• Non ci sono risultati.

La statistica descrittiva ha evidenziato come nelle 598 pazienti affette da PCOS il sovrappeso e l’obesità abbiano una prevalenza molto elevata, nel 61% dei casi. Questa osservazione è importante perché è stato descritto in letteratura che gran parte delle donne sovrappeso/obese, presentano una adiposità centrale, nota per essere correlata con uno stato di insulino-resistenza, un aumento dell’incidenza del diabete e di malattie cardiovascolari. Nell’analisi delle caratteristiche metaboliche è stato riscontrato come l’insulino-resistenza, probabilmente in misura maggiore rispetto al sovrappeso e all’obesità, contribuisca a determinare variazioni significative nelle variabili metaboliche e biochimiche. Tuttavia è stato rilevato anche che il sovrappeso e l’obesità riproducano le stesse alterazioni (eccezion fatta per i valori delle LDL). Dunque trattamenti volti a ridurre l’IMC, agirebbero contemporaneamente sull’iper-androgenismo, quindi sugli aspetti estetici e psicologici correlati alla sindrome, e su quelli metabolici.

Nella popolazione presa in esame la maggior parte delle donne è rientrata nel fenotipo 1, che è quello maggiormente associato alle alterazioni metaboliche caratteristiche della sindrome. Si potrebbe sottolineare quindi come, soprattutto in questo gruppo, dovrebbero essere indagate, nell’ambito della gestione clinica, le alterazioni metaboliche associate alla sindrome. In considerazione del fatto nel fenotipo 1 è maggiore la prevalenza delle pazienti sovrappeso e obese, la riduzione dell’IMC dovrebbe rappresentare il primo obiettivo della gestione clinica della PCOS.

In conclusione, in base a queste osservazioni, è ipotizzabile che per sviluppare una PCOS in età fertile una donna debba avere una predisposizione genetica di base a complesso modello di ereditarietà poligenica su cui agiscono fattori ambientali di esposizione prenatale (livelli di LH materni o elevati livelli di AMH in utero) e post-natale (interferenti endocrini) che contribuiscono allo sviluppo della PCOS mantenuta ed esacerbata nelle sue manifestazioni dall’ eventuale presenza di obesità centrale ed insulino-resistenza.

Come evidenziato dai dati dello studio, queste due condizioni contribuiscono a generare un circolo vizioso con l’iper-androgenismo, peggiorando il quadro metabolico, aumentando il rischio

70 cardiovascolare a lungo termine delle pazienti, esacerbando segni e sintomi dell’iper-androgenismo con vari meccanismi noti. È chiaro come la patogenesi sia complessa e questi elementi da soli non possano spiegare la totalità dei casi di PCOS, perché altrimenti non ci sarebbero pazienti magre con PCOS.
Sicuramente questi elementi interagiscono tra loro e, per questo motivo, qualsiasi trattamento farmacologico personalizzato sulla base del fenotipo deve essere accompagnato da dieta, attività fisica e modifiche dello stile di vita sia nelle pazienti francamente obese che in quelle sovrappeso con adipe a distribuzione prevalentemente viscerale.


Futuri studi dovranno essere indirizzati alla valutazione del reale aumento del rischio cardiovascolare nelle giovani donne affette da PCOS e alle sue implicazioni terapeutiche. Al fine di colmare le attuali lacune sull’eziopatogenesi della sindrome dell’ovaio micropolicistico, si prevede di ampliare in futuro il gruppo delle pazienti magre insulino-resistenti. Inoltre, verranno analizzate le pazienti in età riproduttiva non PCOS che afferiscono all’ambulatorio obesità del reparto di Endocrinologia dell’AOUP. Questo gruppo fornirebbe una popolazione di controllo che permetterebbe di completare l’analisi delle relazioni intercorrenti tra IMC e HOMA.

71

BIBLIOGRAFIA

1. J. Larry Jameson ASF, Dennis L. Kasper, Stephen L. Hauser, Dan L. Longo, Joseph Loscalzo. Section 12, Endocrinology and Metabolism. Harrison's Principles of Internal Medicine. Twentieth Edition ed: McGraw Hill Higher Education; 2018: 2652. 2. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999; 84(1): 165-9.

3. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 1999; 22(1): 141-6.

4. Talbott EO, Zborowski JV, Rager JR, Boudreaux MY, Edmundowicz DA, Guzick DS. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89(11): 5454-61. 5. Vryonidou A, Paschou SA, Muscogiuri G, Orio F, Goulis DG. MECHANISMS IN ENDOCRINOLOGY: Metabolic syndrome through the female life cycle. Eur J Endocrinol 2015; 173(5): R153-63.

6. Dunaif A. Hyperandrogenic anovulation (PCOS): a unique disorder of insulin action associated with an increased risk of non-insulin-dependent diabetes mellitus. Am J Med 1995; 98(1A): 33S-9S.

7. Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril 2016; 106(1): 25-32.

8. Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 2012; 27(10): 3067-73.

9. Wolf WM, Wattick RA, Kinkade ON, Olfert MD. Geographical Prevalence of Polycystic Ovary Syndrome as Determined by Region and Race/Ethnicity. Int J Environ Res Public Health 2018; 15(11). 10. Kakoly NS, Khomami MB, Joham AE, et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum Reprod Update 2018; 24(4): 455-67.

72

11. Unluturk U, Sezgin E, Yildiz BO. Evolutionary determinants of polycystic ovary syndrome: part 1. Fertil Steril 2016; 106(1): 33-41.

12. Raj SG, Thompson IE, Berger MJ, Talert LM, Taymor ML. Diagnostic value of androgen measurements in polycystic ovary syndrome. Obstet Gynecol 1978; 52(2): 169-71. 13. Azziz R, Carmina E, Dewailly D, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 2009; 91(2): 456-88. 14. Adams J, Polson DW, Franks S. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J (Clin Res Ed) 1986; 293(6543): 355-9. 15. group TREAsPcw. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Human Reproduction 2004; 19(1): 41-7.

16. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33(6): 981-1030. 17. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 2016; 106(1): 6-15. 18. Azziz R, Carmina E, Dewailly D, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab 2006; 91(11): 4237-45.

19. Conway G, Dewailly D, Diamanti-Kandarakis E, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol 2014; 171(4): P1- 29.

20. Dunaif A, Fauser BC. Renaming PCOS--a two-state solution. J Clin Endocrinol Metab 2013; 98(11): 4325-8.

21. Pasquali R, Diamanti-Kandarakis E, Gambineri A. MANAGEMENT OF ENDOCRINE DISEASE: Secondary polycystic ovary syndrome: theoretical and practical aspects. Eur J Endocrinol 2016; 175(4): R157-69.

22. Crespo RP, Bachega T, Mendonca BB, Gomes LG. An update of genetic basis of PCOS pathogenesis. Arch Endocrinol Metab 2018; 62(3): 352-61.

23. Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? Ann Endocrinol (Paris) 2017; 78(3): 176-85.

73

24. Broekmans FJ, Knauff EA, Valkenburg O, Laven JS, Eijkemans MJ, Fauser BC. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors. BJOG 2006; 113(10): 1210-7.

25. Rebar R, Judd HL, Yen SS, Rakoff J, Vandenberg G, Naftolin F. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J Clin Invest 1976; 57(5): 1320- 9.

26. Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley WF, Jr. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab 1988; 66(1): 165-72.

27. Yen SS, Vela P, Rankin J. Inappropriate secretion of follicle-stimulating hormone and luteinizing hormone in polycystic ovarian disease. J Clin Endocrinol Metab 1970; 30(4): 435-42. 28. Taylor AE, McCourt B, Martin KA, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997; 82(7): 2248- 56.

29. Arroyo A, Laughlin GA, Morales AJ, Yen SS. Inappropriate gonadotropin secretion in polycystic ovary syndrome: influence of adiposity. J Clin Endocrinol Metab 1997; 82(11): 3728-33. 30. Boots CE, Jungheim ES. Inflammation and Human Ovarian Follicular Dynamics. Semin Reprod Med 2015; 33(4): 270-5. 31. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37(5): 467-520.

32. Hoffman DI, Klove K, Lobo RA. The prevalence and significance of elevated dehydroepiandrosterone sulfate levels in anovulatory women. Fertil Steril 1984; 42(1): 76-81. 33. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145: 213-25. 34. Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome - a hypothesis. The Journal of endocrinology 2002; 174(1): 1-5. 35. Pigny P, Jonard S, Robert Y, Dewailly D. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J Clin Endocrinol Metab 2006; 91(3): 941-5.

74 36. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 2016; 22(6): 709-24. 37. Sir-Petermann T, Maliqueo M, Codner E, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92(12): 4637-42. 38. Sir-Petermann T, Codner E, Perez V, et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2009; 94(6): 1923-30.

39. Tata B, Mimouni NEH, Barbotin AL, et al. Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 2018; 24(6): 834-46. 40. Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod 2012; 86(5): 149, 1-12. 41. Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 2013; 373(1-2): 8-20. 42. Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol 2013; 373(1-2): 21-8.

43. Zhang L, Li H, Li S, Zou X. Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2016; 202: 26-31. 44. Diamanti-Kandarakis E, Piperi C, Spina J, et al. Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens) 2006; 5(1): 17-34.

45. Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance. Clin Med (Lond) 2015; 15 Suppl 6: s72-6.

46. Wu S, Divall S, Nwaopara A, et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes 2014; 63(4): 1270- 82.

47. Tosi F, Fiers T, Kaufman JM, et al. Implications of Androgen Assay Accuracy in the Phenotyping of Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2016; 101(2): 610- 8.

75

48. Cara JF, Fan J, Azzarello J, Rosenfield RL. Insulin-like growth factor-I enhances luteinizing hormone binding to rat ovarian theca-interstitial cells. J Clin Invest 1990; 86(2): 560-5.

49. Wu C, Wei K, Jiang Z. 5alpha-reductase activity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2017; 15(1): 21.

50. Barker DJ. The origins of the developmental origins theory. J Intern Med 2007; 261(5): 412- 7.

51. Guo Y, Qi Y, Yang X, et al. Association between Polycystic Ovary Syndrome and Gut Microbiota. PLoS One 2016; 11(4): e0153196.

52. Chevalier N, Fenichel P. Bisphenol A: Targeting metabolic tissues. Rev Endocr Metab Disord 2015; 16(4): 299-309.

53. Chevalier N, Fenichel P. [Endocrine disruptors: A missing link in the pandemy of type 2 diabetes and obesity?]. Presse Med 2016; 45(1): 88-97. 54. Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic Features of Polycystic Ovary Syndrome: Role of Androgens. Physiology (Bethesda) 2017; 32(5): 357-66. 55. Dumesic DA, Abbott DH, Eisner JR, Goy RW. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil Steril 1997; 67(1): 155-63. 56. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab 1998; 9(2): 62-7.

57. Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000; 85(3): 1206-10. 58. Eisner JR, Barnett MA, Dumesic DA, Abbott DH. Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil Steril 2002; 77(1): 167-72. 59. Padmanabhan V, Veiga-Lopez A. Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 2014; 92(8): 3199-210. 60. Moghetti P, Tosi F, Castello R, et al. The insulin resistance in women with hyperandrogenism is partially reversed by antiandrogen treatment: evidence that androgens impair insulin action in women. J Clin Endocrinol Metab 1996; 81(3): 952-60.

76 61. Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril 2016; 106(4): 948-58. 62. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999; 84(11): 4006-11.

63. Palioura E, Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocr Metab Disord 2015; 16(4): 365-71.

64. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004; 51(2): 165-9.

65. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transfer of bisphenol A across the human placenta. American journal of obstetrics and gynecology 2010; 202(4): 393 e1-7.

66. Corbel T, Gayrard V, Puel S, et al. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta. Reprod Toxicol 2014; 47: 51-8.

67. Abbott DH, Levine JE, Dumesic DA. Translational Insight Into Polycystic Ovary Syndrome (PCOS) From Female Monkeys with PCOS-like Traits. Curr Pharm Des 2016; 22(36): 5625-33.

68. Xu N, Chua AK, Jiang H, Liu NA, Goodarzi MO. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol Endocrinol 2014; 28(8): 1329-36.

69. Ilie IR, Georgescu CE. Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Adv Clin Chem 2015; 71: 25-45.

70. Shen HR, Qiu LH, Zhang ZQ, Qin YY, Cao C, Di W. Genome-wide methylated DNA immunoprecipitation analysis of patients with polycystic ovary syndrome. PloS one 2013; 8(5): e64801. 71. Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 2001; 75(1): 53-8. 72. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab 2006; 91(6): 2100-4. 73. Kashar-Miller M, Azziz R. Heritability and the risk of developing androgen excess. J Steroid Biochem Mol Biol 1999; 69(1-6): 261-8.

77 74. Yilmaz B, Vellanki P, Ata B, Yildiz BO. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril 2018; 109(2): 356-64.e32. 75. Zhao H, Lv Y, Li L, Chen ZJ. Genetic Studies on Polycystic Ovary Syndrome. Best Pract Res Clin Obstet Gynaecol 2016; 37: 56-65.

76. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev 2015; 36(5): 487-525. 77. Beck-Peccoz GFP. Malattie del sistema endocrino e del metabolismo 4ed; 2006: 303-7. 78. Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 2011; 43(1): 55-9. 79. McAllister JM, Legro RS, Modi BP, Strauss JF, 3rd. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 2015; 26(3): 118-24. 80. Archer JS, Chang RJ. Hirsutism and acne in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 2004; 18(5): 737-54. 81. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E. american association of clinical endocrinologists, american college of endocrinology, and androgen excess and pcos society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome - PART 2. Endocr Pract 2015; 21(12): 1415-26.

82. Barbieri RL, Ryan KJ. Hyperandrogenism, insulin resistance, and acanthosis nigricans syndrome: a common endocrinopathy with distinct pathophysiologic features. Am J Obstet Gynecol 1983; 147(1): 90-101.

83. Schwartz RA. Acanthosis nigricans. J Am Acad Dermatol 1994; 31(1): 1-19; quiz 20-2.

84. Davidson MB. Clinical implications of insulin resistance syndromes. Am J Med 1995; 99(4): 420-6.

85. Cruz PD, Jr., Hud JA, Jr. Excess insulin binding to insulin-like growth factor receptors: proposed mechanism for acanthosis nigricans. J Invest Dermatol 1992; 98(6 Suppl): 82S-5S.

86. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod 1994; 9(2): 188-91.

78

88. Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence- based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018; 110(3): 364-79. 89. J. Larry Jameson ASF, Dennis L. Kasper, Stephen L. Hauser, Dan L. Longo, Joseph Loscalzo. Section 12, Endocrinology and Metabolism. Harrison's Principles of Internal Medicine. Twentieth Edition ed: McGraw Hill Higher Education; 2018: 2827. 90. Orio F, Jr., Palomba S, Giallauria F, Colao A, Vigorito C. Impaired cardiopulmonary parameters in young women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2007; 66(1): 152-3. 91. Legro RS, Gnatuk CL, Kunselman AR, Dunaif A. Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab 2005; 90(6): 3236-42. 92. Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev 2013; 14(2): 95-109.

93. Rebuffe-Scrive M, Cullberg G, Lundberg PA, Lindstedt G, Bjorntorp P. Anthropometric variables and metabolism in polycystic ovarian disease. Horm Metab Res 1989; 21(7): 391-7. 94. Holte J, Bergh T, Berne C, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 1995; 80(9): 2586-93.

95. Ottosson M, Vikman-Adolfsson K, Enerback S, Olivecrona G, Bjorntorp P. The effects of cortisol on the regulation of lipoprotein lipase activity in human adipose tissue. J Clin Endocrinol Metab 1994; 79(3): 820-5.

96. Targher G, Rossini M, Lonardo A. Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis? Endocrine 2016; 51(2): 211-21.

97. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(4): 1929-35.

98. J. Larry Jameson ASF, Dennis L. Kasper, Stephen L. Hauser, Dan L. Longo, Joseph Loscalzo. Section 12, Endocrinology and Metabolism. Harrison's Principles of Internal Medicine. Twentieth Edition ed: McGraw Hill Higher Education; 2018: 2904.

79 99. Liu Q, Xie YJ, Qu LH, Zhang MX, Mo ZC. Dyslipidemia involvement in the development of polycystic ovary syndrome. Taiwan J Obstet Gynecol 2019; 58(4): 447-53. 100. Spalkowska M, Mrozinska S, Galuszka-Bednarczyk A, et al. The PCOS Patients differ in Lipid Profile According to their Phenotypes. Exp Clin Endocrinol Diabetes 2018; 126(7): 437-44.

101. Solomon SD, Lin J, Solomon CG, et al. Influence of albuminuria on cardiovascular risk in patients with stable coronary artery disease. Circulation 2007; 116(23): 2687-93.

102. Legro RS. Polycystic ovary syndrome and cardiovascular disease: a premature association? Endocr Rev 2003; 24(3): 302-12.

80

Ringraziamenti

Desidero ringraziare il mio relatore, il Professor Massimo Tonacchera, che si è reso sempre disponibile in questi mesi di lavoro con preziosi insegnamenti e che mi ha permesso di frequentare l’ambulatorio di Endocrinologia ginecologica e dell’adolescenza.

Un sincero ringraziamento va anche alla mia correlatrice, la Dott.ssa Elena Benelli, per i suoi suggerimenti e per avermi consentito di affiancarla nella conduzione dell’ambulatorio.

Desidero ringraziare inoltre il Dottor Angelo Molinaro, per la disponibilità dimostratami durante la scrittura della tesi e per le sue preziose istruzioni in materia di analisi statistica.

Un pensiero affettuoso va infine alla Dott.ssa Roberta Asaro, che ha condiviso con me l’interesse per la ricerca nell’ambito della sindrome dell’ovaio micropolicistico.

Documenti correlati