• Non ci sono risultati.

5. Parte Sperimentale

5.6. Caratterizzazione dei prodotti di sintesi

5.6.9. Angolo di contatto statico

Le misure di angolo di contato statico sono state condotte utilizzando un goniometro FTA 200 Camtel interfacciato con un computer equipaggiato con software FTA32. Come liquido bagnante è stata utilizzata acqua grado HPLC. I valori di angolo di contatto sono stati calcolati come media di cinque misure per campione ciascuna delle quali è stata presa dopo circa 100 secondi dalla caduta della goccia.

74

6 Bibliografia

1. Lombardo, D., Kiselev, M. A., Magazù, S. & Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 1–22 (2015).

2. Raffa, P., Wever, D. A. Z., Picchioni, F. & Broekhuis, A. A. Polymeric surfactants: Synthesis, properties, and links to applications. Chem. Rev. 115, 8504–8563 (2015). 3. Bhargava, P. et al. Self-Assembled Polystyrene- b lock -poly(ethylene oxide) Micelle

Morphologies in Solution. Macromolecules 39, 4880–4888 (2006).

4. Kabanov, A. V. & Vinogradov, S. V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chemie - Int. Ed. 48, 5418–5429 (2009).

5. Ouchi, M., Terashima, T. & Sawamoto, M. Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109, 4963–5050 (2009).

6. Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

7. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process a third update. Aust. J. Chem. 65, 985–1076 (2012).

8. Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science (80-. ). 300, 460–464 (2003).

9. Li, L., Raghupathi, K., Song, C., Prasad, P. & Thayumanavan, S. Self-assembly of random copolymers. Chem. Commun. 50, 13417–13432 (2014).

10. Kimura, Y., Terashima, T. & Sawamoto, M. Self-Assembly of Amphiphilic Random Copolyacrylamides into Uniform and Necklace Micelles in Water. Macromol. Chem. Phys. 218, 1–11 (2017).

11. Ueda, M., Hashidzume, A. & Sato, T. Unicore-multicore transition of the micelle formed by an amphiphilic alternating copolymer in aqueous media by changing molecular weight. Macromolecules 44, 2970–2977 (2011).

12. Ogura, Y., Terashima, T. & Sawamoto, M. Amphiphilic PEG-Functionalized Gradient Copolymers via Tandem Catalysis of Living Radical Polymerization and

Transesterification. Macromolecules 50, 822–831 (2017).

13. Ogura, Y. et al. Self-Assembly of Hydrogen-Bonding Gradient Copolymers: Sequence Control via Tandem Living Radical Polymerization with Transesterification.

Macromolecules 50, 3215–3223 (2017).

14. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science (80-. ). 306, 98–101 (2004). 15. Zhang, L. & Eisenberg, A. Multiple Morphologies of ‘Crew-Cut’ Aggregates of

Polystyrene-b-poly(acrylic acid) Block Copolymers. Science (80-. ). 268, 1728–1731 (1995).

75

16. Liu, G. et al. Novel anionic fluorine-containing amphiphilic self-assembly polymer micelles for potential application in protein drug carrier. J. Fluor. Chem. 141, 21–28 (2012).

17. Aiertza, M. K., Odriozola, I., Cabañero, G., Grande, H. J. & Loinaz, I. Single-chain polymer nanoparticles. Cellular and Molecular Life Sciences vol. 69 (2012).

18. Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003). 19. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969

(2012).

20. Quémener, D., Deratani, A. & Lecommandoux, S. Dynamic Assembly of Block- Copolymers. in Topics in current chemistry vol. 312 165–192 (2011).

21. Smart, T. et al. Block copolymer nanostructures. Nano Today 3, 38–46 (2008).

22. Wong, C. H. & Zimmerman, S. C. Orthogonality in organic, polymer, and supramolecular chemistry: From Merrifield to click chemistry. Chem. Commun. 49, 1679–1695 (2013). 23. Quémener, D., Davis, T. P., Barner-Kowollik, C. & Stenzel, M. H. RAFT and click

chemistry: A versatile approach to well-defined block copolymers. Chem. Commun. 5051–5053 (2006) doi:10.1039/b611224b.

24. Hirai, Y., Terashima, T., Takenaka, M. & Sawamoto, M. Precision Self-Assembly of Amphiphilic Random Copolymers into Uniform and Self-Sorting Nanocompartments in Water. Macromolecules 49, 5084–5091 (2016).

25. Shibata, M. et al. Intramolecular Folding or Intermolecular Self-Assembly of Amphiphilic Random Copolymers: On-Demand Control by Pendant Design. Macromolecules 51, 3738–3745 (2018).

26. Hattori, G., Hirai, Y., Sawamoto, M. & Terashima, T. Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles. Polym. Chem. 8, 7248–7259 (2017).

27. Imai, S., Hirai, Y., Nagao, C., Sawamoto, M. & Terashima, T. Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and

Thermoresponsive Micelles in Water. Macromolecules 51, 398–409 (2018). 28. Kulthe, S. S., Choudhari, Y. M., Inamdar, N. N. & Mourya, V. Polymeric micelles:

authoritative aspects for drug delivery. Des. Monomers Polym. 15, 465–521 (2012). 29. Xu, W., Ling, P. & Zhang, T. Polymeric Micelles, a Promising Drug Delivery System to

Enhance Bioavailability of Poorly Water-Soluble Drugs. J. Drug Deliv. 2013, 1–15 (2013).

30. Richter, A., Olbrich, C., Krause, M., Hoffmann, J. & Kissel, T. Polymeric Micelles for

parenteral delivery of Sagopilone: Physicochemical characterization, novel formulation approaches and their toxicity assessment in vitro as well as in vivo. Eur. J. Pharm. Biopharm. 75, 80–89 (2010).

31. Kwon, G. S. & Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 21, 107–116 (1996).

76

32. Owens, D. E. & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

33. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

34. Kröger, A. P. P. & Paulusse, J. M. J. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J. Control. Release 286, 326–347 (2018).

35. Huurne, G. M. ter, Palmans, A. R. A. & Meijer, E. W. Supramolecular Single-Chain Polymeric Nanoparticles. CCS Chem. 64–82 (2019)

doi:10.31635/ccschem.019.20180036.

36. Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Oxidation of sec-alcohols with Ru(II)- bearing microgel star polymer catalysts via hydrogen transfer reaction: Unique

microgel-core catalysis. J. Polym. Sci. Part A Polym. Chem. 49, 1061–1069 (2011). 37. Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Thermoregulated phase-transfer

catalysis via PEG-armed Ru(II)-bearing microgel core star polymers: Efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. J. Polym. Sci. Part A Polym. Chem. 48, 373–379 (2010).

38. Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: Microgel-core reaction space for active, versatile and recyclable catalysis. Polym. J. 43, 770–777 (2011). 39. Li, J., Wang, Q., Liu, Y., Wang, M. & Tan, Y. Long Branched-Chain Amphiphilic

Copolymers: Synthesis, Properties, and Application in Heavy Oil Recovery. Energy and Fuels 32, 7002–7010 (2018).

40. Xie, C., Zhen, X., Lei, Q., Ni, R. & Pu, K. Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging. Adv. Funct. Mater. 27, (2017). 41. Acikbas, Y. et al. An optical vapor sensor based on amphiphilic block copolymer

langmuir-blodgett films. IEEE Sens. J. 18, 5313–5320 (2018).

42. Kaji, M. et al. Surface morphology of cosmetic film consisting of PEG-diisostearate amphiphilic random copolymer, xanthan gum, and solvents. J. Oleo Sci. 66, 1239–1245 (2017).

43. Kocak, G., Tuncer, C. & Bütün, V. PH-Responsive polymers. Polym. Chem. 8, 144–176 (2017).

44. Chang, X., Wang, C., Shan, G., Bao, Y. & Pan, P. Thermoresponsivity, Micelle Structure, and Thermal-Induced Structural Transition of an Amphiphilic Block Copolymer Tuned by Terminal Multiple H-Bonding Units. Langmuir 36, 956–965 (2020).

45. Roy, D., Brooks, W. L. A. & Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 42, 7214–7243 (2013).

46. Roy, D. & Sumerlin, B. S. Let there be light: Photo-cross-linked block copolymer nanoparticles. Macromol. Rapid Commun. 35, 174–179 (2014).

77

47. Zhang, X. et al. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater. Chem. Front. 1, 807–822 (2017).

48. Nyström, A. M. & Wooley, K. L. The Importance of Chemistry in Creating Well-Defined Nanoscopic Embedded Therapeutics: Devices Capable of the Dual Functions of Imaging and Therapy. Acc. Chem. Res. 44, 969–978 (2011).

49. Manouras, T. & Vamvakaki, M. Field responsive materials: Photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym. Chem. 8, 74–96 (2017).

50. Zhang, Q., Weber, C., Schubert, U. S. & Hoogenboom, R. Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horizons 4, 109–116 (2017).

51. Halperin, A., Kröger, M. & Winnik, F. M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chemie - Int. Ed. 54, 15342–15367 (2015).

52. Seuring, J. & Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun. 33, 1898–1920 (2012).

53. Mohammed, M. N., Bin Yusoh, K. & Shariffuddin, J. H. B. H. Poly(N-vinyl caprolactam) thermoresponsive polymer in novel drug delivery systems: A review. Mater. Express 8, 21–34 (2018).

54. Bauri, K., Roy, S. G., Pant, S. & De, P. Controlled synthesis of amino acid-based pH- responsive chiral polymers and self-assembly of their block copolymers. Langmuir 29, 2764–2774 (2013).

55. Lutz, J. F. & Hoth, A. Preparation of ideal PEG analogues with a tunable

thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39, 893–896 (2006).

56. Lutz, J. F. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. J. Polym. Sci. Part A Polym. Chem. 46, 3459–3470 (2008).

57. Luzon, M. et al. Water-soluble, thermoresponsive, hyperbranched copolymers based on PEG-methacrylates: Synthesis, characterization, and LCST behavior. J. Polym. Sci. Part A Polym. Chem. 48, 2783–2792 (2010).

58. Matsumoto, K., Terashima, T., Sugita, T., Takenaka, M. & Sawamoto, M. Amphiphilic Random Copolymers with Hydrophobic/Hydrogen-Bonding Urea Pendants: Self- Folding Polymers in Aqueous and Organic Media. Macromolecules 49, 7917–7927 (2016).

59. Otsu, T. & Yoshida, M. Role of initiator‐transfer agent‐terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. Die Makromol. Chemie, Rapid Commun. 3, 127–132 (1982).

60. Ishikawa, T. et al. Novel [2,3]-Sigmatropic Rearrangement for Carbon−Nitrogen Bond Formation [ J. Am. Chem. Soc. 2001 , 123 , 7734−7735]. J. Am. Chem. Soc. 123, 9724– 9724 (2001).

78

61. Fischer, H. The Persistent Radical Effect in controlled radical polymerizations. J. Polym. Sci. Part A Polym. Chem. 37, 1885–1901 (1999).

62. Grubbs, R. B. Nitroxide-mediated radical polymerization: Limitations and versatility. Polym. Rev. 51, 104–137 (2011).

63. Matyjaszewski, K. Atom transfer radical polymerization: From mechanisms to applications. Isr. J. Chem. 52, 206–220 (2012).

64. Chiefari, J. et al. Living free-radical polymerization by reversible addition -

Fragmentation chain transfer: The RAFT process. Macromolecules 31, 5559–5562 (1998).

65. Benaglia, M., Alberti, A., Giorgini, L., Magnoni, F. & Tozzi, S. Poly(glycidyl methacrylate): A highly versatile polymeric building block for post-polymerization modifications. Polym. Chem. 4, 124–132 (2013).

66. Moad, G., Rizzardo, E. & Thang, S. H. Living Radical Polymerization by the RAFT Process—A First Update. Aust. J. Chem. 59, 669 (2006).

67. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process A second update. Aust. J. Chem. 62, 1402–1472 (2009).

68. Barner, L. & Perrier, S. Polymers with Well-Defined End Groups via RAFT - Synthesis, Applications and Postmodifications. Handb. RAFT Polym. 455–482 (2008)

doi:10.1002/9783527622757.ch12.

69. Moad, G., Rizzardo, E. & Thang, S. H. End-functional polymers, thiocarbonylthio group removal/transformation and reversible addition-fragmentation-chain transfer (RAFT) polymerization. Polym. Int. 60, 9–25 (2011).

70. Yildirim, T. et al. RAFT made methacrylate copolymers for reversible pH-responsive nanoparticles. J. Polym. Sci. Part A Polym. Chem. 53, 2711–2721 (2015).

71. Dommanget, C., D’Agosto, F. & Monteil, V. Polymerization of ethylene through reversible addition-fragmentation chain transfer (RAFT). Angew. Chemie - Int. Ed. 53, 6683–6686 (2014).

72. Moad, G. Reversible addition–fragmentation chain transfer (co)polymerization of conjugated diene monomers: butadiene, isoprene and chloroprene. Polym. Int. 66, 26– 41 (2017).

73. McCormick, C. L. & Lowe, A. B. Aqueous RAFT polymerization: Recent developments in synthesis of functional water-soluble (Co)polymers with controlled structures. Acc. Chem. Res. 37, 312–325 (2004).

74. Moad, G. Mechanism and kinetics of dithiobenzoate-mediated raft polymerization- status of the dilemma. Macromol. Chem. Phys. 215, 9–26 (2014).

75. Feldermann, A., Coote, M. L., Stenzel, M. H., Davis, T. P. & Barner-Kowollik, C. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization. J. Am. Chem. Soc. 126, 15915–15923 (2004).

79

retardation in reversible addition-fragmentation chain transfer polymerization. Macromolecules 34, 349–352 (2001).

77. Terashima, T. & Sawamoto, M. Single-Chain Nanoparticles via Self-Folding Amphiphilic Copolymers in Water. in Single-Chain Polymer Nanoparticles vol. 47 313–339 (Wiley- VCH Verlag GmbH & Co. KGaA, 2017).

78. Koda, Y., Terashima, T. & Sawamoto, M. Multimode Self-Folding Polymers via Reversible and Thermoresponsive Self-Assembly of Amphiphilic/Fluorous Random Copolymers. Macromolecules 49, 4534–4543 (2016).

79. Perrier, S. 50th Anniversary Perspective: RAFT Polymerization - A User Guide. Macromolecules 50, 7433–7447 (2017).

80. Szweda, D., Szweda, R., Dworak, A. & Trzebicka, B. Thermoresponsive

poly[oligo(ethylene glycol) methacrylate]s and their bioconjugates - Synthesis and solution behavior. Polimery/Polymers 62, 298–310 (2017).

81. Hamielec, A. E. & Macgregor, J. F. Copolymerization. 17–31.

82. Barner-Kowollik, C. et al. Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. J. Polym. Sci. Part A Polym. Chem. 44, 5809– 5831 (2006).

83. Martini, F. et al. Molecular Dynamics of Amphiphilic Random Copolymers in the Bulk: A 1H and 19F NMR Relaxometry Study. Macromol. Chem. Phys. 220, 1–10 (2019).

84. Dvornic, P. R. Thermal Properties of Polysiloxanes. Silicon-Containing Polym. 185–212 (2000) doi:10.1007/978-94-011-3939-7_7.

85. Smith, S. D., Long, T. E. & Mcgrath, J. E. Thermogravimetric analysis of poly(alkyl

methacrylates) and poly(methylmethacrylate-g-dimethyl siloxane) graft copolymers. J. Polym. Sci. Part A Polym. Chem. 32, 1747–1753 (1994).

86. Chang, X., Wang, C., Shan, G., Bao, Y. & Pan, P. Thermoresponsivity, Micelle Structure, and Thermal-Induced Structural Transition of an Amphiphilic Block Copolymer Tuned by Terminal Multiple H-Bonding Units. Langmuir 36, 956–965 (2020).

87. Martinelli, E. et al. Prolate and Temperature-Responsive Self-Assemblies of Amphiphilic Random Copolymers with Perfluoroalkyl and Polyoxyethylene Side Chains in Solution. Macromol. Chem. Phys. 219, 1–6 (2018).

88. Martinelli, E. et al. The Temperature-Responsive Nanoassemblies of Amphiphilic Random Copolymers Carrying Poly(siloxane) and Poly(oxyethylene) Pendant Chains. Macromol. Chem. Phys. 219, 1–7 (2018).

89. Terashima, T., Sugita, T., Fukae, K. & Sawamoto, M. Synthesis and single-chain folding of amphiphilic random copolymers in water. Macromolecules 47, 589–600 (2014).

90. Nyman, M. & Fullmer, L. Small angle X-ray scattering of group V polyoxometalates. Trends Polyoxometalates Res. 151–170 (2015).

91. Prabhakara Rao, S., Ponratnam, S. & Kapur, S. L. Kelen-Tudos Method Applied To the Analysis of High-Conversion Copolymerization Data. J Polym Sci Part B Polym Lett 14,

80 517–520 (1976).

Documenti correlati