Per quanto concerne le alterazioni eritrocitarie e piastriniche, in accordo con quanto si afferma in letteratura, il presente studio mostra che l’anemia, prevalentemente normocitica normocromica, è un reperto poco comune in corso di gastroenterite cronica (25% per la casistica considerata). La trombocitosi e la macro trombocitosi sono stati invece i reperti più frequenti (rispettivamente 50% e 75% al momento della diagnosi). Tra le alterazioni morfologiche eritrocitarie, riveste una particolare importanza il reperto di Corpi di Howell- Jolly, testimone di disfunzioni sia a livello eritropoietico che eritrocateretico.
Nonostante le modificazioni osservate nel profilo sideremico siano state lievi, il quasi sistematico aumento della proteina C reattiva, i tassi di UIBC tendenti alla normalità e la negatività al sangue occulto fecale identificano nello stimolo pro-infiammatorio la
principale causa patogenetica alla base dell’anemia e della trombocitosi in corso di gastroenterite cronica.
La sideremia si è rivelata un parametro che ben si correla con l’attività eritropoietica, come testimoniato dall’associazione tra iposideremia e diminuzione di RBC, HCT e HGB. Inoltre, sebbene non si siano mai riscontrate differenze statisticamente significative tra i pazienti anemici e non, anche la percentuale di saturazione tende a diminuire in corso di anemia e ad aumentare dopo la risoluzione di quest’ultima.
Se da un lato, dunque, viene confermato il link tra ferro e anemia, dall’altro risulta probabile che all’insorgenza della trombocitosi concorrano soprattutto stimoli citochinici o endocrini (corticosteroidi), indipendenti dal metabolismo del ferro.
A differenza di quanto è stato detto per la CRP, verosimilmente, l’aumento dei livelli di ferritina, da un lato, ed il calo di quelli di transferrina (TIBC), dall’altro, appaiono essere dei bioindicatori della flogosi gastrointestinale poco precoci e sensibili.
Ulteriori indagini intraprese su un numero di casi più nutrito potranno confermare tali associazioni.
Inoltre, sarebbero opportune nuove ricerche volte al confronto di tali parametri con indici sicuramente più precoci di squilibrio marziale, già in uso in medicina veterinaria, quali i nuovi parametri reticolocitari.
Infine, risulta allettante la possibilità di allestire, anche per quanto concerne la medicina veterinaria, markers dello stato marziale più sensibili e specifici, quali ad esempio i recettori solubili per la transferrina, ma soprattutto l’epcidina plasmatica; quest’ultima, in particolare, potrebbe funzionare da valido ausilio diagnostico per distinguere l’anemia da carenza di ferro da quelle da malattia cronica.
B
BIIBBLLIIOOGGRRAAFFIIAA
1. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906-19912, 2000.
2. Addison GM, Beamish MR, Hales CN et al. An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. J Clin Pathol 25: 326–329, 1972.
3. Ajioka RS, Levy JE, Andrews NC et al. Regulation of iron absorption in Hfe mutant mice. Blood 100: 1465–1469, 2002.
4. Akan H, Guven N, Aidogdu I et al. Thrombopoietic cytokines in patient with iron deficiency anaemia with or without thrombocytosis. Acta Hematol 103: 152-156, 2000.
5. Akira S, Isshiki H, Sugita T et al. A nuclear factor for IL-6 expression (NF- IL6) is a member of a C/EBP family. EMBO J 9:1897, 1990.
6. Alexander WS. Thrombopoietin and the c-Mpl receptor: insights from gene targeting. Int J Bioch & Cell Biol 31: 1027-1035, 1999.
7. Andoh A, Takashi Y, Yagi Y et al. Increased aggregation response of platetets in patients with inflammatory bowel disease. J Gastrenterol 41: 47-54, 2006. 8. Andre C, Descos L, Landais P et al. Laboratory supplementation of Crohn’s
disease activity index. Lancet 2:594–595, 1980.
9. Andrews GA, Smith JE, Gray M et al. An improved ferritin assay for canine sera. Vet Clin Pathol 21, 57–60, 1992.
10. Annibale B, Capurso G, Lahner E et al. Concomitant alterations in intragastric pH and ascorbic acid concentration in patients with Helicobacter pylori gastritis and associated iron deficiency anaemia. Gut 52; 496-501, 2003. 11. Arosio P, Adelman TG, Drysdale JW. On ferritin heterogeneity. Further
evidence for heteropolymers. J Biol Chem 253: 4451–4458, 1978.
12. Baele M, Van den Bulck K, Decostere A et al. Multiplex PCR assay for differentiation of Helicobacter felis, H. bizzozeronii, and H. salomonis. J Clin Microbiol 42(3): 1115-22, 2004.
13. Bastin JM, Jones M, O’Callaghan CA et al. Kupffer cell staining by an HFE- specific monoclonal antibody: implications for hereditary haemochromatosis. Br J Haematol 103: 931–941, 1998.
14. Baudard M, Molina T, Benfiguig K et al. Idiopathic thrombocytopenic purpura associated with Crohn’s disease. Hematologica 83:92-93, 1998.
15. Baysoy G, Ertem D, Ademoglu E et al. Gastric Histopathology, Iron Status and Iron Deficiency Anemia in Children with Helicobacter pylori Infection. Journal of Pediatric Gastroenterology and Nutrition 38:146–151, 2004.
16. Beguin Y. Soluble transferring receptor for the evaluation of erythropoiesis and iron status. Clin Chim Acta 329 (1-2): 9-22, 2003.
17. Bhandari S, Norfolk D, Brownjohn A et al. Evaluation of RBC ferritin and retyculocyte measurement in monitoring response to intravenuous iron therapy. Am J Kidney Dis 30: 814-821, 1997.
18. Bilic E, Bilic E. Aminoacid sequences omology of thrombopoietin and erythropoietin may explain thrombocytosis in children with iron deficiency anaemia. J Pediatr Hematol Oncol 25: 675-676, 2003.
19. Blackwell JM, Searle S, Goswami T, et al. Understanding the multiple functions of Nramp1. Microbes Infect 2: 317–21, 2000.
20. Bogdan C. Nitric oxide and the immune response. Nat Immunol, 2: 907–16, 2001.
21. Brandt SJ, Bodine DM, Dunbar CE et al. Dysregulated interleukin 6 expression produces a syndrome resembling Castleman's disease in mice. J Clin Invest 86592, 1990.
22. Bridle KR, Frazer DM, Wilkins SJ et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homeostasis. Lancet 361: 669–673, 2003.
23. Broudy VC, Lin N, Sabath D et al. Human platelets display high-affinity receptors for thrombopoietin. Blood 89:1896–1904, 1997.
24. Brown SJ, Simpson KW, Baker S et al. Macrothrombocytosis in Cavalier King Charles Spaniel. Vet Rec 135(12): 281-283, 1994.
25. Brugnara C, Zurakowsky D, DiCanzio J et al. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA 281: 2225-2230, 1999.
26. Brugnara C. A haematological “gold standard” for iron-deficiency state? Clin Chem 48: 981-982, 2002.
27. Brugnara C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem 49: 1573-1578, 2003.
28. Brugnara C. Use of reticulocyte cellular indices in the diagnosis and treatment of haematological disorders. Int J Clin Lab Res 28; 1-11, 1998.
29. Burmester H, Wollberg EM, Freitaq P et al. Trombopoietin production in wild type and interleukin-6 knockout mice with acute inflammation. J Interferon Cytokine Res 25(7): 407-413, 2005.
30. Carroccio A, Giannitrapani L, Di Prima L et al. Extreme thrombocytosis as a sigh of coeliac disease in the elderly: a case report. Eur J Gastroenterol Hepatol 14(8): 897-900, 2002.
31. Cavill I. Iron status indicators: hello new, goodbye old? Blood, 101:372-373, 2003.
32. Chase RM, Liss GM, Cole DC et al. Toxic health effects including reversible macrothrombocytosis in workers exposed to asphalt fumes. Am J Ind Med 25(2): 279-89, 1994.
33. Chen H, Su T, Attieh ZK, Fox TC et al. Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood 12: 1893–1899, 2003.
34. Chua AC e Morgan EH. Manganese metabolism is impaired in the Belgrade laboratory rat. J Comp Physiol [B] 167: 361–369, 1997.
35. Collins JF, Franck CA, Kowdley KV et al. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Am J Physiol Gastrointest Liver Physiol 288: G964–G971, 2005.
36. Cotter SM. Anemia non rigenerativa. In Ettinger SJ e Feldman EC “Trattato di clinica medica veterinaria, malattie del cane e del gatto”. Cap 178, pp. 1804- 1816. Ed Antonio Delfino, 2002.
37. Covell AM, Jacobs A, Worwood M. Interaction of ferritin with serum: implications for ferritin turnover. Clin Chim Acta 139: 75–84, 1984.
38. Cragg SJ, Wagstaff M, Worwood M. Detection of a glycosylated subunit in human serum ferritin. Biochem J 199, 565–571, 1981.
39. Craven M, Simpson JW, Ridyard AE et al. Canine inflammatory bowel disease: retrospective analysis of diagnosis and outcome in 80 cases (1995- 2002). J Small Anim Pract 45: 336-342, 2004.
40. Cronin CC, Shanahan F. Anaemia in Patients With Chronic Inflammatory Bowel Disease. Am J Gastroenterol 96(8):2296-2298, 2001.
41. Dallalio G, Law E, Means RT Jr. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood 107:2702-2704, 2006.
42. Dan K. Thrombocytosis in iron deficiency anaemia. Int Med 44(10): 1025- 1026, 2005.
43. Danese S, de la Motte C, Fiocchi C. Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic inplications. J Gastroenterol 99(5): 938- 945, 2004.
44. de Gopegui RR, Feldman BF. Piastrine e malattia di Von Willebrand. In Ettinger SJ e Feldman EC “Trattato di clinica medica veterinaria, malattie del cane e del gatto”. Cap 179, pp. 1817-1828. Ed Antonio Delfino, 2002.
45. Dimitriou H, Stiakaki E, Markaki EA et al. Soluble transferrin receptor levels and soluble transferrin receptor/log ferritin index in the evaluation of erythropoietic status in childhood infections and malignancy. Acta Paediatr 91(3): 360-1, 2002
46. Dofour C, Brisigotti M, Fabretti G et al. Helicobacter pylori gastric infection and sideropenic refractory anemia. J Pediatr Gastroenterol Nutr; 2: 225-227, 1993.
47. Donovan A, Brownlie A, Zhou Y et al. Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter. Nature 403: 776- 781, 2000.
48. Donovan A, Lima CA, Pinkus JL et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1: 191–200, 2005.
49. Eggleton P, Michalak M. Introduction to calreticulin. In Eggleton P and Michalak M’s “Calreticulin”, pp.1–8, ed. Kluwer, New York, 2003.
50. Facello C, Guglielmino R. Il sangue. In Aguggini G, Beghelli V, Giulio LF’s “Fisiologia degli animali domestici”, pp. 313-356, ed. UTET, 2002.
51. Fairbanks VF, Beutler E. Iron deficiency. In Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds “Williams Haematology”. 5th Ed. New York; McGraw-Hill, 447-470, 1995.
52. Faquin WC, Schneider TJ, Goldberg MA. Effect of Inflammatory Cytokines on Hypoxia-Induced Erythropoietin Production. Blood, 79(8): 1987-1994, 1992.
53. Feder JN, Gnirke A, Thomas W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13: 399–408, 1996.
54. Feder JN, Tsuchihashi Z, Irrinki A et al. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272: 14025–14028, 1997.
55. Felli N, Pedini F, Zeuner A, et al. Multiple members of the TNF superfamily contribute to IFN-g-mediated inhibition of erythropoiesis. J Immunol 175:1464–1472, 2005.
56. Ferguson BJ, Skikne BS, Simpson KM et al. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J Lab Clin Med 19:385-90, 1992.
57. Fleming MD, Trenor CC III, Su MA et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383-386, 1997.
58. Fleming RE, Britton RS, Waheed A et al. Pathogenesis of hereditary hemochromatosis. Clin Liver Dis 8: 755–773, 2004.
59. Fleming RE. Advances in understanding the molecular basis for the regulation of dietary iron absorption. Curr Opin Gastroenterol 21:201-206, 2005.
60. Fleming RE. Advances in understanding the molecular basis for the regulation of dietary iron absorption. Curr Opin Gastroenterol 21:201-206, 2005.
61. Forbes JR, Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol, 9: 397–403, 2001. 62. Frazer DM, Anderson GJ. Iron imports. I. Intestinal iron absorption and its
63. Frazer DM, Inglis HR, Wilkins SJ et al. Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut 53: 1509–1515, 2004.
64. Frazer DM, Wilkins SJ, Becker EM et al. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123: 835–844, 2002.
65. Fry MM, Kirk CA. Reticulocyte indices in a canine model of nutritional iron deficiency. Vet Clin Pathol 35: 172-181, 2006.
66. Fry MM, Liggett JL, Baek SJ. Molecular cloning and expression of canine hepcidin. Vet Clin Pathol 33(4): 223-7, 2004.
67. Furlanello T, Lubas G. Ematologia e profilo sideremico. 39° Congresso Nazionale SCIVAC - Medicina interna, 1999.
68. Ganti AK, Moazzam N, Laroia S et al. Predictive value of absent bone marrow iron stores in the clinical diagnosis of iron deficiency anaemia. In Vivo 17: 389-392, 2003.
69. Ganz T, Nemeth E. Iron imports IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290: G199-G203, 2005. 70. Ganz T, Nemeth E. Regulation of iron acquisition and iron distribution in
mammals. Bioch et Bioph acta. In press.
71. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anaemia of inflammation. Blood 102: 783–788, 2003.
72. Garrick MD, Garrick LM. Divalent metal transporter DMT1 (SLC11A2). In: Membrane Transporter Diseases, ed. Broer S and Wagner CA. Dordrecht, The Netherlands: Kluwer: 107–122, 2004.
73. Garrick MD, Singleton ST, Vargas F et al. DMT1: Which metals does it transport? Biol Res. In press.
74. Gasche C, Lomer MCE, Cavill I et al. Iron, anaemia, and inflammatory bowel desease. Gut 53: 1190-1197, 2004.
75. Geddis AE, Kaushansky AK. Cross reactivity between erythropoietin and thrombopoietin at the level of mpl does not account for the thrombocytosis seen in iron deficiency. J Pediatr Hematol Oncol 25: 919-920, 2003.
76. Geller AJ, Das KM. Etiology of inflammatory bowel disease. Curr Opin Gastroenterol 6:561-564, 1990.
77. Gentry PA. Platelet biology. In: Feldman B.F., Zinkl J.G., Tain N.C. Schalm’s “Veterinary Hematology” fifth edition. 459-466 Lippincott Williams & Wilkins, Baltimore, 2000.
78. German AJ, Day MJ, Ruaux CG et al. Comparison of direct and indirect tests for intestinal bacterial overgrowth and antibiotic responsive diarrhoea in dogs. J Vet Int Med 17(1): 33-34, 2003.
79. German AJ, Hall EJ, Day MJ. Chronic Intestinal Inflammation and Intestinal disease in dog. J Vet Intern Med 17:8-20, 2003.
80. German AJ. Diseases of the small intestine. In: Hall E.J., Simpson J.W., Williams D.A. et al. “BSAVA Manual of Canine and Feline Gastroenterology”, 176-202, BSAVA, Gloucester, 2005.
81. Giannetti AM, Bjorkman PJ. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface. J Biol Chem 279: 25866– 25875, 2004.
82. Gillum RF, Sempos CT, Makuc DM et al. Serum transferrin saturation, stroke incidence, and mortality in women and men. Am Journ Epidemiol 144(1): 59-68, 1996.
83. Gomme PT, McCann KB. Transferrin: structure, function and potential therapeutic actions. Drug Discovery Today, Vol 10, n°4: 267-273, 2005.
84. Guilford WG. Idiopatic inflammatory bowel diseases. In: Guilford WG, Center SA, Strombeck DR et al. “Strombeck’s small animal gastroenterology”. 451-486 Saunders Company, Philadelphia, 1996.
85. Gunshin H, Fujiwara Y, Custodio AO. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115: 1258–1266, 2005.
86. Gunshin H, Mackenzie B, Berger UV et al. Cloning and characterization of a proton-coupled mammalian metal-ion transporter. Nature 388: 482–488, 1997. 87. Hadziselimovic F, Emmons LR, Gallati H. Soluble tumour necrosis factor
receptors p55 and p75 in the urine monitor disease activity and the efficacy of treatment of inflammatory bowel disease. Gut 37:260–263, 1995.
88. Hall JA. Malattie dello stomaco. In Ettinger SJ e Feldman EC “Trattato di clinica medica veterinaria, malattie del cane e del gatto”. Cap 136, pp. 1154- 1177. Ed Antonio Delfino, 2002.
89. Handt LK, Fox JG, Dewhirst FE et al. Helicobacter pylori isolated from the domestic cat: public health implications. Infection and Immunity 62, 2367-2374, 1994.
90. Harries AD, Beeching NJ, Rogerson SJ et al. The platelet count as a simple measure to distinguish inflammatory bowel disease from infective diarrhoea. J infect (22)3: 247-250, 1991.
91. Harries AD, Beeching NJ, Rogerson SJ et al. The platelet count as a simple measure to distinguish inflammatory bowel disease from infective diarrhoea. J Infect 22(3): 247-50, 1991.
92. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275; 161–203, 1996. 93. Harvey J, Levin D, Chen C. Potential effects of glucocorticoids on serum iron
concentration in dogs. Vet Clin Pathol 16: 46-50, 1987.
94. Harvey JW. Erithrocytes. In: Atlas of veterinary hematology, 21-44. W.B. Saunders, Philadelphia, 2001a.
95. Harvey JW. Platelets. In: Atlas of veterinary hematology, 75-79. WB Saunders, Philadelphia, 2001b.
96. Hasegawa M, Kawamura N, Koide S et al. Evaluation of reticulocyte hemoglobin content, percentage of hypochromic red blood cells, and ratio of serum transferrin receptor level/serum iron level as markers of iron-deficiency erythropoiesis in patients undergoing hemodialysis. Nippon Jinzo Gakkai Shi 44(5): 453-463, 2002.
97. Heits F, Stahl M, Ludwig D et al. Elevated serum thrombopoietin and inter- leukin 6 concentrations in thrombocytosis associated with inflammatory bowel desease. J Interferon Cytokines Res, 19(7): 757-760, 1999.
98. Holm JL, Rozansky EA, Freeman LM, et al. C-reactive protein concentrations in canine acute pancreatitis. Journal of Veterinary Emergency and Critical Care 14 (3): 183-186, 2004.
99. Holmstrom P, Dzikaite V, Hultcrantz R et al. Structure and liver cell expression pattern of the HFE gene in the rat. J Hepatol 39: 308–314, 2003. 100. Inamura J, Ikuta K, Jimbo J et al. Upregulation of hepcidin by interleukin-1b
in human hepatoma cell lines. Hepatol Res 28, 2005.
101. Ishibashi T, Kimura H, Shikama Y et al. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 74:1241–4, 1989.
102. Ishibashi T, Kimura H, Shikawa H et al. Human interleukin6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA 86:5953–7, 1987.
103. Jacobs G, Collins-Kelly L, Lappin M et al. Lymphocytic-plasmacytic enteritis in 24 dogs. J Vet Int Med, 4: 45-53, 1990.
104. Jaremo P, Sandber-Gertzen H. Platelet density and size in inflammatory bowel disease. Throm Haemost 75(4): 218-219, 1996.
105. Jergens AE, Schreiner CA, Frank DE et al. A Scoring Index for Disease Activity in Canine Inflammatory Bowel Disease. J Vet Intern Med 17:291-297, 2003.
106. Jinbo T, Tamura J, Shinoara M et al. Possible causal association between ulcerative colitis and idiopathic thrombocytopenic purpura. Clin Rheumatol 11:408-409, 1992.
107. Johnson MB, Enns CA. Diferric transferrin regulates transferring receptor 2 protein stability. Blood 104: 4287–4293, 2004.
108. Juncà J, Fernàndez-Avilés F, Oriol A et al. The usefulness of the serum transferrin receptor in detecting iron deficiency in the anemia of chronic disorders. Haematologica 83: 676-680, 1998.
109. Kadikoylu G, Yavasoglu I, Bolaman Z, Senturk T. Platelet parameters in women with iron deficiency anaemia. J Natl Med Assoc 98(3): 389-402, 2006. 110. Kakuta K, Orino K, Yamamoto S et al. High levels of ferritin and its iron in
fetal bovine serum. Comp Biochem Physiol 118A: 165–169, 1997.
111. Kapsoritakis AN, Koukorakis MI, Sfiridaki A et al. Mean platelet volume: a useful marker of inflammatory bowel disease activity. Am J Gastroenterol 96: 776-81, 2001.
112. Keleman E, Cserhati I, Tanos B. Demonstration and some properties of human thrombopoietin in thrombo-cytopenic sera, Acta Haematol. 20: 350-353, 1958.
113. Kiron M. Relationship of extraintestinal involvements in inflammatory bowel disease - new insights into autoimmune pathogenesis. Dig Dis Sci 44:1-13, 1999.
114. Kis AM, Karnes M. Detecting iron deficiency in anaemic patients with concomitant medical problems. J Gen Intern Med 13: 445-461, 1998.
115. Knopfel M, Zhao L, Garrick MD. Transport of divalent transitionmetal ions is lost in small-intestinal tissue of b/b Belgrade rats. Biochemistry 44: 3454– 3465, 2005.
116. Kodaira M, Hanai H, Masayoshi K et al. Further evidence that exacerbation of ulcerative colitis cause the onset of thrombocytopenia: a clinical case. Am J Gastroenterol 94-1408-1410, 1999.
117. Kohgo Y, Nishisato T, Kondo H et al. Circulating transferrin receptor in human serum. Br J Haematol; 64:277-81, 1986.
118. Koike K, Nakahata T, Kubo T et al. Interleukin-6 enhances murine megakariocytopoiesis in serum-free culture. Blood 75:2286–91, 1990.
119. Kotisaari S, Romppanen J, Penttila I et al. The Advia 120 red blood cell and reticulocyte indices are useful in diagnosis of iron deficiency anemia. Eur J Haematol 68: 150-156, 2002.
120. Krause A, Neits S, Magert HJ et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480: 147-150, 2000. 121. Krijt J, Vokurka M, Chang KT et al. Expression of Rgmc, the murine
ortholog of hemojuvelin gene, is modulated by development and inflammation, but not by iron status or erythropoietin. Blood, 2004. E-pub
122. Laflamme DP, Kealy RD, Schmidt DA. Estimation of Body Fat by Body Condition Score. J Vet Int Med 8:154, 1994.
123. Larsen TB, Nielsen JN, Fredholm L et al. Platelets and anticoagulant capacity in patients with inflammatory bowel disease. Patophysiol Haemost Thromb 32(2): 92-6, 2002.
124. Lee A, Krakowka S, Fox JG et al. Role of Helicobacter felis in chronic canine gastritis. Vet Pathol 29:487-494, 1992
125. Lee P, Peng H, Gelbart T et al. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA;102:1906-10, 2005. 126. Leong WI, Lonnerdal B. Hepcidin, the recently identified peptide that
appears to regulate iron absorption. J Nutr 134: 1-4, 2004.
127. Levenston WC, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanism.Elsevier, Ageing Research Reviews 3: 251–263, 2004. 128. Levi S, Luzzago A, Cesareni G et al. Mechanism of ferritin iron uptake:
activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem 263: 18086–18092, 1988.
129. Levi S, Salfeld J, Franceshinelli F et al. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28: 5179–5184, 1989
130. Levi S, Yewdall SJ, Harrison PM et al. Evidence that H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J 288: 591–596, 1992.
131. Levine JB, Lukawsky-Trubish D. Extraintestinal considerations in inflammatory bowel disease. Gastroenterol Clin North Am 24(3): 633-46, 1995. 132. Liese AM, Siddiqi MQ, Siegel JH et al. Augmented TNF-alpha and IL-10
production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes. J Leukoc Biol. 70(2): 289-96, 2001.
133. Looker AC, Dallman PR, Carroll MD et al. Prevalence of iron deficiency in the United States. JAMA 227: 973-976, 1997.
134. Lowry OH, Rosebrough NJ, Farr AL et al. Protein measurement with the Folinphenol reagent. J Biol Chem 193: 265–275, 1951
135. Lubas G. Anemia scarsamente rigenerativa o non rigenerativa – Anemie ferroprive. In Lubas G. “Appunti di ematologia clinica veterinaria: disordini degli eritrociti e dei leucociti”. pp. 49-50; Pisa, SEU, 2005a.
136. Lubas G. Aspetti di morfologia eritrocitaria. In Lubas G. “Appunti di ematologia clinica veterinaria: disordini degli eritrociti e dei leucociti”. pp. 25- 30; Pisa, SEU, 2005b.
137. Lubas G. Conta cellulare automatizzata in Veterinaria. In Lubas G. “Appunti di metodologia e tecnica in ematologia veterinaria” 65-75; Pisa, SEU, 2004a. 138. Lubas G. Errori nel prelievo di sangue. In Lubas G “Appunti di metodologia e
tecnica in ematologia veterinaria”. 27-30. Pisa, SEU, 2004b.
139. Ludwiczek S, Aigner E, Theurl I et al. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 101, 4148–4154, 2003.
140. Luzzago A, Arosio P, Iacobello C et al. Immunochemical characterization of human liver and heart ferritins with monoclonal antibodies. Biochim Biophys Acta 872: 61–71, 1986.
141. Maciejewski JP, Sellen C, Sato T et al. Nitric Oxide Suppression of Human Hematopoiesis In Vitro. Contribution to Inhibitory Action of Interferon- and Tumor Necrosis Factor- . The Journal of Clinical Investigation, 96: 1085-