Quella sulle cellule staminali è una disciplina relativamente “giovane”.
Nonostante si parli di cellule staminali dai primi anni del 1900 infatti, si è riscontrata un’importante accelerazione nella ricerca in questo campo
solo negli ultimi decenni, probabilmente anche in relazione al
progressivo aumento dell’aspettativa di vita e quindi delle patologie da
curare. Le cellule staminali sono cellule le cui caratteristiche
fondamentali sono la capacità di autorinnovarsi perpetuando se stesse, e
la capacità di differenziarsi generando diversi tipi di cellule
specializzate.
Date queste caratteristiche esse presentano un potenziale enorme per la
cura di malattie che oggi non lasciano alcuna speranza di vita a chi ne
viene colpito, ma anche per il trattamento di malattie più “comuni” per le
quali sono al momento disponibili solo trattamenti sintomatici.
Non è però tutto oro quel che luccica: si parla infatti di potenziale delle
cellule staminali. Ciò presuppone che nonostante queste cellule stiano
lasciando i banconi di laboratorio per raggiungere il letto del malato, non
89
Al di là delle speranze e delle aspettative è necessario infatti indagare ulteriormente sui diversi aspetti critici relativi all’utilizzo di tali cellule.
Ad esempio: se da una parte è vero che le cellule staminali embrionali
presentano il potenziale differenziativo più ampio e quindi il più ampio
ventaglio di possibili utilizzi, è anche vero che questa stessa capacità è
alla base del potenziale tumorigenico di queste cellule. Saranno quindi
necessari maggiori studi per comprendere i meccanismi legati alla
differenziazione cellulare e come sia possibile controllare tale capacità.
Del resto, anche le cellule staminali adulte possono differenziarsi in più
tipi cellulari. Ma come possiamo far sì che una cellula staminale neurale
o mesenchimale si differenzi esattamente nel tipo cellulare richiesto per
la cura di una determinata patologia?
Un altro problema da risolvere è quello della possibilità di rigetto delle
cellule staminali trapiantate. Sarebbe ovviamente preferibile poter
attuare trapianti autologhi di cellule staminali ricavate dal paziente
stesso. Ma le cellule staminali adulte sono reperibili in ridotte quantità all’interno di un organismo, quantità assolutamente non sufficiente a
90
stabile e duraturo. Da qui la necessità di creare protocolli standardizzati
per il prelievo e per i metodi di coltura delle cellule staminali.
Andranno poi valutate le metodiche per effettuare il trapianto definendo
il numero di cellule necessarie, la via attraverso la quale effettuare la
procedura e il momento più appropriato.
Infine dovranno essere svolti maggiori studi per valutare la
farmacodinamica e la farmacocinetica delle cellule trapiantate per poter valutare la migrazione nei siti danneggiati e per stabilire l’efficacia e la
sicurezza a lungo termine.
Il percorso delle cellule staminali, dal momento del prelievo al trapianto
e dal trapianto all’interno del nostro organismo, va quindi guidato passo
dopo passo e ciò che manca al momento è proprio uno standard
terapeutico che garantisca la possibilità di ottenere risultati ripetibili e
riproducibili.
Ad oggi è impossibile predire quali applicazioni terapeutiche con le
cellule staminali passeranno alla pratica clinica, ma è innegabile che esse rappresentino le “armi” della medicina rigenerativa e che saranno, nel
91
Bibliografia
1) Anderson D.J. et al., “Can stem cells cross lineage boundaries?” Nat. Med.
2) Thomas D. Pollard, William C. Earnshaw; tradotto da: S. Beninati, D. Dondi, V. Franceschini, “Biologia cellulare”, Elsevier, 2008, II ed.
3) B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, “L’essenziale di biologia molecolare della cellula”, Zanichelli, 2005, II ed.
4) Maurilio Sampaolesi, “Le cellule staminali”, Società editrice il Mulino, 2011.
5) Michael, Dr. Sandra Rose, “Bio-scalar technology: regeneration and optimization of the body-mind homeostasis” in 15th annual AAAM Conference, 2007.
6) Gian Paolo Bagnara, “Cellule staminali”, Società Editrice Esculapio 2013.
7) B.G. Galvez, M. Sampaolesi, A. Barbuti, et al., “Cardiac mesoangioblasts are committed, self-renewable progenitors associated with small vessels of juvenile mouse ventricle”, Cell Death and Differentiation, 2008, 15,9, pp.1417-28.
8) B.A. Reynolds, S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system”, Science, 1992, 255, 5052, pp.1707-10.
9) L. Anastasia, M. Sampaolesi, N. Papini, et al., “Reversine-treated fibroblast aquire myogenic competence in vitro and in regenerating skeletal muscle”, Cell Death and Differentiation, 2006, 13, 12, pp.2042-51.
10) G. Pellegrini, M. De Luca, “Human embryonic stem cell-derived keratinocytes. How close to clinics?”, Cell Stem Cell, 2010, 6, 1, pp.8-9.
11) F. Mavilio, G. Pellegrini, S. Ferrari, et al., “Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells”, Nat. Med., 2006, 12, 12, pp.1397-1402.
12) M. De Tilla, L. Militerni, U. Veronesi, “Cellule staminali. Etica e qualità della vita. Normativa europea e legislazione internazionale”, Utet Giuridica, 2012.
13) M.R. Del Biagio, “Neuropathology and structural changes in hydrocephalus”. Dev. Disabil. Res. Rev., 2010, 16: 16-22.
92
14) M. Guerra, “Neural stem cells: are they the hope of a better life for patients with fetal- onset hydrocephalus?”, Fluids and Barriers of the CNS, 2014, 11:7.
15) C.S. Carter, T.W. Vogel, Q. Zhang, S. Seo, R.E. Swiderski, T.O. Moninger, M.D. Cassell, D.R. Thedens, K.M. Keppler-Noreuil, P. Nopoulos, D.Y. Nishimura, C.C. Searby, K. Bugge, V.C. Sheffield, “Abnormal development of NG2+ PDGFR- α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model”, Nat. Med., 2012, 18: 1797-804.
16) M.D. Dominguez-Pinos, P. Pàez, A.J. Jiménez, B. Weil, M.A. Arràez, J.M. Pérez- Figares, E.M. Rodrìguez, “Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus”, J. Neuropathol. Exp. Neurol., 2005, 64: 595-604.
17) M. Guerra, D.A. Sival, A. Jiménez, M.D. Dominguez-Pinos, W.F.A. den Dunnen, L.F. Bàtiz, J.M. Pérez-Figares, E.M. Rodrìguez, “Defects in cell-cell junctions lead to neuroepithelial/ependymal denudation in the telencephalon of human hydrocephalic foetuses”, Cerebrospinal Fluid Res., 2010, 7 (suppl.1): s56.
18) E.M. Rodrìguez, M. Guerra, K. Vìo, C. Gonzalez, A. Ortloff, L.F. Bàtiz, S. Rodrìguez, M.C. Jara, R.I. Mun᷉oz, E. Ortega, J. Jaque, F. Guerra, D.A. Sival, W.F.A. den Dunnen, A. Jiménez, M.D. Domìnguez-Pinos, J.M. Pérez-Figares, J.P. McAllister, C. Johanson, “A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus”, Biol. Res., 2012, 45: 231-242.
19) A.J. Jiménez, M. Tomé, P. Pàez, C. Wagner, S. Rodriguez, P. Fernàndez-Llebrez, E.M. Rodrìguez, J.M. Pérez-Figares, “A programmend ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse”, J. Neuropathol. Exp. Neurol., 2001, 60: 1105- 1119.
20) C. Wagner, L.F. Bàtiz, S. Rodriguez, A.J. Jiménez, P. Pàez, M. Tomé, J.M. Pèrez- Figares, E.M. Rodrìguez, “Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus”, J. Neuropathol. Exp. Neurol., 2003, 62: 1019-1040.
21) P. Pàez, L.F. Bàtiz, R. Roales-Bujiàn, L.M. Rodrìguez-Pérez, S. Rodrìguez, A.J. Jiménez, E.M. Rodrìguez, J.M. Pérez-Figares, “Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice”, J. Neuropathol. Exp. Neurol., 2007, 66: 1082-1092.
93
22) D.A. Sival, M. Guerra, W.F.A. den Dunnen, L-F. Bàtiz, G. Alvial, E.M. Rodrìguez, “Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta”, Brain Pathol., 2011, 21: 163-179.
23) R. Guerrini, C. Barba, “Malformations of cortical development and aberrant cortical networks: epileptogenesis and functional organization”, J. Clin. Neurophysiol., 2010, 27: 372-379.
24) O. Sato, T. Yamaguchi, M. Kittaka, H. Toyama, “Hydrocephalus and epilepsy”, Childs Nerv. Syst., 2001, 17 (1-2): 76-86.
25) M. Vinchon, H. Rekate, A.V. Kulkarni, “Pediatric hydrocephalus outcomes: a review”, Fluids Barriers CNS, 2012, 9:18.
26) “Life-threatening complications of hydrocephalus” in Hydrocephalus Association,
http://www.hydroassoc.org
27) J.A. Miyan, M. Nabiyouni, M. Zendah, “Development of the brain: a vital role for cerebrospinal fluid”, Can J. Physiol. Pharmacol., 2003, 81: 317-328.
28) C. Parada, C. Martìn, M.I. Alonso, J.A. Moro, D. Bueno, A. Gato, “Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression”, J. Neurosci. Res., 2005, 82: 333-345.
29) K. Sakamoto, H. Wichterle, O. Gonzalez-Perez, J.A. Cholfin, M. Yamada, N. Spassky, N.S. Murcia, J.M. Garcia-Verdugo, O.Marin, J.L. Rubenstein, M. Tessier-Lavigne, H. Okano, A. Alvarez-Buylla, “New neurons follow the flow of cerebrospinal fluid in the adult brain”, Science, 2006, 311: 629-632.
30) C.E. Johanson, J.A. 3rd Duncan, P.M. Klinge, T. Brinker, E.G. Stopa, G.D. Silverberg, “Multiplicity of cerebrospinal fluid functions: new challenges in health and disease”, Cerebrospinal fluid Res., 2008, 5:10.
31) M.K. Lehtinen, M.W. Zappaterra, X. Chen, Y.J. Yang, A.D. Hill, M. Lun, T. Maynard, D. Gonzalez, S. Kim, P. Ye, A.J. D’Ercole, E.T. Wong, A.S. Lamantia, C.A. Walsh, “The cerebrospinal fluid provides a proliferative niche for neural progenitor cells”, Neuron, 2011, 69: 893-905.
32) C. Andressen, “Neural stem cells: from neurobiology to clinica applications”, Curr. Pharm. Biotechnol.,2013, 14: 20-28.
94
33) S. Dutta, G. Singh, S. Sreejith, M.K. Mamidi, J.M. Husin, I. Datta, R. Pal, A.K. Das, “Cell therapy: the final frontier for treatment of neurological diseases”, CNS Neurosci. Ther., 2013, 19: 5-11.
34)M. Watanabe, Y.J. Kang, L.M. Davies, S. Meghpara, K.Lau, C.Y. Chung, J. Kathiriya, A.K. Hadjantonakis, E.S. Monuki, “BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors”, J. Neurosci., 2012, 32: 15934-15945.
35) M. Castillo-Melendez, T. Yawno, G. Jenkin, S.L. Miller, “Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells”, Front. Neurosci., 2013, 7: 194.
36) J. Stagg, J. Galipeau, “Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation”, Curr. Mol. Med., 2013, 13: 856-867.
37) P. Lotfinegad, K. Shamsasenjan, A. Movassaghpour, J. Majidi, B. Baradaran, “Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy”, ADV Pharm. Bull., 2014, 4: 5-13.
38) M.M. Martini, S. Tda Jeremias, M.C. Kohler, L.L. Marostica, A.G. Trentin, M. Alvarez- Silva, “Human placenta-derived mesenchymal stem cells aquire neural phenotype under the appropriate niche conditions”, DNA Cell Biol., 2013, 32: 58-65.
39) G. Chen, Y. Wang, Z. Xu, F. Fang, R. Xu, Y. Wang, X. Hu, L. Fan, H. Liu, “Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy”, J. Transl. Med., 2013, 11: 21.
40) J. F. Rivera, L. Aigner, “Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis”, Biol. Res., 2012, 45: 257-268.
41) H. Li, F. Gao, L. Ma, J. Jiang, J. Miao, M. Jiang, Y. Fan, L. Wang, D. Wu, B. Liu, W. Wang, V.C. Lui, Z. Yuan, “Therapeutic potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta”, J. Cell. Mol. Med., 2012, 16: 1606- 1617.
42) R. Roales-Bujàn, P. Pàez, M. Guerra, S. Rodrìguez, K. Vìo, A. Ho-Plagaro, M. Garcia- Bonilla, L.M. Rodrìguez-Pérez, M.D. Domìnguez-Pinos, E.M. Rodrìguez, J.M. Pérez- Figares, A.J. Jiménez, “Astrocytes aquire morphological and functional characteristics of ependymal cells following disruption of ependymal in hydrocephalus”, Acta Neuropathol., 2012, 124: 531-546.
95
43) I. Bystron, C. Blakemore, P. Rakic, “Development of the human cerebral cortex: Boulder Committee revisited” Nat. Rev. Neurosci., 2008, 9: 110-122.
44) J. Stiles, T.L. Jernigan, “The basics of brain development”, Neuropsycol. Rev., 2010, 20: 327-348.
45) B. Clancy, R.B. Darlington, B.L. Finlay, “Translating developmental time across mammalian species”, Neuroscience, 2001, 105: 7-17.
46) B. Clancy, B. Kersh, J. Hyde, R.B. Darlington, K.J. Anano, B.L. Finlay, “Web-based method for translating neurodevelopment from laboratory species to humans”, Neuroinformatics, 2007, 5: 79-94.
47) H.C. Rodrigues, P.P. van den Berg, M. well D , “Dotting the I’s and crossing the T’s: autonomy and/or beneficence? The fetus as a patient in maternal-fetal surgery”, J. Med. Ethics, 2013, 39: 219-223.
48) S.G. Poulos, et al., “Progress in neuro-psychopharmacology and biological psychiatry”, 54 (2014): 149-156.
49) K. Sulik, “Genesis of alcohol-induced craniofacial dysmorphism”, Exp. Biol. Med., 2005, 230 (6): 366-75.
50) L. Burd, M.G. Klug, R. Bueling, J. Martsolf, M. Olson, J. Kerbeshian, “Mortality rates in subjects with fetal alcohol spectrum disorders and their siblings”, Birth defects Res. A Clin. Mol. Teratol., 2008, 82 (4): 217-23.
51) D.K. Fast, J. Conry, C.A. Loock, “Identifying fetal alcohol syndrome among youth in the criminal justice system”, J. Dev. Behav. Pediatr., 1999, 20 (5): 370-2.
52) C.R. Goodlett, K.H. Horn, “Mechanism of alcohol-induced damage to the developing nervous system”, Alcohol Res. Health, 2001, 25 (3): 175-84.
53) O. Caillard, H. Moreno, B. Schwaller, I. Llano, M. Celio, A. Marty, “Role of the calcium binding protein parvalbumin in short-term synaptic plasticity”, Proc. Natl. Acad Sci. USA, 2000, 97 (24): 13372-7.
54) D. Greenberg, “Linking acquired neurodevelopmental disorders to defects in cell adhesion”, Proc. Natl. Acad Sci., 2003, 100 (14): 8043-4.
55) V. Cuzon, P. Yeh, Y. Yanagawa, K. Obata, H. Yeh, “Ethanol consumption during early pregnancy alters the disposition of tangentially migrating GABAergic interneurons in the fetal cortex”, J. Neurosci., 2008, 28 (8): 1854-64.
96
56) C. Ikonomidou, P. Bittigau, M. Ishimaru, D. Wozniak, C. Koch, K. Genz, et al., “Ethanol-induced apoptotic neurodegeneration and fetalalcohol syndrome”, Science, 2000, 287 (5455): 1056-60.
57) M.W. Miller, “Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure”, Neuroscience, 2006, 138: 97-107.
58) S. Subbanna, M. Shivakumar, N. Umapathy, M. Saito, P. Mohan, A. Kumar, et al., “G9a-mediated histone methylation regulates ethanol induced neurodegeneration in the neonatal mouse brain”, Neurobiol. Dis., 2013, 54: 475-85.
59) T. Shirasaka, W. Ukai, T. Yoshinaga, K. Watanabe, H. Kaneta, Y. Kigawa, et al., “Promising therapy of neural stem cell transplantation for FASD model-neural network reconstruction and behavior recovery”, Nihon Arukoru Yakubutsu Igakkai Zasshi, 2011, 46 (6): 576-84.
60) J. Sng, T. Lufkin, “Emerging stem cell therapies: treatment, safety, and biology”, Stem Cells Int., 2012, 2012: 521343.
61) M. Aharonowiz, O. Einstein, N. Fainstein, H. Lassmann, “Neuroprotective effect of transplanted humane embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis”, Plos One, 2008, 3 (9): e3145.
62) S. Pluchino, L. Zanotti, B. Rossi, E. Brambilla, L. Ottoboni, G. Salani, et al., “Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism”, Nature, 2005, 436 (7048): 266-71.
63) T. Yasuhara, N. Matsukawa, K. Hara, G. Yu, L. Xu, M. Maki, et al., “Trasplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease”, J. Neurosci, 2006, 26 (48): 12497-511.
64) K. Jin, L. Xie, X. Mao, M.B. Greenberg, A. Moore, B. Peng, et al., “Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat”, Brain Res., 2011, 1374: 56-52.
65) D. Park, J. Eve, P. Sanberg, J. Musso, A. Bachstetter, A. Wolfson, et al., “Increased neuronal proliferation in the dentate gyrus of aged rats following neural stem cell implantation”, Stem Cells Dev., 2010, 19 (2): 175-80.
66) D. Darlington, J. Deng, B. Giunta, H. Hou, C.D. Sanberg N. Kuzmin-Nichols, et al., “Multiple low-dose infusions of human umbelical cord blood cells improve cognitive
97
impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice”, Stem Cells Dev., 2013, 22 (3): 412-21.
67) A.E. Willing, S.N. Garbuzova-Davis, O. Zayko, H.M. Derasari, A.E. Rawls, et al., “Repeated administrations of human umbilical cord blood cells improve disease outcomes in a mouse model of Sanfilippo syndrome type III B”, Cell transplant, 2013.
68) T. Ostenfeld, M. Caldwell, K. Prowse, L. Maarten, E. Jauniaux, C. Svendsen, “Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation”, Exp. Neurol., 2000, 164: 215-26.
69) D. Merianos T. Heaton, A.W. Flake, “In utero hematopoietic stem cell transplantation: progress toward clinical application”, Biol. Blood Marrow Transplant, 2008, 14 (7): 729-40. 70) D.G. Phinney, I.A. Isakova, “Mesenchymal stem cells as cellular vectors for pediatric neurological disorders”, Brain Res., 2014.
71) B. Winchester, A. Vellodi, E. Young, 2000, “The molecular basis of lysosomal storage diseases and their treatment”, Biochem. Soc. Trans., 28, 150-154.
72) S.W. Moses, 1990, “Pathophysiology and dietary treatment of the glycogen storage diseases”, J. Pediatr. Gastroenterol. Nutr., 11, 155-174.
73) O.E. Espinas, A.A. Faris, 1969, “Acute infantile Gaucher’s disease in identical twins. An account of clinical and neuropathologic observations”, Neurology, 19, 133-140.
74) E.M. Kaye, et al., 1986, “Type 2 and type 3 Gaucher disease: a morphological and biochemical study”, Ann. Neurol., 20, 223-230.
75) S.U. Walkley, K. Suzuki, 2004, “Consequences of NPC1 and NPC2 loss of function in mammalian neurons”, Biochim. Biophys. Acta 1685, 48-62.
76) J.Q. Huan, et al., 1997, “Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases”, Hum. Mol. Genet., 6, 1879- 1885.
77) W. Krivit, 2002, “Stem cell bone marrow transplantation in patients with metabolic storage diseases”, ADV Pediatr. 49, 359-378.
78) T.C. Lund, 2013, “Hematopoietic stem cell transplant for lysosomal storage diseases”, Pediatr. Endocrinol. Rev., 11, (suppl. 1), s91-s98.
98
79) T.H. Jaing, 2007, “Umbelical cord blood transplantation: application in pediatric patients”, Acta Pediatr. Taiwan, 48, 107-111.
80) H.R. Martin, et al., 2013, “Neurodevelopmental outcomes of umbilical cord blood transplantation in metachromatic leukodystrophy”, Biol. Blood Marrow Transplant., 19, 616- 624.
81) V.K. Prasad, J. Kurtzberg, 2010, “Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status, and future directions”, B.R. J. Haematol., 148, 356-372.
82) M. Ozen, et al., 2007, “Severe graft versus host disease in a patient with globoid cell leukodystrophy following umbilical cord blood transplantation: resemblance to the twitcher mouse model”, Turk. J. Pediatr., 49, 304-306.
83) M. Eapen, et al., 2012, “Long-term survival and late deaths after hematopoietic cell transplantation for primary immunodeficiency diseases and inborn errors of metabolism”, Biol. Blood Marrow Transplant, 18, 1438-1445.
84) D.J. Begley, C.C. Pontikis, M. Scarpa, 2008, “Lysosomal storage diseases and the blood- brain barrier”, Curr. Pharm. Des., 14, 1566-1580.
85) N.R. Selden, et al., 2013, “Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis”, J. Neurosurg. Pediatr., 11, 643-652.
86) N. Gupta, et al., 2012, “Neural stem cell engraftment and myelination in the human brain”, Sci. Transl. Med., 155ra137.
87) A.I. Caplan, J.E. Dennis, 2006, “Mesenchymal stem cells as trophic mediators”, J. Cell. Biochem., 98, 1076-1084.
88) A.I. Caplan, D. Correa, 2011, “The MSC: an injury drugstore”, Cell Stem Cell, 9, 11-15. 89) A.J. Nauta, W.E. Fibbe, 2007, “Immunomodulatory properties of mesenchymal stromal cells”, Blood, 110, 3499-3506.
90) D.G. Phinney, 2007, “Biochemical heterogeneity of mesenchymal stem cells populations: clues to their therapeutic efficacy”, Cell Cycle, 6, 2884-2889.
91) G.C. Kopen, D.J. Prockop, D.G. Phinney, 1999, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differenziate into astrocytes after injection into neonatal mouse brains”, Proc. Natl. Acad. Sci., USA, 96, 10711-10716.
99
92) H.K. Jin, et al., 2002, “Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span”, J. Clin. Invest., 109, 1183-1191.
93) K. Sakurai, et al., 2004, “Brain transplantation genetically modified bone marrow stromal cells corrects CNS pathology and cognitive function in MPS VII mice”, Gene Ther., 11, 1475-1481.
94) S.A. Goldman, M.B. Luskin, 1998, “Strategies utilized by migrating neurons of the postnatal vertebrate forebrain”, Trends Neurosci., 21, 107-114.
95) V. Marillat, et al., “Spatiotemporal expression patterns of slit and robo genes in the rat brain”, J. Comp. Neurol., 442, 130-155.
96) A. Watakabe, et al., 2006, “Binding and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys”, J. Comp. Neurol., 499, 258-273.
97) N. Gupta, et al., 2007, “Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice”, J. Immunol., 179, 1855-1863.
98) L.A. Ortiz, et al., 2007, “Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury”, Proc. Natl., Acad, Sci., USA, 104, 11002-11007.
99) M.J. Oswald, et al., 2005, “Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLNG)”, Neurobiol. Dis., 20, 49-63.
100) K. Ohmi, et al. 2003, “Activated microglia in cortex of mouse models of mucopolysaccharidoses I and II B”, Proc. Natl. Acad. Sci, USA, 100, 1902-1907.
101) Y. B. Hong, E.Y. Kim, S.C. Jung, 2006, “Upregulation of proinflammatory cytokines in the fetal brain of the Gaucher mouse”, J. Korean Med. Sci., 21, 733-738.
102) M. Jeyakumar, et al., 2003, “Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis”, Brain, 126,974-987. 103) L. Crigler, et al., 2006, “Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis”, Exp., Neurol., 198, 54-64.
100
104) N. Joyce, et al., 2010, “Mesenchymal stem cells for the treatment of neurodegenerative disease”, Regen. Med., 5, 933-946.
105) F. Pisati, et al., 2007, “Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases”, Cell. Transplant., 16, 41-55.
106) R. Qu, et al., 2007, “Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts”, Neuropathology, 27, 355-363.
107) D. Kurland, et al., 2012, “Hemorrhagic progression of a contusion after traumatic brain injury: a review”, J. Neurotrauma, 29, 19-31.
108) X.B. Hu, et al., 2012, “Health-related quality-of-life after traumatic brain injury: a 2- year follow-up study in Wuhan, China”, Brain Inj., 26, 183-187.
109) N. Andelic, et al., 2009, “ Functional outcome and health-related quality of life 10 years after moderate-to-severe traumatic brain injury”, Acta Neurol. Scand., 120, 16-23.
110) K. Jaracz, W. Kozubski, 2008, “Quality of life after traumatic brain injury”, Neurol. Neurochir. Pol., 42, 525-535.
111) M.D. Al-Jarrah, et al., 2009, “Association between the functional independence measure and Glasgow coma scale regarding therehabilitation outcomes of traumatic brain injury”, Neurosciences, 14, 41-44.
112) Sen Wang, et al., 2013, “Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury”, Brain Res., 1532, 76-84.
113) C.G. Fan, et al., 2011, “Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord”, Stem Cell Rev., 7, 195-207.
114) S.H. Koh, et al., 2008, “Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats”, Brain Res., 1229, 233- 248.
115) M. Secco, et al., 2008, “Multipotent stem cells from umbilical cord: cord is richer than blood!”, Stem Cells, 26, 146-150.
116) D.L. Troyer, M.L. Weiss, 2008, “Wharton’s jelly- derived cells are a primitive stromal cell population”, Stem Cells, 26, 591-599.
101
117) K.H. Wu, et al., 2007, “In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells”, J. Cell. Biochem., 100, 608-616.
118) H.T. Zhang, et al., 2010, “Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells”, Differentiation, 79, 15- 20.
119) Y.A. Romanov, et al., 2003, “Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord”, Stem Cells, 21, 105-110.
120) J. Li, et al., 2010, “Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis”, Brain Res., 1334, 65-72.
121) D.D. Carrade, et al., 2011, “Intradermal injections of equine allogenic umbilical cord- derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions”, Cytotherapy, 13, 1180-1192.
122) K.E. Mitchell, et al., 2003, “Matrix cells from Wharton’s jelly form neurons and glia”, Stem Cells, 21, 50-60.
123) E.R. Zanier,et al., 2011, “Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma”, Crit. Care Med., 39, 2501-2510.
124) D.J. Gladstone, et al., 2002, “The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properies”, Neurorehabil. Neural Reapir, 13, 232-240. 125) American Psychiatric Association, “Diagnostic and statistical manual of mental disorders”, American psychiatric publishing, Arlington, Va, USA, 4th
edition, 2000.
126) K. Williams, D.M. Wheeler, N. Silove, and P. Hazell, “Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD)”, Cochrane database of systematic reviews, vol. 8.
127) J. Blake, H.E. Hoyme, and P.L. Crotwell, “A brief history of autism, the autism/vaccine