• Non ci sono risultati.

Segni di Intolleranza SBT

Grafico 7 Andamento Pressione Arteriosa Diastolica: Media

(Basale) T0 (PSV) T1 (15' ) T2 (30' -T ) T3 (45' ) T4 (60' ) T5 (75' ) T6 (90' ) T7 (105' ) T8 (Estub) T9 (15' ) T1 0 S1 60,0 62,0 64,0 66,0 68,0 70,0 72,0 PAD

A dimostrazione del fatto che esiste una discrepanza almeno iniziale tra disponibilità e consumo di ossigeno abbiamo inoltre rilevato, su analisi ematiche effettuate a T0 e a T4, un incremento dei lattati nei pazienti sottoposti a svezzamento (Tabella XI e XII).

Questo potrebbe essere legato in parte all’aumento del consumo di ossigeno dovuto all’utilizzo di gruppi muscolari rimasti a riposo per effetto di sedativi e talvolta curari utilizzati nei giorni precedenti. Si conferma così il dato già riportato in letteratura da Pinsky, in cui lo svezzamento del paziente dal ventilatore viene assimilato ad un esercizio fisico, in cui si ha un aumento delle richieste di ossigeno, solo in parte seguite da un aumento della sua disponibilità. [51]

Tabella XI Valori Ematici Pre-Test (T0)

Pz 1 Pz 2 Pz 3 Pz 4 Pz 5 Pz 6 Pz 7 Pz 8 Pz 9 Ph 7,44 7,39 7,38 7,43 7,41 7,42 7,52 7,35 7,49 PaO2 81,6 110 126,5 180 170 105 137 175 108,3 PaCO2 36,4 56 42,9 38 35 37 32,3 37,5 37,3 Lattati 22 62 13 23 13 15 16 14 18 HCO3 24,5 29 24,4 24,6 24,4 25,3 25,8 20,3 28,1 BE O,5 2,9 -0,2 1,2 1,5 1,9 2,8 -4,7 4,6

Tabella XII Valori Ematici durante Weaning (T4)

Pz 1 Pz 2 Pz 3 Pz 4 Pz 5 Pz 6 Pz 7 Pz 8 Pz 9 Ph 7,46 7,34 7,37 7,44 7,40 7,32 7,42 7,34 7,53 PaO2 74 107,7 94 74,7 98 120 92,4 189 67,6 PaCO2 37,5 62,6 42,7 39,3 41 38 41,8 35,7 35,5 Lattati 31 42 16 24 16 18 16 25 17 HCO3 26,5 33,1 24 26,3 26,3 26,1 26,6 18,9 29 BE 2,7 6,1 -1 2,2 2,4 2,7 2,9 -6,2 5,9

L’analisi dei valori di NT-pro-BNP mostra una discreta variabilità dei valori che risultano compresi tra 109-444 pg/L (Tabella XIII).

Nonostante in letteratura siano riportati valori di cutoff di 275 pg/L, [69] nel nostro studio anche livelli al di sopra di tale soglia non hanno influito sulla svezzabilità dal ventilatore; dati più accurati possono però essere disponibili solo incrementando il numero di pazienti e soprattutto documentando anche casi di insuccesso, che nel nostro studio non si sono verificati, forse anche per le piccole dimensioni del gruppo studiato. Da ricordare inoltre che anche i dati presenti in letteratura sulla accuratezza diagnostica del pro-BNP nell’insufficienza cardiaca sono tutt’oggi contrastanti [77] [78] [79] e che, come sottolineato in un recente studio del CNR di Pisa, eventuali concentrazioni cutoff variano molto in base ai metodi di laboratorio utilizzati per la rilevazione ed alla popolazione studiata. [80]

Tabella XIII Valori Ematici di NT-proBNP

Pz 1 Pz 2 Pz 3 Pz 4 Pz 5 Pz 6 Pz 7 Pz 8 Pz 9 NT-

4. CONCLUSIONI

Lo svezzamento dalla ventilazione meccanica è associato ad un incremento della richiesta di ossigeno per aumento sia del lavoro respiratorio che della secrezione endogena di catecolamine.

L’aumento del Cardiac Index che ne deriva rappresenta uno stress cardiaco importante che può esacerbare, in pazienti a rischio, sofferenza ischemica miocardica, facilitare lo sviluppo di un metabolismo miocardico anaerobio, precipitare una disfunzione ventricolare sinistra e/o destra.

La riduzione del rendimento del sistema cardio-circolatorio, che abbiamo registrato in corso di svezzamento dal ventilatore tramite variazioni del CCE, potrebbe esser legata non solo ad un aumento del CI, ma anche ad un aumento delle resistenze vascolari periferiche, che mostrano un andamento in crescendo nei primi 30 minuti dall’inizio del trial.

La discrepanza fra disponibilità e consumo di ossigeno è confermata dall’incremento dei lattati in questo intervallo di tempo.

I dati preliminari emersi dal nostro studio tendono a confermare quanto riportato in letteratura [28], evidenziando come una insufficienza cardiaca occulta instaurata in corso di svezzamento in pazienti critici possa essere la causa primaria di fallimento di weaning.

A tal proposito alterazioni dei livelli basali del NT-proBNP come indice di disfunzione miocardica potrebbero spiegare l’insuccesso nello svezzamento di alcune tipologie di pazienti, affiancandolo ad altri parametri, quale indice di predittività di successo di distacco dal ventilatore.

In letteratura non si trovano ancora lavori in cui è stato studiato questo nuovo parametro clinico in correlazione ai parametri ventilatori.

Nel nostro studio le variazioni medie dei valori del CCE (parametro che esprime la performance cardiaca in termini di dispendio energetico del sistema cardiocircolatorio) in corso di svezzamento si sono mostrate

statisticamente significative, ma, data l’esiguità della popolazione dei pazienti da noi considerata, sono necessari ulteriori approfondimenti per la conferma della sua validità diagnostica in corso di weaning.

Infine, il protocollo di svezzamento utilizzato nel nostro studio, ha presentato una percentuale di successo inaspettatamente molto alta, anch’essa però da confermare su numeri più vasti.

Inoltre questo studio conferma quanto già riportato in letteratura circa la necessità della applicazione di protocolli standardizzati di svezzamento, quali strumenti efficaci per diminuire la durata della dipendenza dal ventilatore, l’incidenza di reintubazione, l’insorgenza di complicanze ventilatore-dipendenti, ed i costi legati ad un aumento della degenza in Terapia Intensiva. [18] [19] [20] [21]

5. BIBLIOGRAFIA

1. Slutsky AS. Mechanical Ventilation. American College of Chest Physicians’ Consensus Conference. Chest 1993;104:1833-59

2. Alìa I, Esteban A. Weaning from mechanical ventilation. Crit Care 2000;4:72-80

3. Meade M, Guyatt G, Griffith L, Booker L, Randall J, Cook DJ. Introduction to a series of systematic reviews of weaning from mechanical ventilation. Chest 2001;120:396-99

4. Novelli. Anestesia e Rianimazione, II edizione, Idelson, Napoli 1988

5. Neil MacIntyre. Chest 2001;120:375-96

6. Coplin WM, Pierson DJ, Cooley KD, et al. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J respir crit care med 2000;161:1530-1536

7. Manthous CA, Schmidt GA, Hall JB. Liberation from mechanical ventilation: a decade of progress. Chest 1998;114:886-901

8. Seymur C, Martinez A, Christie JD, Fuchs BD. The outcome of extubation failure in a community hospital intensive care unit: a cohort study. Crit Care 2004;8:322-27

9. Esteban a, Alia, Tobin MJ. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1999;159:512-18

10. Ramachandran V, Grap MJ, Sessler CN. Protocol-directed weaning: a process of continuous performance improvement. Crit Care 2005;9:138-40

11. Morris AH. Clinical Trial of a weaning protocol. Crit Care 2004;8:207-209

12. Ely EW, Backer AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of brething spontaneously. N Eng J Med 1998;335:1864-69

13. Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994;150:896-903

14. Esteban A, Alia I, Tobin MJ, et al. The effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation: the Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 1999;159:512-18

15. Brochard L, Rauss A, Benito S, Conti G, Mancebo J et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994;150;896-903

16. Chan PK, Fischer S, Stewart E et al. Practising evidence based medicine: the design and implementation of a multidisciplinary team-driven extubation protocol. Crit Care 2001;5:349-354

17. Wall R, Dittus S, Ely WE. Protocol-driven care in the intensive care unit: a tool of quality. Crit Care Med 2001;5:283-285

18. Kollef MH, Shapiro SD, Silver P, et al. A randomized controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med 1997;25:567-74

19. Brook A, Ahrens T, Shaiff R et al. Effects of a nursing- implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 1999;27:2609-15

20. Horst HM, Mouro D, Hall-Jenssens RA et al. Decrease in ventilation time with a standardized weaning process. Arch Surg 1998;133:483-9

21. Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation: the Spanish Lung Failure Collaborative Group. N Engl J Med 1995;332:345-50

22. De Becker D, Haddad P.E., et al. Hemodynamic responces to successful weaning from mechanical ventilation after cardiovascular surgery. Int Care Med 2000;26:1201-06

23. Kemper M, Weissman C, Askanasi J, Hyman AL, Kinney JM. MeTabellaolic and respiratory changes during weaning from mechanical ventilation. Chest 1987;92:979-83

24. Pinsky MR: Cardiovascular effects of ventilatory support and withdrawal. Anesth Analg 1994;79:567-76

25. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med 1998;158:1763-1769

26. Eskandar N, Apostolakos MJ. Weaning from mechanical ventilation. Crit Care Clin 2007;23:263-74

27. Esteban A, Alìa I, Gordo F, et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. Am J Respir Crit Care Med 1997;156:459-465

28. Herlihy JP, Koch ST, Jackson R, et al. Course of weaning from prolonged mechanical ventilation after cardiac surgery. Tex Heart Inst J 2006;33:122-29

29. Caroleo S, Agnello F, Abdallah K, Santangelo E, Amantea B. Weaning from mechanical ventilation: an open issue. Min Anestesiol 2007;3:417-27

30. Esteban A, Alia I, Gordo F et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. Am J Respir Crit Care Med 1997;156:459-65

31. Vallverdu I, Calaf N, Subirana M, et al. Clinical characteristics, respiratory parameters and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med 1998;158:1855-62

32. Connors Jr AF, Speroff T, Dawson NV, Thomas C, Harrel Jr FE, Wagner E et al. The effectiveness of right heart catheterisation in the initial care of critically ill patients. SUPPORT investigators. J Am Med Assoc 1996;276:889-97

33. Wesseling HK, Jansen RC, Settels JJ, et al. Computation of aortic flow from pressure in humans using a nonlinear three-element model. J Appl Physiol 1993;74:2566-73

34. Scolletta S, Romano SM, Biagioli Capannini G, Giacomelli P. Pressure Recording Analiyical Method (PRAM) for measurement of cardiac output during various haemodinamic states. Brit J of Anaest 2005;95:159-65

35. Romano SM, Pistolesi M. Assesment of cardiac output from systemic arterial pressure in humans. Crit Care Med 2002;30:1834- 41

36. Berthold Bein. Comparison of Esophageal Doppler, Pulse Analysis and Real-Time Pulmonary Artery Thermodiluition for the Continuous Measurament of Cardiac Output. J. Cardiothorac. Vasc. Anaesth. 2004(18)185-189

37. Scolletta S, Giacomelli P, Biagioli B, Gensini GF, Maccheroni M, Romano SM. Comparison of PRAM and thermodilution cardiac output values during various haemodynamic states in pig.

38. Giomarelli P, Biagioli B, Scolletta S. Cardiac output monitoring by Pressure Recording Analitical Method in cardiac surgery. Eur J cardio-thor Surg 2004;26:515-520

39. Jensen KT, Carstens J, Ivarsen P, et al. A new, fast and reliable radioimmunoassay of Brain Natriuretic Peptide in human plasma. Reference values in healthy subjects and in patients with different diseases. Scand J Clin Lab Invest 1997;57:529-40

40. Kirsh MM, Lemmer JH, Niclas JM, et al. Natriuresis associated with elevated plasma atrial natriuretic hormone during supraventricular tachycardia. Am Heart J 1989;117:377-81

41. deBold AJ, Borenstein HB, Veress AT, Sonnonberg H. A rapid and potent natriuretic action response to intravenous injection of atrial

42. Clerico A. Pathophysiological and clinical relevance of circulating levels of cardiac natriuretic hormones: are they merely markers of cardiac disease. Clin Chem Lab Med 2002 Aug;40(8):752-60. Review

43. deLemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet 2003;26:316-22

44. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature 1988;332:78-81

45. Sudoh T, Minamino N, Matsuo H, Kangawa K. C-type natriuretic peptide (CNP): a new member of anetriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 1990;168:863-70

46. Kangawa K, Matsuo H. Purification and complete amino acid sequenze of alfa-human natriuretic pepteide (α-hANP). Biochem Biophys Res Commun 1984;118:131-39

47. KambayashiY, Nakao K, Mukoyama M, Saito Y, ogawa Y, Shiono S, Inouye K, Yoshida N, Imura H. Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett 1990;259:341-45

48. TawaragiY, Fuchimara K, Tanaka S, Minamino N, Kangawa K, Matsuo H: Gene precursor structures of human C-type natriuretic peptide. Biochem Biophys Res Commun 1991;175:645-51

49. Kambayashi Y, Nakao K, Kimura H, Kawabata T, Nakamura M, Inouye K, Yoshida N, Imura H. Biological characterzation of human brain natriuretic peptide. Biochem Biophys Res Commun 1990;173:599-605

50. deLemos JA, McGuire DK, et al. B-type natriuretic peptide in cardiovascular disease. Lancet 2003;362:316-322

51. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, Kambayashi, Inoye K, Iamura H: Brain natriuretic peptide as a novel cardiac hormone in humans: Evidence for an exquisite dual natriuretic peptride system, ANP and BNP. J Clin Invest 1991;87:1402-12

52. Mair J, Hammerer-Lercher a, Puschendorf B. The impact of cardiac natriuretic peptide determination on the diagnosis and management of heart failure. Clin Chem Lab Med 2001;39:571-88

53. Nagaya N, Nishikimi T, Okano Y, Uematsu M, Satoh T, Kyotani S et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricolar dysfunction in pulmonary hypertension. J Am Coll Cardiol 1998;31:202-8

54. Remme WJ, Swedberg K. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 2001;22:1527-60

55. Januzzi JL, Camargo CA, Anwaruddin S et al. The N-terminal pro- BNP investigation of dyspnoea in the Emergency Department. Am J Cardiol 2005;95:948-54

56. Mueller C, Shoeler A, Laule-Kilian K et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Eng J Med 2004;350-647-54

57. Tomaru K-i, Arai M, Yokoyama T, et al. Transcriptional activation of the BNP gene by lipopolysaccharide is mediated through GATA elements in neonatal rat cardiac myocites. J Mol Cell Cardiol 2002, 34:649-59

58. Tanakka T, Kanda T, Takahashi T, et al. Iterleukin-6 induced reciprocal expression of SERCA and natriuretic peptides mRNA in cultures rat ventricular myocites. J Int Med Res 2004;32:32-54

59. Song DL, Kohse KP, Murad F. Brain natriuretic factor: augmentation of cellular Cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS lett 1988;232:125-29

60. Chinkers M, Garbers DL, Chang MS, Lowe DG et al. A membrane form of guanylate cyclase in an atrial natriuretic peptide receptor. Nature 1989;338:78-83

61. Fuller F, Porter JG, Arfsten AE, Miller J, et al. Atrial natriuretic peptide clearence receptor. J Biol Chem 1988;263:9395-9401

62. Yoshimura M, Yasue H, Morita E, Sakaino N, Jougasaki M, et al: Hemodynamic, renal and hormonal responses to brain natriuretic peptide infusion in patients with congestive heart failure

63. Jensen KT, Carstens J, Pedersen FB. Effect of BNP on renal hemodynamics, tubular function and vasoactive hormones in humans. Am J Physiol 1998;274:63-72

64. Hurford WE, Lynch KE, Strass HW 1991. Myocardial perfusion as assessed by thallium-201 scintigraphy during discontinuation of mechanical ventilation in ventilated patients. Anesthesiology 74; 1007-16

65. Richard C, Tebuol J-L, Archambaud F, Hebert J-l, Michaut P, AuzepyP 1994. Left ventricular funcion during weaning of patients with chronic obstructive pulmonary disease. Intensive Care Med 20:181-186

66. Vanzetto G, Jacon P, Coalizzano A, et al. Terminal pro-brain natriuretic peptide predicts myocardial ischemia and is related to postischemic left-ventricular dysfunction in patients with stabile coronary artery disease. J Nucl Cardiol 2007 Nov-Dec;14(6):835- 42

67. Sinclair H, Paterson M, Walzer S, et al. Predicting outcome in patients with acute coronary syndrome: evaluation of B-type natriuretic peptide and the global registry of acute coronary events (GRACE) risk score. Scott Med J 2007 Aug;52(3):8-13

68. 8th consensus conference on resuscitation and emergency medicine: Weaning from mechanical ventilation in adults, predominant neurologic and muscolar desease excluded del 1992

69. Mekontso-Dessap A, deProst N, Girou E, Braconnier F, Lemaire F, Brochard L. B-type natriuretic peptide and weaning from mechanical ventilation. Int Car Med 2006;32:1529-36

70. Krieger BP, Breitenbucher JI, Throop G. Serial mesurements of the rapid-swallow-breathing index as a predictor of weaning outcome in the elderly medical patients

71. Meade M, Guyatt G, Cook D, Griffith et al. Predicting success in weaning from mechanical ventilation. Chest 2001;120:400-424

72. Kuhlen R, Max M, Dembinsky R, Terbeck S, Jurgens E, Roissant R. Breathing pattern and workload during automatic tube compensation, pressure support, T-piece trials in weaning patients. Eur J Anesthesiol 2003;20:10-16

73. Straus C, Louis B, Isabey D, Lemaire F, Harf A, Brochard L. Contribution of the endotracheal tube and the upper airway to breathing workload. Am J Respir Crit Care Med 1998;157:23-30

74. Brochard L, Rua F, Lorino H, et al. Inspiratory pressure support compensates for the addictional work of breathing caused by endotracheal tube. Anest 1991;75:739-45

75. Esteban A, Alìa I, Tobin M, Gordo et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1998;159:512- 518

76. Scheinhorn DJ, Chao DC, et al. Outcomes in post-ICU mechanical ventilation. Chest 2001;119:236-242

77. Seino Y, Ogawa A, Yamashita T, et al. Application of NT-proBNP and BNP measurements in cardiac care. A more discerning marker for the detection and evaluation of heart failure. Eur J Heart Fail 2004;6:295-300

78. Hobbs FD, Davis RC, Roalfe AK, et al. Reliability of N-terminal proBNP assay in diagnosis of left ventricular systolic dysfunction within representative and high risk populations. Heart 2004;90:866-70

79. Mueller T, Gegenhuber A, Poelz W, et al. Biochemical diagnosis of impaired left ventricular ejection fraction: comparison of the diagnostic accuracy of BNP and NT-proBNP. Clin Chem Lab Med 2004;42:159-63

80. Emdin M, Passino C, Prontera C, Fontana M, et al. Comparison of Brain Natriuretic Peptide (BNP) and Amino-Terminal ProBNP for early diagnosis of heart failure. Clin Chem 2007;53:1289-97

Ringraziamenti

Questa tesi, e in generale la laurea non è il frutto di un mio

Documenti correlati