[1] Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther. 2015; 148: 34-‐46.
[2] Li Q, Yang HY, Chen Y, Sun HP. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur J Med Chem. 2017; 132: 294-‐309.
[3] Andersson ML, Moller AM, Wildgaard K. Butyrylcholinesterase deficiency and its clinical importance in anaesthesia: a systematic review. Anaesthesia. 2019; 74(4): 518-‐528.
[4] Ha ZY, Mathew S, Yeong KY. Butyrylcholinesterase: a multifaceted pharmacological target and tool. Curr Protein Pept Sci. 2020; 21(1): 99-‐109.
[5] Masson P, Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons:
catalytic complexities and hysteretic behavior. Arch Biochem Biophys. 2010; 494(2): 107-‐120.
[6] Ashani Y, Pistinner S. Estimation of the upper limit of human butyrylcholinesterase dose required for protection against organophosphates toxicity: a mathematically based toxicokinetic model.
Toxicol Sci. 2004; 77(2): 358-‐367.
[7] Allon N, Raveh L, Gilat E, Cohen E, Grunwald J, Ashani Y. Prophylaxis against soman inhalation toxicity in guinea pigs by pretreatment alone with human serum butyrylcholinesterase. Toxicol Sci.
1998; 43(2): 121-‐128.
[8] Sun H, Shen ML, Pang YP, Lockridge O, Brimijoin S. Cocaine metabolism accelerated by a re-‐engineered human butyrylcholinesterase. J Pharmacol Exp Ther. 2002; 302(2): 710-‐716.
[9] GomezRamos P, Moran MA. Ultrastructural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer disease patients. Mol Chem Neuropathol. 1997; 30(3): 161-‐173.
[10] Chen VP, Gao Y, Geng L, Stout MB, Jensen MD, Brimijoin S. Butyrylcholinesterase deficiency promotes adipose tissue growth and hepatic lipid accumulation in male mice on high-‐fat diet.
Endocrinology. 2016; 157(8): 3086-‐3095.
[11] Chen VP, Gao Y, Geng L, Parks RJ, Pang YP, Brimijoin S. Plasma butyrylcholinesterase regulates ghrelin to control aggression. Proc Natl Acad Sci USA. 2015; 112(7): 2251-‐2256.
[12] Nicolet Y, Lockridge O, Masson P, Fontecilla-‐Camps JC, Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem. 2003; 278(42):
41141-‐41147.
[13] Brus B, Košak U, Turk S, et al. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J Med Chem. 2014; 57(19): 8167-‐8179.
[14] de Andrade P, Mantoani SP, Gonçalves Nunes PS, et al. Highly potent and selective aryl-‐1,2,3-‐triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer's disease.
Bioorg Med Chem. 2019; 27(6): 931-‐943.
[15] Schopfer LM, Lockridge O, Brimijoin S. Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. Gen Comp Endocrinol. 2015; 224: 61-‐68.
[16] Franjesevic AJ, Sillart SB, Beck JM, Vyas S, Callam CS, Hadad CM. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry. 2019; 25(21): 5337-‐5371.
[17] Delacour H, Lushchekina S, Mabboux I, et al. Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), “silent” with mivacurium. Biochem Pharmacol. 2014; 92(3): 476-‐483.
[18] Kalow W, Genest K. A method for the detection of atypical forms of human serum cholinesterase;
determination of dibucaine numbers. Can J Biochem Physiol. 1957; 35(6): 339-‐346.
[19] Johnson G, Moore SW. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int. 2012; 61(5): 783-‐797.
[20] Souza RL, Mikami LR, Maegawa RO, Chautard-‐Freire-‐Maia EA. Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample. Mol Genet Metab. 2005;
84(4): 349-‐353.
[21] Hashim Y, Shepherd D, Wiltshire S, et al. Butyrylcholinesterase K variant on chromosome 3 q is associated with type II diabetes in white Caucasian subjects. Diabetologia. 2001; 44(12): 2227-‐2230.
[22] Lockridge O, Norgren RB, Jr., Johnson RC, Blake TA. Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem Res Toxicol. 2016; 29(9): 1381-‐1392.
[23] Bono GF, Simão-‐Silva DP, Batistela MS, et al. Butyrylcholinesterase: K variant, plasma activity, molecular forms and rivastigmine treatment in Alzheimer's disease in a Southern Brazilian population. Neurochem Int. 2015; 81: 57-‐62.
[24] Bartels CF, Jensen FS, Lockridge O, et al. DNA mutation associated with the human butyrylcholinesterase K-‐variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet. 1992; 50(5): 1086-‐1103.
[25] Reid GA, Darvesh S. Butyrylcholinesterase-‐knockout reduces brain deposition of fibrillar beta-‐amyloid in an Alzheimer mouse model. Neuroscience. 2015; 298: 424-‐435.
[26] Furtado-‐Alle L, Andrade FA, Nunes K, Mikami LR, Souza RL, Chautard-‐Freire-‐Maia EA.
Association of variants of the -‐116 site of the butyrylcholinesterase BCHE gene to enzyme activity and body mass index. Chem Biol Interact. 2008; 175(1-‐3): 115-‐118.
[27] Vaisi-‐Raygani A, Rahimi Z, Entezami H, et al. Butyrylcholinesterase K variants increase the risk of coronary artery disease in the population of western Iran. Scand J Clin Lab Invest. 2008; 68(2):
123-‐129.
[28] Perry E, McKeith I, Ballard C. Butyrylcholinesterase and progression of cognitive deficits in dementia with Lewy bodies. Neurology. 2003; 60(11): 1852-‐1853.
[29] De Beaumont L, Pelleieux S, Lamarre-‐Theroux L, Dea D, Poirier J. Alzheimer's disease cooperative S. butyrylcholinesterase K and apolipoprotein E-‐varepsilon4 reduce the age of onset of Alzheimer's disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J Alzheimers Dis. 2016; 54(3): 913-‐922.
[30] Podoly E, Shalev DE, Shenhar-‐Tsarfaty S, et al. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem. 2009; 284(25): 17170-‐17179.
[31] Manoharan I, Boopathy R, Darvesh S, Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin Chim Acta. 2007; 378(1-‐2):
128-‐135.
[32] Neitlich HW. Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. J Clin Invest. 1966; 45(3): 380-‐387.
[33] Krause A, Lane AB, Jenkins T. A new high activity plasma cholinesterase variant. J Med Genet.
1988; 25(10): 677-‐681.
[34] Akizuki S, Ohnishi A, Kotani K, Sudo K. Genetic and immunological analyses of patients with increased serum butyrylcholinesterase activity and its C5 variant form. Clin Chem Lab Med. 2004;
42(9): 991-‐996.
[35] Duysen EG, Bartels CF, Lockridge O. Wild-‐type and A328W mutant human butyrylcholinesterase tetramers expressed in Chinese hamster ovary cells have a 16-‐hour half-‐life in the circulation and protect mice from cocaine toxicity. J Pharmacol Exp Ther. 2002; 302(2): 751-‐758.
[36] Huang YJ, Huang Y, Baldassarre H, et al. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA. 2007;
104(34): 13603-‐13608.
[37] Ngamelue MN, Homma K, Lockridge O, Asojo OA. Crystallization and X-‐ray structure of full-‐length recombinant human butyrylcholinesterase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007; 63(Pt 9): 723-‐727.
[38] Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-‐based nerve agent bioscavengers. Chem Biol Interact. 2013; 206(3): 536-‐544.
[39] Larson MA, Lockridge O, Hinrichs SH. Polyproline promotes tetramerization of recombinant human butyrylcholinesterase. Biochem J. 2014; 462(2): 329-‐335.
[40] Alkanaimsh S, Karuppanan K, Guerrero A, et al. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. Front Plant Sci. 2016; 7: 743.
[41] Peng H, Schopfer LM, Lockridge O. Origin of polyproline-‐rich peptides in human butyrylcholinesterase tetramers. Chem Biol Interact. 2016; 259(Pt B): 63-‐69.
[42] Bon S, Coussen F, Massoulie J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997; 272(5): 3016-‐3021.
[43] Perrier AL, Massoulie J, Krejci E. PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron. 2002; 33(2): 275-‐285.
[44] Pan Y, Muzyka JL, Zhan CG. Model of human butyrylcholinesterase tetramer by homology modeling and dynamics simulation. J Phys Chem B. 2009;113(18):6543-‐6552.
[45] Leung MR, van Bezouwen LS, Schopfer LM, et al. Cryo-‐EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proc Natl Acad Sci USA. 2018; 115(52): 13270-‐13275.
[46] Lushchekina SV, Schopfer LM, Grigorenko BL, et al. Optimization of cholinesterase-‐based catalytic bioscavengers against organophosphorus agents. Front Pharmacol. 2018; 9: 211.
[47] Alejo-‐Gonzalez K, Hanson-‐Viana E, Vazquez-‐Duhalt R. Enzymatic detoxification of organophosphorus pesticides and related toxicants. J Pestic Sci. 2018; 43(1): 1-‐9.
[48] Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004; 38: 151-‐216.
[49] Reed BA, Sabourin CL, Lenz DE. Human butyrylcholinesterase efficacy against nerve agent exposure. J Biochem Mol Toxicol. 2017; 31: 5.
[50] Colovic MB, Krstic DZ, Lazarevic-‐Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013; 11(3): 315-‐335.
[51] Cannard K. The acute treatment of nerve agent exposure. J Neurol Sci. 2006; 249(1): 86-‐94.
[52] Talbot BG, Anderson DR, Harris LW, Yarbrough LW, Lennox WJ. A comparison of in vivo and in vitro rates of aging of soman-‐inhibited erythrocyte acetylcholinesterase in different animal species.
Drug Chem Toxicol. 1988; 11(3): 289-‐305.
[53] Shenouda J, Green P, Sultatos L. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon. Toxicol Appl Pharmacol. 2009;
241(2): 135-‐142.
[54] Wilson IB, Acetylcholinesterase XI. Reversibility of tetraethyl pyrophosphate. J Biol Chem. 1951;
190(1): 111-‐117.
[55] Chao CK, Balasubramanian N, Gerdes JM, Thompson CM. The inhibition, reactivation and mechanism of VX-‐, sarin-‐, fluoro-‐VX and fluoro-‐sarin surrogates following their interaction with HuAChE and HuBuChE. Chem Biol Interact. 2018; 291: 220-‐227.
[56] Kovarik Z, Ciban N, Radic Z, Simeon-‐Rudolf V, Taylor P. Active site mutant acetylcholinesterase interactions with 2-‐PAM, HI-‐6, and DDVP. Biochem Biophys Res Commun. 2006; 342(3): 973-‐978.
[57] Musilova L, Kuca K, Jung YS, Jun D. In vitro oxime-‐assisted reactivation of paraoxon-‐inhibited human acetylcholinesterase and butyrylcholinesterase. Clin Toxicol (Phila). 2009; 47(6): 545-‐550.
[58] Jun D, Musilova L, Musilek K, Kuca K. In vitro ability of currently available oximes to reactivate organophosphate pesticide-‐inhibited human acetylcholinesterase and butyrylcholinesterase. Int J Mol Sci. 2011; 12(3): 2077-‐2087.
[59] Renou J, Dias J, Mercey G, et al. Synthesis and in vitro evaluation of donepezil-‐based reactivators and analogues for nerve agent-‐inhibited human acetylcholinesterase. RSC Adv. 2016; 6(22):
17929-‐17940.
[60] Zorbaz T, Malinak D, Kuca K, Musilek K, Kovarik Z. Butyrylcholinesterase inhibited by nerve agents is efficiently reactivated with chlorinated pyridinium oximes. Chem Biol Interact. 2019; 307:
16-‐20.
[61] Maček Hrvat N, Kalisiak J, Šinko G, et al. Evaluation of high-‐affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-‐triazoles, as reactivators of phosphylated cholinesterases. Toxicol Lett. 2020; 321: 83-‐89.
[62] Malinak D, Dolezal R, Hepnarova V, et al. Synthesis, in vitro screening and molecular docking of isoquinolinium-‐5-‐carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J Enzyme Inhib Med Chem. 2020; 35(1): 478-‐488.
[63] Lushchekina S, Masson P. Catalytic bioscavengers against organophosphorus agents: mechanistic issues of selfreactivating cholinesterases. Toxicology. 2018; 409: 91-‐102.
[64] Layish I, Krivoy A, Rotman E, Finkelstein A, Tashma Z, Yehezkelli Y. Pharmacologic prophylaxis against nerve agent poisoning. Isr Med Assoc J. 2005; 7(3): 182-‐187.
[65] Raveh L, Grauer E, Grunwald J, Cohen E, Ashani Y. The stoichiometry of protection against soman and VX toxicity in monkeys pretreated with human butyrylcholinesterase. Toxicol Appl Pharmacol.
1997; 145(1): 43-‐53.
[66] Weber A, Butterweck H, Mais-‐Paul U, et al. Biochemical, molecular and preclinical characterization of a doublevirus-‐reduced human butyrylcholinesterase preparation designed for clinical use. Vox Sang. 2011; 100(3): 285-‐297.
[67] Matzke SM, Oubre JL, Caranto GR, Gentry MK, Galbicka G. Behavioral and immunological effects of exogenous butyrylcholinesterase in rhesus monkeys. Pharmacol Biochem Behav. 1999; 62(3):
523-‐530.
[68] Saxena A, Sun W, Fedorko JM, Koplovitz I, Doctor BP. Prophylaxis with human serum butyrylcholinesterase protects guinea pigs exposed to multiple lethal doses of soman or VX.
Biochem Pharmacol. 2011; 81(1): 164-‐169.
[69] Clark MG, Sun W, Myers TM, Bansal R, Doctor BP, Saxena A. Effects of physostigmine and human butyrylcholinesterase on acoustic startle reflex and prepulse inhibition in C57BL/6J mice.
Pharmacol Biochem Behav. 2005; 81(3): 497-‐505.
[70] Genovese RF, Doctor BP. Behavioral and pharmacological assessment of butyrylcholinesterase in rats. Pharmacol Biochem Behav. 1995; 51(4): 647-‐654.
[71] Saxena A, Sun W, Luo C, Doctor BP. Human serum butyrylcholinesterase: in vitro and in vivo stability, pharmacokinetics, and safety in mice. Chem Biol Interact. 2005; 157-‐158: 199-‐203.
[72] Sun W, Doctor BP, Saxena A. Safety and pharmacokinetics of human serum butyrylcholinesterase in guinea pigs. Chem Biol Interact. 2005; 157-‐158: 428-‐429.
[73] Lenz DE, Clarkson ED, Schulz SM, Cerasoli DM. Butyrylcholinesterase as a therapeutic drug for protection against percutaneous VX. Chem Biol Interact. 2010; 187(1-‐3): 249-‐252.
[74] Mumford H, Price ME, Cerasoli DM, et al. Efficacy and physiological effects of human butyrylcholinesterase as a post-‐exposure therapy against percutaneous poisoning by VX in the guinea-‐pig. Chem Biol Interact. 2010; 187(1-‐3): 304-‐308.
[75] Mumford H, Docx CJ, Price ME, Green AC, Tattersall JE, Armstrong SJ. Human plasma-‐derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning. Chem Biol Interact.
2013; 203(1): 160-‐166.
[76] Broomfield CA, Maxwell DM, Solana RP, Castro CA, Finger AV, Lenz DE. Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J Pharmacol Exp Ther. 1991; 259(2): 633-‐638.
[77] Castro CA, Gresham VC, Finger AV, et al. Behavioral decrements persist in rhesus monkeys trained on a serial probe recognition task despite protection against soman lethality by butyrylcholinesterase. Neurotoxicol Teratol. 1994; 16(2): 145-‐148.
[78] Myers TM. Human plasma-‐derived butyrylcholinesterase is behaviorally safe and effective in cynomolgus macaques (Macaca fascicularis) challenged with soman. Chem Biol Interact. 2019; 308:
170-‐178.
[79] Genovese RF, Sun W, Johnson CC, Ditargiani RC, Doctor BP, Saxena A. Safety of administration of human butyrylcholinesterase and its conjugates with soman or VX in rats. Basic Clin Pharmacol Toxicol. 2010; 106(5): 428-‐434.
[80] Goldsmith M, Ashani Y. Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact. 2018; 292: 50-‐64.
[81] Zhang L, Baker SL, Murata H, et al. Tuning butyrylcholinesterase inactivation and reactivation by polymer-‐basedprotein engineering. Adv Sci (Weinh). 2020; 7(1): 1901904.
[82] Millard CB, Lockridge O, Broomfield CA. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase. Biochemistry. 1995; 34(49):
15925-‐15933.
[83] Kulakova A, Lushchekina S, Grigorenko B, Nemukhin A. Modeling reactivation of the phosphorylated human butyrylcholinesterase by QM(DFTB)/MM calculations. J Theor Comput Chem. 2015; 14: 7.
[84] Wang Y, Boeck AT, Duysen EG, Van Keuren M, Saunders TL, Lockridge O. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase. Toxicol Appl Pharmacol. 2004; 196(3): 356-‐366.
[85] Grigorenko BL, Novichkova DA, Lushchekina SV, et al. Computer-‐designed active human butyrylcholinesterase double mutant with a new catalytic triad. Chem Biol Interact. 2019; 306:
138-‐146.
[86] McGarry KG, Schill KE, Winters TP, et al. Characterization of cholinesterases from multiple large animal species for medical countermeasure development against chemical warfare nerve agents.
Toxicol Sci. 2020; 174(1): 124-‐132.
[87] McGarry KG, Lalisse RF, Moyer RA, et al. A novel, modified human butyrylcholinesterase catalytically degrades the chemical warfare nerve agent, sarin. Toxicol Sci. 2020; 174(1): 133-‐146.
[88] Geyer BC, Kannan L, Garnaud PE, et al. Plant-‐derived human butyrylcholinesterase, but not an organophosphorouscompound hydrolyzing variant thereof, protects rodents against nerve agents.
Proc Natl Acad Sci USA. 2010; 107(47): 20251-‐20256.
[89] Corbin JM, Hashimoto BI, Karuppanan K, et al. Semicontinuous bioreactor production of recombinant butyrylcholinesterase in transgenic rice cell suspension cultures. Front Plant Sci. 2016;
7: 412.
[90] Egelkrout E, Hayden C, Wales M, et al. Production of the bioscavenger butyrylcholinesterase in maize. Mol Breed. 2017; 37: 11.
[91] Cerasoli DM, Griffiths EM, Doctor BP, et al. In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem Biol Interact.
2005; 157-‐158: 363-‐365.
[92] Baldassarre H, Schirm M, Deslauriers J, Turcotte C, Bordignon V. Protein profile and alpha-‐lactalbumin concentration in the milk of standard and transgenic goats expressing recombinant human butyrylcholinesterase. Transgenic Res. 2009; 18(4): 621-‐632.
[93] Baldassarre H, Deslauriers J, Neveu N, Bordignon V. Detection of endoplasmic reticulum stress markers and production enhancement treatments in transgenic goats expressing recombinant human butyrylcholinesterase. Transgenic Res. 2011; 20(6): 1265-‐1272.
[94] Cannon MC, Terneus K, Hall Q, et al. Self-‐assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA. 2008; 105(6): 2226-‐2231.
[95] Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol.
2019; 9: 297.
[96] Chilukuri N, Duysen EG, Parikh K, et al. Adenovirus-‐mediated gene transfer of human butyrylcholinesterase results in persistent high-‐level transgene expression in vivo. Chem Biol Interact. 2008; 175(1-‐3): 327-‐331.
[97] Parikh K, Duysen EG, Snow B, et al. Gene-‐delivered butyrylcholinesterase is prophylactic against the toxicity of chemical warfare nerve agents and organophosphorus compounds. J Pharmacol Exp Ther. 2011; 337(1): 92-‐101.
[98] Ilyushin DG, Smirnov IV, IV, Belogurov AA, et al. Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-‐acting bioscavenger for nerve agents in vivo. Proc Natl Acad Sci USA. 2013; 110(4): 1243-‐1248.
[99] Huang YJ, Lundy PM, Lazaris A, et al. Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin. BMC Biotechnol. 2008; 8: 50.
[100] Cai Y, Zhou S, Stewart MJ, Zheng F, Zhan CG. Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds. Chem Biol Interact. 2019; 310: 108756.
[101] Chilukuri N, Parikh K, Sun W, et al. Polyethylene glycosylation prolongs the circulatory stability of recombinant human butyrylcholinesterase. Chem Biol Interact. 2005; 157-‐158: 115-‐121.
[102] Terekhov SS, Smirnov IV, Shamborant OG, et al. Chemical polysialylation and in vivo tetramerization improve pharmacokinetic characteristics of recombinant human butyrylcholinesterase-‐based bioscavengers. Acta Naturae. 2015; 7(4): 136-‐141.
[103] Hoaken PN, Stewart SH. Drugs of abuse and the elicitation of human aggressive behavior. Addict Behav. 2003; 28(9): 1533-‐1554.
[104] Larrimore KE, Barcus M, Kannan L, et al. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity. Chem Biol Interact. 2013; 203(1): 217-‐220.
[105] Shemesh-‐Darvish L, Shinar D, Hallak H, Gross A, Rosenstock M. TV-‐1380 attenuates cocaine-‐induced changes in cardiodynamic parameters in monkeys and reduces the formation of cocaethylene. Drug Alcohol Depend. 2018; 188: 295-‐303.
[106] Connors NJ, Hoffman RS. Experimental treatments for cocaine toxicity: a difficult transition to the bedside. J Pharmacol Exp Ther. 2013; 347(2): 251-‐257.
[107] Cami J, Farre M. Drug addiction. N Engl J Med. 2003; 349(10): 975-‐986.
[108] Cohen-‐Barak O, Wildeman J, van de Wetering J, et al. Safety, pharmacokinetics, and pharmacodynamics of TV-‐1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J Clin Pharmacol.
2015; 55(5): 573-‐583.
[109] Farronato NS, Dursteler-‐Macfarland KM, Wiesbeck GA, Petitjean SA. A systematic review comparing cognitivebehavioral therapy and contingency management for cocaine dependence. J Addict Dis. 2013; 32(3): 274-‐287.
[110] Shorter D, Kosten TR. Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med.
2011; 9: 119.
[111] Skolnick P, White D, Acri JB. Editorial: emerging targets for stimulant use disorders: where to invest in an era of constrained resources? CNS Neurol Disord Drug Targets. 2015; 14(6): 691.
[112] Zheng F, Zhan CG. Are pharmacokinetic approaches feasible for treatment of cocaine addiction and overdose? Future Med Chem. 2012; 4(2): 125-‐128.
[113] Cai Y, Zhou S, Jin Z, et al. Reengineering of albumin-‐fused cocaine hydrolase CocH1 (TV-‐1380) to prolong its biological half-‐life. AAPS J. 2019; 22(1): 5.
[114] Dean RA, Christian CD, Sample RH, Bosron WF. Human liver cocaine esterases: ethanol-‐mediated formation of ethylcocaine. FASEB J. 1991; 5(12): 2735-‐2739.
[115] Chen X, Xue L, Hou S, et al. Long-‐acting cocaine hydrolase for addiction therapy. Proc Natl Acad Sci USA. 2016; 113(2): 422-‐427.
[116] Pan Y, Gao D, Yang W, et al. Computational redesign of human butyrylcholinesterase for anticocaine medication. Proc Natl Acad Sci USA. 2005; 102(46): 16656-‐16661.
[117] Zheng F, Yang W, Ko MC, et al. Most efficient cocaine hydrolase designed by virtual screening of transition states. J Am Chem Soc. 2008; 130(36): 12148-‐12155.
[118] Chen X, Zheng X, Zhan M, Zhou Z, Zhan CG, Zheng F. Metabolic enzymes of cocaine metabolite benzoylecgonine. ACS Chem Biol. 2016; 11(8): 2186-‐2194.
[119] Hou S, Zhan M, Zheng X, Zhan CG, Zheng F. Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochem J. 2014; 460(3): 447-‐457.
[120] Zhan M, Hou S, Zhan CG, Zheng F. Kinetic characterization of high-‐activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine. Biochem J. 2014; 457(1): 197-‐206.
[121] Hou S, Xue L, Yang W, Fang L, Zheng F, Zhan CG. Substrate selectivity of high-‐activity mutants of human butyrylcholinesterase. Org Biomol Chem. 2013; 11(43): 7477-‐7485.
[122] Brimijoin S, Gao Y, Anker JJ, et al. A cocaine hydrolase engineered from human butyrylcholinesterase selectively blocks cocaine toxicity and reinstatement of drug seeking in rats.
Neuropsychopharmacology. 2008; 33(11): 2715-‐2725.
[123] Chen X, Deng J, Zheng X, et al. Development of a long-‐acting Fc-‐fused cocaine hydrolase with improved yield of protein expression. Chem Biol Interact. 2019; 306: 89-‐95.
[124] Schindler CW, Justinova Z, Lafleur D, et al. Modification of pharmacokinetic and abuse-‐related effects of cocaine by human-‐derived cocaine hydrolase in monkeys. Addict Biol. 2013; 18(1): 30-‐39.
[125] Shram MJ, Cohen-‐Barak O, Chakraborty B, et al. Assessment of pharmacokinetic and pharmacodynamic interactions between albumin-‐fused mutated butyrylcholinesterase and intravenously administered cocaine in recreational cocaine users. J Clin Psychopharmacol. 2015;
35(4): 396-‐405.
[126] Gilgun-‐Sherki Y, Eliaz RE, McCann DJ, et al. Placebo-‐controlled evaluation of a bioengineered, cocaine-‐metabolizing fusion protein, TV-‐1380 (AlbuBChE), in the treatment of cocaine dependence.
Drug Alcohol Depend. 2016; 166: 13-‐20.
[127] Brimijoin S, Orson F, Kosten TR, et al. Anti-‐cocaine antibody and butyrylcholinesterase-‐derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-‐induced locomotor activity in mice. Chem Biol Interact. 2013; 203(1): 212-‐216.
[128] Gao Y, Geng L, Orson F, et al. Effects of anti-‐cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage. Chem Biol Interact. 2013; 203(1): 208-‐211.
[129] Geng L, Gao Y, Chen X, et al. Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity. PLoS One. 2013; 8(6): 67446.
[130] Murthy V, Gao Y, Geng L, LeBrasseur N, White T, Brimijoin S. Preclinical studies on neurobehavioral and neuromuscular effects of cocaine hydrolase gene therapy in mice. J Mol Neurosci. 2014; 53(3): 409-‐416.
[131] Smethells JR, Swalve N, Brimijoin S, et al. Long-‐term blockade of cocaine self-‐administration and locomotor activation in rats by an adenoviral vector-‐delivered cocaine hydrolase. J Pharmacol Exp Ther. 2016; 357(2): 375-‐381.
[132] Zlebnik NE, Brimijoin S, Gao Y, Saykao AT, Parks RJ, Carroll ME. Long-‐term reduction of cocaine self-‐administration in rats treated with adenoviral vector-‐delivered cocaine hydrolase: evidence for enzymatic activity. Neuropsychopharmacology. 2014; 39(6): 1538-‐1546.
[133] Murthy V, Geng L, Gao Y, et al. Reward and toxicity of cocaine metabolites generated by cocaine hydrolase. Cell Mol Neurobiol. 2015; 35(6): 819-‐826.
[134] Chen VP, Gao Y, Geng L, et al. Systemic safety of a recombinant AAV8 vector for human cocaine hydrolase gene therapy: a good laboratory practice preclinical study in mice. Hum Gene Ther. 2020;
31(1-‐2): 70-‐79.
[135] Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol. 2018; 25(1): 59-‐70.
[136] Evans-‐Lacko S, Bhatt J, Comas-‐Herrera A, et al. 2019. World Alzheimer report: attitudes to dementia. 2019.
[137] Chierrito TPC, Pedersoli-‐Mantoani S, Roca C, et al. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: a new avenue for disease-‐modifying drugs in Alzheimer's disease. Eur J Med Chem. 2017; 139: 773-‐791.
[138] Li Q, Yang H, Chen Y, Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur J Med Chem. 2017; 132: 294-‐309.
[139] Tasker A, Perry EK, Ballard CG. Butyrylcholinesterase: impact on symptoms and progression of cognitive impairment. Expert Rev Neurother. 2005; 5(1): 101-‐106.
[140] Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res. 2002; 137(1): 43-‐54.
[141] Greig NH, Utsuki T, Yu QS, et al. A new therapeutic target in Alzheimer's disease treatment:
attention to butyrylcholinesterase. Curr Med Res Opin. 2001; 17(3): 159-‐165.
[142] Mushtaq G, Greig NH, Khan JA, Kamal MA. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets. 2014; 13(8): 1432-‐1439.
[143] Duysen EG, Li B, Lockridge O. The butyrylcholinesterase knockout mouse a research tool in the study of drug sensitivity, bio-‐distribution, obesity and Alzheimer's disease. Expert Opin Drug Metab Toxicol. 2009; 5(5): 523-‐528.
[144] Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med. 2010; 77(1): 69-‐81.
[145] Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-‐beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci. 2019; 22(3): 401-‐412.
[146] Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci USA. 2006; 103(23): 8628-‐8633.
[147] Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997; 42(6): 909-‐918.
[148] Maurice T, Strehaiano M, Simeon N, Bertrand C, Chatonnet A. Learning performances and vulnerability to amyloid toxicity in the butyrylcholinesterase knockout mouse. Behav Brain Res.
2016; 296: 351-‐360.
[149] Lazar C, Kluczyk A, Kiyota T, Konishi Y. Drug evolution concept in drug design: 1. Hybridization method. J Med Chem. 2004; 47(27): 6973-‐6982.
[150] Chalupova K, Korabecny J, Bartolini M, et al. Novel tacrine-‐tryptophan hybrids: Multi-‐target directed ligands as potential treatment for Alzheimer's disease. Eur J Med Chem. 2019; 168:
491-‐514.
[151] Chen Y, Lin H, Zhu J, et al. Design, synthesis, in vitro and in vivo evaluation of tacrine-‐cinnamic acid hybrids as multitarget acetyl-‐and butyrylcholinesterase inhibitors against Alzheimer's disease.
RSC Adv. 2017; 7(54): 33851-‐33867.
[152] Jenkins TA, Elliott JJ, Ardis TC, et al. Tryptophan depletion impairs object-‐recognition memory in the rat: reversal by risperidone. Behav Brain Res. 2010; 208(2): 479-‐483.
[153] AlFadly ED, Elzahhar PA, Tramarin A, et al. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: multi-‐target inhibitors of cholinesterases, cyclooxygenase-‐2 and 15-‐lipoxygenase. Eur J Med Chem. 2019; 167: 161-‐186.
[154] Dolles D, Hoffmann M, Gunesch S, et al. Structure-‐activity relationships and computational investigations into the development of potent and balanced dual-‐acting butyrylcholinesterase inhibitors and human cannabinoid receptor 2 ligands with pro-‐cognitive in vivo profiles. J Med Chem. 2018; 61(4): 1646-‐1663.
[155] Scheiner M, Dolles D, Gunesch S, et al. Dual-‐acting cholinesterase-‐human cannabinoid receptor 2 ligands show pronounced neuroprotection in vitro and overadditive and disease-‐modifying neuroprotective effects in vivo. J Med Chem. 2019; 62(20): 9078-‐9102.
[156] Ehrhart J, Obregon D, Mori T, et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation. 2005; 2: 29.
[157] Ismaili L, Refouvelet B, Benchekroun M, et al. Multitarget compounds bearing tacrine-‐ and donepezil-‐like structural and functional motifs for the potential treatment of Alzheimer's disease.
Prog Neurobiol. 2017; 151: 4-‐34.
[158] Asadipour A, Alipour M, Jafari M, et al. Novel coumarin-‐3-‐carboxamides bearing N-‐benzylpiperidine moiety as potent acetylcholinesterase inhibitors. Eur J Med Chem. 2013; 70:
623-‐630.
[159] Arce MP, Rodrigúez-‐Franco I, Gonzaléz-‐Munõz GC, et al. Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease. J Med Chem. 2009; 52(22): 7249-‐7257.
[160] Unzeta M, Esteban G, Bolea I, et al. Multi-‐target directed donepezil-‐like ligands for Alzheimer's disease. Front Neurosci. 2016; 10: 205.
[161] Pachón-‐Angona I, Refouvelet B, Andrýs R, et al. Donepezil plus chromone plus melatonin hybrids as promising agents for Alzheimer's disease therapy. J Enzym Inhib Med Ch. 2019; 34(1): 479-‐489.
[162] Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem. 2014; 78: 340-‐374.
[163] Legoabe LJ, Petzer A, Petzer JP. Selected chromone derivatives as inhibitors of monoamine oxidase.
Bioorg Med Chem Lett. 2012; 22(17): 5480-‐5484.
[164] Zhang HM, Zhang Y. Melatonin: a well-‐documented antioxidant with conditional pro-‐oxidant actions. J Pineal Res. 2014; 57(2): 131-‐146.
[165] Vafadarnejad F, Karimpour-‐Razkenari E, Sameem B, et al. Novel N-‐benzylpyridinium moiety linked to arylisoxazole derivatives as selective butyrylcholinesterase inhibitors: synthesis, biological evaluation, and docking study. Bioorg Chem. 2019; 92: 103192.
[166] Saeedi M, Mohtadi-‐Haghighi D, Mirfazli SS, et al. Design and synthesis of selective acetylcholinesterase inhibitors: arylisoxazole-‐phenylpiperazine derivatives. Chem Biodivers. 2019;
16(2): 1800433.
[167] Ghobadian R, Mahdavi M, Nadri H, et al. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and beta-‐secretase inhibition activities. Eur J Med Chem. 2018; 155: 49-‐60.
[168] Yang W, Wong Y, Ng OTW, et al. Inhibition of beta-‐amyloid peptide aggregation by multifunctional carbazole-‐based fluorophores. Angew Chem Int Ed Engl. 2012; 51(8): 1804-‐1810.
[169] Ghobadian R, Nadri H, Moradi A, et al. Design, synthesis, and biological evaluation of selective and potent Carbazole-‐based butyrylcholinesterase inhibitors. Bioorg Med Chem. 2018; 26(17):
4952-‐4962.
[170] Vafadarnejad F, Mahdavi M, Karimpour-‐Razkenari E, et al. Design and synthesis of novel coumarin-‐pyridinium hybrids: in vitro cholinesterase inhibitory activity. Bioorg Chem. 2018; 77:
311-‐319.
[171] Joubert J, Foka GB, Repsold BP, Oliver DW, Kapp E, Malan SF. Synthesis and evaluation of 7-‐substituted coumarin derivatives as multimodal monoamine oxidase-‐B and cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem. 2017; 125: 853-‐864.
[172] Lan JS, Ding Y, Liu Y, et al. Design, synthesis and biological evaluation of novel coumarin-‐N-‐benzyl pyridinium hybrids as multi-‐target agents for the treatment of Alzheimer's disease. Eur J Med Chem. 2017; 139: 48-‐59.
[173] Yang HL, Cai P, Liu QH, et al. Design, synthesis and evaluation of coumarin-‐pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-‐beta aggregation for the treatment of Alzheimer's disease. Eur J Med Chem. 2017; 138: 715-‐728.
[174] Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. The hallucinogen N,Ndimethyltryptamine (DMT) is an endogenous sigma-‐1 receptor regulator. Science. 2009;
323(5916): 934-‐937.
[175] Ghanei-‐Nasab S, Khoobi M, Hadizadeh F, et al. Synthesis and anticholinesterase activity of coumarin-‐3-‐carboxamides bearing tryptamine moiety. Eur J Med Chem. 2016; 121: 40-‐46.
[176] Luo XT, Wang CM, Liu Y, Huang ZG. New multifunctional melatonin-‐derived benzylpyridinium bromides with potent cholinergic, antioxidant, and neuroprotective properties as innovative drugs for Alzheimer's disease. Eur J Med Chem. 2015; 103: 302-‐311.
[177] Ghafary S, Najafi Z, Mohammadi-‐Khanaposhtani M, et al. Novel cinnamic acid-‐tryptamine hybrids as potent butyrylcholinesterase inhibitors: synthesis, biological evaluation, and docking study. Arch Pharm (Weinheim). 2018; 351(10): 1800115.
[178] Loser B, Kruse SO, Melzig MF, Nahrstedt A. Inhibition of neutrophil elastase activity by cinnamic acid derivatives from Cimicifuga racemosa. Planta Med. 2000; 66(8): 751-‐753.
[179] Sang Z, Wang K, Han X, Cao M, Tan Z, Liu W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-‐target-‐directed ligands for the treatment of Alzheimer's disease. ACS Chem Neurosci. 2019; 10(2): 1008-‐1024.
[180] Darvesh S, Darvesh KV, McDonald RS, et al. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem. 2008; 51(14): 4200-‐4212.
[181] Hussein W, Sağlık B, Levent S, et al. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer's disease. Molecules. 2018; 23: 8.
[182] Yu YF, Huang YD, Zhang C, et al. Discovery of novel pyrazolopyrimidinone derivatives as phosphodiesterase 9° inhibitors capable of inhibiting butyrylcholinesterase for treatment of Alzheimer's disease. ACS Chem Neurosci. 2017; 8(11): 2522-‐2534.
[183] Garcia-‐Osta A, Cuadrado-‐Tejedor M, Garcia-‐Barroso C, Oyarzabal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem Neurosci. 2012; 3(11): 832-‐844.
[184] Bajda M, Latka K, Hebda M, Jonczyk J, Malawska B. Novel carbamate derivatives as selective butyrylcholinesterase inhibitors. Bioorg Chem. 2018; 78: 29-‐38.
[185] Sawatzky E, Wehle S, Kling B, et al. Discovery of highly selective and nanomolar carbamate-‐based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J Med Chem.
2016; 59(5): 2067-‐2082.
[186] Darras FH, Kling B, Heilmann J, Decker M. Neuroprotective tri-‐ and tetracyclic BChE inhibitors releasing reversible inhibitors upon carbamate transfer. ACS Med Chem Lett. 2012; 3(11): 914-‐919.
[187] Wu CH, Tu YB, Li ZY, Li YF. Highly selective carbamate-‐based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg Chem. 2019; 88: 88.
[188] Kurt BZ, Gazioglu I, Kandas NO, Sonmez F. Synthesis, anticholinesterase, antioxidant, and anti-‐aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect. 2018; 3(14):
3978-‐3983.
[189] Kurt BZ, Gazioglu I, Dag A, et al. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-‐substituted thymol/carvacrol derivatives. Bioorg Med Chem. 2017; 25(4):
1352-‐1363.
[190] Hoffmann M, Stiller C, Endres E, et al. Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer's disease mouse model. J Med Chem. 2019;
62(20): 9116-‐9140.
[191] Sliwoski G, Kothiwale S, Meiler J, Lowe EW, Jr. Computational methods in drug discovery.
Pharmacol Rev. 2014; 66(1): 334-‐395.
[192] Sakkiah S, Lee KW. Pharmacophore-‐based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Acta Pharmacol Sin. 2012; 33(7): 964-‐978.
[193] Dighe SN, Deora GS, De la Mora E, et al. Discovery and structure-‐activity relationships of a highly selective butyrylcholinesterase inhibitor by structure-‐based virtual screening. J Med Chem. 2016;
59(16): 7683-‐7689.
[194] Lu X, Yang H, Li Q, et al. Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorg Chem. 2019; 85:
117-‐127.
[195] Jiang Q, Liu D, Liu D, Liu B, Zhou T, Zhou J. Discovery of selective butyrylcholinesterase (BChE) inhibitors through a combination of computational studies and biological evaluations. Molecules.
2019; 24: 23.
[196] Zhou S, Yuan YX, Zheng F, Zhan CG. Structure-‐based virtual screening leading to discovery of highly selective butyrylcholinesterase inhibitors with solanaceous alkaloid scaffolds. Chem-‐Biol Interact. 2019; 308: 372-‐376.
[197] Jiang CS, Ge YX, Cheng ZQ, et al. Discovery of new selective butyrylcholinesterase (BChE) inhibitors with anti-‐Abeta aggregation activity: structure-‐based virtual screening, hit optimization and biological evaluation. Molecules. 2019; 24: 14.
[198] Williams A, Zhou S, Zhan CG. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-‐based screening. Bioorg Med Chem Lett. 2019; 29(24): 126754.
[199] Li Q, Xing S, Chen Y, et al. Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. J Med Chem. 2020; 63(17): 10030-‐10044.
[200] Chen Y, Lin H, Yang H, et al. Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-‐based virtual screening. RSC Adv. 2017; 7(6): 3429-‐3438.
[201] Purgatorio R, de Candia M, Catto M, et al. Investigating 1,2,3,4,5,6-‐hexahydroazepino[4,3-‐b]indole as scaffold of butyrylcholinesterase-‐selective inhibitors with additional neuroprotective activities for Alzheimer's disease. Eur J Med Chem. 2019; 177: 414-‐424.
[202] Ghobadian R, Esfandyari R, Nadri H, et al. Design, synthesis, in vivo and in vitro studies of 1,2,3,4-‐tetrahydro-‐9Hcarbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol Divers. 2020; 24(1): 211-‐223.
[203] Wajid S, Khatoon A, Khan MA, et al. Microwave-‐assisted organic synthesis, structure-‐activity relationship, kinetics and molecular docking studies of non-‐cytotoxic benzamide derivatives as selective butyrylcholinesterase inhibitors. Bioorg Med Chem. 2019; 27(18): 4030-‐4040.
[204] Kazmi M, Ibrar A, Ali HS, et al. A combined experimental and theoretical analysis of the solid-‐state supramolecular self-‐assembly of N-‐(2,4-‐dichlorophenyl)-‐1-‐naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. J Mol Struct. 2019; 1197: 458-‐470.
[205] Cavallaro V, Moglie YF, Murray AP, Radivoy GE. Alkynyl and β-‐ketophosphonates: Selective and potent butyrylcholinesterase inhibitors. Bioorg Chem. 2018; 77: 420-‐428.
[206] Košak U, Knez D, Coquelle N, et al. N-‐Propargylpiperidines with naphthalene-‐2-‐carboxamide or naphthalene-‐2-‐sulfonamide moieties: Potential multifunctional anti-‐Alzheimer's agents. Bioorg Med Chem. 2017; 25(2): 633-‐645.
[207] Košak U, Brus B, Knez D, et al. The magic of crystal structure-‐based inhibitor optimization:
development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. J Med Chem. 2018; 61(1): 119-‐139.
[208] Knez D, Coquelle N, Pišlar A, et al. Multi-‐target-‐directed ligands for treating Alzheimer's disease:
Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. Eur J Med Chem. 2018; 156: 598-‐617.
[209] Shah MS, Najam-‐Ul-‐Haq M, Shah HS, Farooq Rizvi SU, Iqbal J. Quinoline containing chalcone derivatives as cholinesterase inhibitors and their in silico modeling studies. Comput Biol Chem.
2018; 76: 310-‐317.
[210] Abu-‐Aisheh MN, Al-‐Aboudi A, Mustafa MS, et al. Coumarin derivatives as acetyl-‐ and butyrylcholinestrase inhibitors: an in vitro, molecular docking, and molecular dynamics simulations study. Heliyon. 2019; 5(4): 01552.
[211] Sarıkaya G, Çoban G, Parlar S, et al. Multifunctional cholinesterase inhibitors for Alzheimer's disease: synthesis, biological evaluations, and docking studies of o/p-‐propoxyphenylsubstituted-‐1H-‐benzimidazole derivatives. Arch Pharm (Weinheim). 2018; 351:
1800076.
[212] Meden A, Knez D, Jukič M, et al. Tryptophan-‐derived butyrylcholinesterase inhibitors as promising leads against Alzheimer's disease. Chem Commun (Camb). 2019; 55(26): 3765-‐3768.
[213] Abedinifar F, Farnia SMF, Mahdavi M, et al. Synthesis and cholinesterase inhibitory activity of new 2-‐benzofuran carboxamide-‐benzylpyridinum salts. Bioorg Chem. 2018; 80: 180-‐188.
[214] Hostalkova A, Marikova J, Opletal L, et al. Isoquinoline Alkaloids from Berberis vulgaris as potential lead compounds for the treatment of Alzheimer's disease. J Nat Prod. 2019; 82(2):
239-‐248.
[215] Zhang B, Yu H, Lu W, et al. Four new honokiol derivatives from the stem bark of Magnolia officinalis and their anticholinesterase activities. Phytochem Lett. 2019; 29: 195-‐198.
[216] Özbek H, Güvenalp Z, Yılmaz G, Yerdelen KÖ, Kazaz C, Demirezer ÖL. In vitro anticholinesterase activity and molecular docking studies of coumarin derivatives isolated from roots of Heptaptera cilicica. Med Chem Res. 2017; 27(2): 538-‐545.
[217] Ali M, Muhammad S, Shah MR, et al. Neurologically potent molecules from crataegus oxyacantha:
isolation, anticholinesterase inhibition, and molecular docking. Front Pharmacol. 2017; 8: 327.
[218] Chen VP, Gao Y, Geng L, Brimijoin S. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int J Obesity. 2017; 41(9): 1413-‐1419.
[219] Santarpia L, Grandone I, Contaldo F, Pasanisi F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle. 2013; 4(1): 31-‐39.
[220] Mear Y, Enjalbert A, Thirion S. GHS-‐R1a constitutive activity and its physiological relevance. Front Neurosci. 2013; 7: 87.
[221] Quinones M, Ferno J, Al-‐Massadi O Ghrelin and liver disease. Rev Endocr Metab Disord. 2019.
[222] Brimijoin S, Chen VP, Pang YP, Geng L, Gao Y. Physiological roles for butyrylcholinesterase: A BChE-‐ghrelin axis. Chem Biol Interact. 2016; 259(Pt B): 271-‐275.
[223] Dorling JL, Clayton DJ, Jones J, et al. A randomized crossover trial assessing the effects of acute exercise on appetite, circulating ghrelin concentrations, and butyrylcholinesterase activity in normal-‐weight males with variants of the obesity-‐linked FTO rs9939609 polymorphism. Am J Clin Nutr. 2019; 110(5): 1055-‐1066.
[224] Ferré G, Louet M, Saurel O, et al. Structure and dynamics of G protein-‐coupled receptor-‐bound ghrelin reveal the critical role of the octanoyl chain. Proc Natl Acad Sci USA. 2019; 116(35):
17525-‐17530.
[225] Chen VP, Gao Y, Geng L, Brimijoin S. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int J Obes (Lond). 2017; 41(9): 1413-‐1419.
[226] Iwasaki T, Yoneda M, Nakajima A, Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med. 2007; 46(19): 1633-‐1639.
[227] Kang K, Zmuda E, Sleeman MW. Physiological role of ghrelin as revealed by the ghrelin and GOAT knockout mice. Peptides. 2011; 32(11): 2236-‐2241.
[228] Tong J, Prigeon RL, Davis HW, et al. Ghrelin suppresses glucose-‐stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes. 2010; 59(9): 2145-‐2151.
[229] Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001; 50(4): 707-‐709.
[230] Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;
395(6704): 763-‐770.
[231] Nili-‐Ahmadabadi A, Akbari Z, Ahmadimoghaddam D, Larki-‐Harchegani A. The role of ghrelin and tumor necrosis factor alpha in diazinon-‐induced dyslipidemia: insights into energy balance regulation. Pestic Biochem Physiol. 2019; 157: 138-‐142.
[232] Spencer SJ, Xu L, Clarke MA, et al. Ghrelin regulates the hypothalamic-‐pituitary-‐adrenal axis and restricts anxiety after acute stress. Biol Psychiatry. 2012; 72(6): 457-‐465.
[233] Meyer RM, Burgos-‐Robles A, Liu E, Correia SS, Goosens KA. A ghrelin-‐growth hormone axis drives stress-‐induced vulnerability to enhanced fear. Mol Psychiatry. 2014; 19(12): 1284-‐1294.
[234] Procaccini C, Santopaolo M, Faicchia D, et al. Role of metabolism in neurodegenerative disorders.
Metabolism. 2016; 65(9): 1376-‐1390.
[235] Vanhanen M, Koivisto K, Moilanen L, et al. Association of metabolic syndrome with Alzheimer disease: a populationbased study. Neurology. 2006; 67(5): 843-‐847.
[236] Soto ME, Secher M, Gillette-‐Guyonnet S, et al. Weight loss and rapid cognitive decline in community-‐dwelling patients with Alzheimer's disease. J Alzheimers Dis. 2012; 28(3): 647-‐654.
[237] Ishii M, Hiller AJ, Pham L, McGuire MJ, Iadecola C, Wang G. Amyloid-‐beta modulates low-‐threshold activated voltage-‐gated L-‐type calcium channels of arcuate neuropeptide Y neurons leading to calcium dysregulation and hypothalamic dysfunction. J Neurosci. 2019; 39(44):
8816-‐8825.
[238] Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients.
Neurology. 1997; 48(5 Suppl 6): S10-‐S16.
[239] Kuroda A, Setoguchi M, Uchino Y, Nagata K, Hokonohara D. Effect of rivastigmine on plasma butyrylcholine esterase activity and plasma ghrelin levels in patients with dementia in Alzheimer's disease. Geriatr Gerontol Int. 2018; 18(6): 886-‐891.
[240] Tsuno N, Mori T, Ishikawa I, et al. Efficacy of rivastigmine transdermal therapy on low food intake in patients with Alzheimer's disease: the attitude towards food consumption in Alzheimer's disease patients revive with rivastigmine effects study. Geriatr Gerontol Int. 2019; 19(7): 571-‐576.
[241] Vellas B, Lauque S, Gillette-‐Guyonnet S, et al. Impact of nutritional status on the evolution of Alzheimer's disease and on response to acetylcholinesterase inhibitor treatment. J Nutr Health Aging. 2005; 9(2): 75-‐80.
[242] Furiya Y, Tomiyama T, Izumi T, Ohba N, Ueno S. Rivastigmine improves appetite by increasing the plasma Acyl/Des-‐Acyl ghrelin ratio and cortisol in Alzheimer disease. Dement Geriatr Cogn Dis Extra. 2018; 8(1): 77-‐84.
[243] Yoshino Y, Funahashi Y, Nakata S, et al. Ghrelin cascade changes in the peripheral blood of Japanese patients with Alzheimer's disease. J Psychiatr Res. 2018; 107: 79-‐85.
[244] Darvesh S, Leblanc AM, Macdonald IR, et al. Butyrylcholinesterase activity in multiple sclerosis neuropathology. Chem Biol Interact. 2010; 187(1-‐3): 425-‐431.