol-type polynomials of order
v
are related to the Stirling-type numbers[27, p.417].
Theorem 4.3.We have Yðn;bvÞðx;k;a;bÞ ¼
v
!2vðk1Þðk
v
Þ!nþk
v
k
v
1nþkXv
j¼0
nþk
v
j
Sðj;
v
;a;b;bÞxnþkvj:First Proof of Theorem 4.3. By combing(23)with(15), we get X1
n¼0
Yðn;bvÞðx;k;a;bÞtn
n!¼
v
!2ðk1ÞvtkvX1n¼0
Sðn;
v
;a;b;bÞtn n!X1
n¼0
xlnb ð Þntn
n!: Therefore
X1
n¼0
Yðn;bvÞðx;k;a;bÞtn n!¼X1
n¼0
v
!2vðk1Þk
v
ð Þ! nþk
v
k
v
0 BB B@
1 CC CA
X
nþkv
j¼0
nþk
v
j
Sðj;
v
;a;b;bÞxnþkvjtn
n!:
Thus by comparing the coefficients oftnon both sides of the above equation, we arrive at the desired result. h
Theorem 4.4. We have
Yðn;bvÞðx;k;a;bÞ ¼
v
!2vðk1Þk
v
ð Þ! nþk
v
k
v
Snþkv vðx;a;b;kÞ:
ð24Þ
Proof. By combining(23)with(18), we get X1
n¼0
Yðn;bvÞðx;k;a;bÞtn n!¼X1
n¼0
v
!2vðk1Þk
v
ð Þ! nþk
v
k
v
Snþkv vðx;a;b;kÞtn n!:
Thus by comparing the coefficients oftnon the both sides of the above equation, we arrive at the desired result. h
First Proof of Theorem 4.3. By combing(23)with(15), we get
Yðn;bvÞðx;k;a;bÞ ¼
v
!2vðk1Þk
v
ð Þ! nþk
v
k
v
nþkXv
j¼0
nþk
v
j
Sðj;
v
;a;b;kÞðxlnbÞnþkvj:Thus the proof is completed. h
Remark 4.5. If we substitutea¼k¼1;b¼eintoTheorem 4.3, we have known result in[27, p. 419, Theorem 14].
By using(24) and (19), we can compute some values of the polynomialsYðn;bvÞðx;k;a;bÞas follows (see[25]):
Yð0Þn;bðx;k;a;bÞ ¼Sn0ðx;a;b;bÞ;
Yð0;bvÞðx;k;a;bÞ ¼2vðk1ÞS0vðx;a;b;bÞ and
Yð1Þ1;b ðx;k;a;bÞ ¼ 2ðk1Þ k! 1þk
k
S11ðx;a;b;kÞ ¼ 2ðk1Þ k! 1þk
k
ðlnaxlnbþbðxþ1ÞlnbÞ:
If we substitutex¼0 intoTheorem 4.3, we get the following result.
Corollary 4.3. We have Yðn;bvÞðk;a;bÞ ¼
v
!2vðk1Þðk
v
Þ!nþk
v
k
v
1
Sðnþk
v
;v
;a;b;bÞ: ð25ÞRemark 4.6. By substituting
v
¼k¼n, into(25)we getYðnÞn;b ðn;a;bÞ ¼n!2nðn1Þ ðn2Þ!
nþn2 n2
!1
Snþn2;n;a;b;b :
By substituting
v
¼n;a¼k¼b¼1 andb¼einto(25), we haveBðnÞn ¼ 2n n 1
Sð2n;nÞ; ð26Þ
Sð2n;nÞdenotes the Stirling numbers of the second kind[27, p. 419, Eq-(7.18)].
Remark 4.7. In(26), we easily see that Sð2n;nÞ ¼ ðnþ1ÞCnBðnÞn ;
whereCndenotes the Catalan numbers (cf.[4]) which are defined by Cn¼ 1
nþ1 2n
n
:
In[34], Srivastava et al. defined the generalized Apostol-type Genocchi polynomials as follows:
2t bbtþat v
cxt¼X1
n¼0
GðnvÞðx;b;a;b;cÞtn n!;
(cf. see also[33],[30]). In the next theorem, we give relationship between the Stirling-type numbers and the generalized Apostol-type Genocchi polynomials of order
v
.Theorem 4.5.We have
Snþ
v
;kv
;a2;b2;b2¼2v nþv v
Xn
j¼0
n
j Sðjþ
v
;v
;a;b;bÞGðnjvÞðb;a;bÞ:Proof. By using(15), we get the following functional equation:
1 2t
ð ÞvfS;vð2t;a2;b2;b2Þ ¼fS;vðt;a;b;bÞfG;vðt;a;b;bÞ; ð27Þ where
fG;vðt;a;b;bÞ ¼ 2t bbtþat v
¼X1
n¼0
GðnvÞðb;a;bÞtn n!;
GðnvÞðb;a;bÞdenotesb-Genocchi numbers of order
v
, related to nonnegative real parameters.By using(27), we obtain 1
2t ð Þv
X1
n¼0
Sn;
v
;a2;b2;btn!n¼X1n¼0
Sðn;
v
;a;b;bÞtn n!X1
n¼0
GðnvÞðb;a;bÞtn n!:
Therefore X1
n¼0
2v nþ
v v
1
Snþ
v
;kv
;a2;b2;b2tn!n¼X1n¼0
Xn
j¼0
n
j Sðjþ
v
;v
;a;b;bÞGðnjvÞðb;a;bÞtn n!:Thus by comparing the coefficients oftnon both sides of the above equation, we arrive at the desired result. h
5. Identities related to the Eulerian type numbers and the Stirling type numbers
In this section, by using generating functions, we derive identities related to the Eulerian type numbers and the Stirling type numbers.
In [25,24, p.10], Simsek constructed generating functions of the Eulerian type polynomials of higher order HðmÞn ðx;u;a;b;c;kÞas follows:
FðmÞk ðt;x;u;a;b;cÞ ¼ðatuÞmcxt kbtu
m¼X1
n¼0
HðmÞn ðx;u;a;b;c;bÞtn
n!; ð28Þ
wherem2Nand
HðmÞn ð0;u;a;b;c;bÞ ¼HðmÞn ðu;a;b;bÞ;
denotes the Eulerian type numbers of higher order. By combining(15) with the above generating function, we derive the following functional equation:
1 u1 m
m! bxt¼fS;m t;1;b;b u X1
n¼0
HðmÞn ðx;u;1;b;b;bÞtn n!: By using this functional equation, we get
1 u1 m
m!
X1
n¼0
ðxlnbÞntn n!¼X1
n¼0
S n;m;1;b;b u tn
n!
X1
n¼0
HðmÞn ðx;u;1;b;b;kÞtn n!: By using Cauchy product in the above equation, we obtain
1 u1 m
m!
X1
n¼0
ðxlnbÞntn n!¼X1
n¼0
Xn
l¼0
n
l S l;m;1;b;b u
HðmÞnlðx;u;1;b;b;bÞ
!tn n!:
By comparing the coefficients oftn!non both sides of the above equation, we arrive at the following theorem:
Theorem 5.1.
1 u1 m
m! ðxlnbÞn¼Xn
l¼0
n
l S l;m;1;b;b u
HðmÞnlðx;u;1;b;b;bÞ: ð29Þ Substitutingb¼e;b¼1 into(29), we have the following result:
Corollary 5.1.
1 u1 m
m! xn¼Xn
l¼0
n
l S l;ð mÞHðmÞnlðx;uÞ:
We now derive the following functional equations:
Mk;vðt;k;a;b;bÞ ¼ ð1ÞvFð1vÞ t;x;u;a;a b;b
GðYvÞðt;a;bÞ; ð30Þ
where
GðYvÞðt;a;bÞ ¼ 1 bat1 v
¼X1
n¼0
yðnvÞðb;aÞtn n!
andaP1 (cf.[25, p-21, Eq-(37)]) Mk;vðt;x
v
;a;b;bÞ ¼2kvMk;v 2t;x2; ffiffiffiffiffiffi pab
;b;b
ð31Þ and
Mk;vðt;
v
x;a;b;bÞ ¼ ð1Þvð1kÞbvatvMk;vt;x;a;b;b1: ð32Þ
Theorem 5.2. Let nk
v
P0. The following identity holds true:ð1Þv2vðk1Þ nþk
v
k
v
k
v
ð Þ!
Yðn;bvÞðxþ
v
;k;a;bÞ ¼Xnkv
l¼0
nk
v
l
HðlvÞ x;b;a;a b;b;1
yðnkvÞvlðb;aÞ:
ð33Þ
Proof. By combining(30)with(2) and (28), we get X1
n¼0
Yðn;bvÞðx;k;a;bÞtn
n!¼ ð1Þv2vð1kÞtkvX1
n¼0
HðnvÞ x;b;a;a b;b;1 tn
n!
X1
n¼0
yðnvÞðb;aÞtn n!: Therefore
ð1Þv2vðk1ÞX1
n¼0
Yðn;bvÞðx;k;a;bÞtn n!¼X1
n¼0
Xn
l¼0
n
l HðlvÞ x;b;a;a b;b;1
yðnlvÞðb;aÞtnkv n! :
By comparing the coefficients oftn!non both sides of the above equation, we arrive at the desired result. h
Remark 5.1. Substitutinga¼
v
¼k¼1 andb¼einto(33), we have 1nþ1Bnðxþ1;bÞ ¼ 1 b1
Xn1
l¼0
n1 l
Hlðx;bÞ:
By combining(31)with(2), after some elementary calculation, we arrive at the following theorem:
Theorem 5.3.
Yðn;bvÞðx
v
;k;a;bÞ ¼2nkvYðn;bvÞx 2;k; ffiffiffiffiffiffi
pab
;b
:
By combining(32)with(2), after some elementary calculation, we arrive at the following theorem:
Theorem 5.4.The following identity holds true:
Yðn;bvÞð
v
x;k;a;bÞ ¼ð1Þvð1kÞþn
bv Xn
j¼0
n
j ð
v
lnaÞnjYðj;bvÞ1ðx;k;a;bÞ: ð34ÞRemark 5.2. Substitutinga¼
v
¼k¼1 andb¼einto(34), we have Bnð1x;bÞ ¼ ð1Þnb1Bnðx;b1Þ(cf.[33,30,34]). If we setb¼1 into the above equation, we have the following well-known result:
Bnð1xÞ ¼ ð1ÞnBnðxÞ (cf.[7,30]).
Acknowledgement
The authors would like to thank the referees for their valuable comments on this present paper.
This paper was supported by Akdeniz University Scientific Research Projects Unit. Research Projects of Uludag university project number UAP (F)-2012/16.
References
[1]T. Agoh, K. Dilcher, Shortened recurrence relations for Bernoulli numbers, Discrete Math. 309 (2009) 887–898.
[2]T.M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951) 161–167.
[3]C.-H. Chang, C.-W. Ha, A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials, J. Math.
Anal. Appl. 315 (2006) 758–767.
[4]L. Comtet, Nombres de stirling généraux et fonctions sym étriques, C.R. Acad. Sci. Paris Sér. A 275 (1972) 747–750.
[5]R. Dere, Y. Simsek, Genocchi polynomials associated with the Umbral algebra, Appl. Math. Comput. 218 (3) (2011) 756–761.
[6]R. Dere, Y. Simsek, H.M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133 (2013) 3245–3263.
[7] H.W. Gould, Generalized Bernoulli and Euler polynomial convolution identities, preprint,http://math.wvu.edu/gould/Bernoulli-Euler-Identities.pdf.
[8]S. Hu, D. Kim, M.-S. Kim, New identities involving Bernoulli, Euler and Genocchi numbers, Adv. Differ. Equ. 2013 (2013) 74.
[9]Q.-M. Luo, H.M. Srivastava, Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math.
Comput. 217 (2011) 5702–5728.
[10]M.-S. Kim, S. Hu, A note on the Apostol–Bernoulli and Apostol–Euler polynomials, Publ. Math. Debrecen 5587 (2013) 1–16 (In Print: Ref. no.).
[11]Y.-H. Kim, W. Kim, L.-C. Jang, On the q-extension of Apostol–Euler numbers and polynomials, Abstr. Appl. Anal. 2008 (2008). article 296159.
[12]Q.-M. Luo, Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10 (4) (2006) 917–925.
[13]M.A. Ozarslan, Modifed Apostol–Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 62 (2011) 2452–2462.
[14]H. Ozden, Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, Am. Inst. Phys. Conf. Proc. 1281 (2010) 1125–1128.
[15]H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008) 934–
939.
[16]H. Ozden, Y. Simsek, H.M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 60 (2010) 2779–2787.
[17]H. Ozden, Y. Simsek, Unified representation of the family of L-functions, J. Inequalities Appl. 2013 (2013) 64.
[18]A. Pinter, H.M. Srivastava, Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequat. Math. 85 (2013) 483–495.
[19]S. Roman, The Umbral Calculus, Dover Publ. Inc., New York, 2005.
[20]Y. Simsek, Twistedðh;qÞ-Bernoulli numbers and polynomials related to twistedðh;qÞ-zeta function and L-function, J. Math. Anal. Appl. 324 (2006) 790–804.
[21]Y. Simsek, Complete sum of products ofðh;qÞ-extension of Euler polynomials and numbers, J. Differ. Equ. Appl. 16 (2010) 1331–1348.
[22]Y. Simsek, Interpolation function of generalized q-Bernstein type polynomials and their application, in: Curve and Surface, Lecture Notes in Computer Science, vol. 6920, Springer Verlag, Berlin, Heidelberg, 2012, pp. 647–662.
[23]Y. Simsek, On q-deformed Stirling numbers, Int. J. Math. Comput. 15 (2012) 70–80.
[24] Y. Simsek, Relations between Eulerina polynomials and array polynomials, in: AIP Conference Procceeding of Numerical Analysis and Applied Mathematics, vol. 1479, 2012, pp. 407–411.
[25]Y. Simsek, Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl. 2013 (2013) 87.
[26]Y. Simsek, A. Bayad, V. Lokesha, q-Bernstein polynomials related to q-Frobenius–Euler polynomials, l-functions, and q-Stirling numbers, Math.
Methods Appl. Sci. 35 (2012) 877–884.
[27]H.M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci. 5 (2011) 390–
444.
[28]H.M. Srivastava, A new family of thek-generalized Hurwitz–Lerch zeta functions with applications, Appl. Math. Inf. Sci. 8 (2014) 1485–1500.
[29]H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Acedemic Publishers, Dordrecht, Boston, London, 2001.
[30]H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, NewYork, 2012.
[31]H.M. Srivastava, H. Ozden, I.N. Cangul, Y. Simsek, A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions, Appl. Math. Comput. 219 (2012) 3903–3913.
[32]H.M. Srivastava, B. Kurt, Y. Simsek, Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms Spec. Funct. 23 (2012) 919–938.
[33]H.M. Srivastava, M. Garg, S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys. 17 (2010) 251–261.
[34]H.M. Srivastava, M. Garg, S. Choudhary, Some new families of the generalized Euler and Genocchi polynomials, Taiwanese J. Math. 15 (2011) 283–305.
[35]H.M. Srivastava, M.-J. Luo, R.K. Raina, New results involving a class of generalized Hurwitz–Lerch Zeta functions and their applications, Turkish J. Anal.
Number Theory 1 (2013) 26–35.
[36]H.M. Srivastava, K.S. Nisar, M.A. Khan, Some umbral calculus presentations of the Chan–Chyan–Srivastava polynomials and the Erku–Srivastava polynomials, Proyecciones J. Math. 33 (2014) 77–90.