• Non ci sono risultati.

NONO è una proteina dimerica coinvolta in diversi tipologie di cancro. Essa è implicata sia nel controllo del ciclo cellulare che nella trascrizione genetica. E’ inoltre presente nei meccanismi di riparazione del DNA di tipo non omologo.

NONO appartiene alla famiglia delle proteine DBHS e per questo motivo è caratterizzata dalla presenza di due motivi di riconoscimento in tandem dell’RNA altamente conservati (RRM1, RRM2), che assumono un ruolo fondamentale nel legame con il ligando naturale, e di un dominio NONa/paraspeckle (NOPS), rappresentato dalla regione a spirale. Tutti questi domini rappresentano l’interfaccia d’interazione che è di tipo idrofobico. Lavorando sotto forma di dimeri, saranno presenti ben otto domini: due domini RRM2 che si dispongono in modo pseudosimmetrico andando a circoscrivere un canale di 20Å a diretto contatto con il solvente. I due domini RRM1 si dispongono invece esternamente a questo canale. Il dominio NOPS si lega al dominio RRM2 determinando in quest’ultimo la formazione di loop a cappio all’ estremità 3 e 5 che presentano dei legami ad idrogeno. Il loop numero 3 si impegna nel legame con l’acido nucleico.

Ad oggi in letteratura non sono presenti ligandi conosciuti e per questo motivo, visto l’importanza della NONO e la sua implicazione in diverse patologie, si è ritenuto importante effettuare delle ricerche per la scoperta di molecole in grado di interagire con essa.

Il mio lavoro di tesi ha previsto una fase iniziale di self-docking per determinare quale dei 12 programmi di docking presenti nel mio laboratorio, fosse il migliore per prevedere il corretto binding mode del ligando. I programmi usati sono VINA, che si è dimostrato il migliore con un valore di RMSD intorno ai 2Å, AutoDock, GLAMDOCK, PLANTS, FRED, DOCK6, GLIDE (con le funzione Standard Precision ed Extra Precision) e GOLD (con le funzioni ASP, PLP, ChemScore e GoldScore). Qui è stato preso come riferimento il cristallo 4YOE.

di 1’500’000 composti. La strategia ha previsto la scelta di tutte quelle molecole aventi un peso molecolare maggiore o uguale a 350 Da, dove, questo valore, è stato preso come riferimento dall’ RNA.

In seguito è stato eseguito uno screening receptor-based mediante l’utilizzo della piattaforma FLAP. Qui è stato possibile stabilire la presenza di cinque tasche di legame e valutare dove avvenisse il legame con il ligando naturale. In seguito, basandomi sulle informazioni ricavate dal self-docking, ho effettuato il docking delle 180 molecole ottenute da FLAP.

Con la successiva valutazione della ligand efficency, ho selezionate 20 molecole che ho sottoposto a simulazione di dinamica molecolare con la piattaforma di AMBER14.

Gli studi di dinamica molecolare su queste molecole hanno portato come risultato la scelta di un sola possibile molecola che potrà essere acquistata e sottoposta ad opportuni saggi enzimatici. Qualora i risultati di quest’ultimi fossero positivi, potrà essere utilizzata come nuovo lead per lo sviluppo di potenti ligandi della proteina NONO.

Bibliografia:

[1] www.airc.it/cancro/tumori/melanoma-cutaneo/

[2] www.airc.it/prevenzione-tumore/sole/senza-rischi/effetti-raggi-solari/

[3] P. Karran, R. Brem, <<Protein oxidation, UVA and human DNA repair>>, DNA repair 44 (2016), 178-185.

[4] B. Petersen, H.C. Wolf, M. Triguero-Mas, P.A. Philipsen, E. Theeden, P.Olsen, J. Heydenreich, P. Dadvand, X. Basagana, T.S. Liljendahl, G.I. Harrison, D. Sagerback, A.W. Schmalwieser, A.R. Young, M.J. Nieuwenhuijsen, <<Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage>>, J. Invest. Dermatol. 134 (2014), 2806-2813.

[5] M. Cordeiro-Stone, J.J. McNulty, C.D. Sproul, P.D. Chastain, E. Gibbs-Flournoy, Y. Zhou, C. Carson, S. Rao, D.L. Mitchell, D.A. Simpson, N.E. Thomas, J.G. Ibrahim, W.K. Kaufmann <<Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines>>, Pigment Cell Melanoma Res. 29 (2015), 68-80.

[6] B.A. Gilcherest, M.S. Eller, A.C. Geller, M. Yaar, << The pathogenesis of melanoma induced by ultraviolet radiation>>, N. Enel. J. Med 320 (1999), 1341-1348.

[7] N.E. Thomas, S.N. Edmiston, A. Alexander, <<Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma>>, Cancer Epidemiol. Biomarkers Prev 16 (2007), 991-997.

[8] N.G. Reed <<The history of ultraviolet germicidal irradiation for air disinfection>>, Public Health Rep. 125 (2010), 15-27.

[9] J. Krietsch, M.C. Caron, J.P. Gagnè, C. Eithier, J. Vignard, M. Vincent, M. Rouleau, M.J. Hendzel, G.G. Poirier, J.Y. Masson, <<PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks>>, Nucleic Acids Research Vol. 40, No. 20 (2012), 10287-10301.

[10] A. Ciccia, S.J. Elledge, <<The DNA damage response: making it safe to play with knives>>, Mol. Cell 40 (2010), 179-204.

[11] D.A. Wacker, K.M. Frizzell, T. Zhang, W.L. Kraus, <<Regulation of chromatin structure and chromatin-dependent transcriptions by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies>>, Sucell Biochem 41 (2007), 45-69.

[12] V.J. Bouchard, M. Rouleau, G.G. Poirier, <<PARP-1, a determinant of cell survival in response to DNA damage>>, Expo. Hematol. 31 (2003), 446-454.

[13] R. Krishnakumar, W.L. Rouleau, <<The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets>>, Mol. Cell. 39 (2010), 8-24.

[14] F.J. Haince, D. McDonald, A. Rodrigue, U. Dery, J.Y. Masson, M.J. Hendzel, G.G. Porier, <<PARP-1 dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites>>, J. Biol. Chem. 283 (2008), 1197-1208.

[15] M. Takata, M.S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, S. Takeda, <<Homologous recombination and non- homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells>>, EMBO J. 17 (1998), 5497-5508.

[16] A.J. Davis, B.P.C. Chen, D.J. Chen, <<DNA-PK: a dynamic enzyme in a versatile DSB repair pathway>>, (2014).

[17] A.J. Davis, D.J. Chen, <<DNA double strand break repair via non-homologous end- joining>>, Transl Cancer Res 2 (2013), 130-143.

[18] M.R. Lieber <<The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway>>, Anni Rev Biochem 79 (2010), 181-211.

[19] P.O. Mari, B.I. Florea, S.P. Persengiev, N.S. Verkaik, H.T. Bruggenwirth, M. Modesti, G. Giglia-Mari, K. Bezstarosti, J.A. Demmers, T.M. Luider, A.B. Houstmuller, D.C. vanGent, <<Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4>>, Proc Natl Acad Sci U.S.A. 103 (2006), 18597-18602.

[20] N. Uematsu, E. Weterings, K. Yano, K. Morotami-Yano, B. Jacob, G. Taucher-Scholz, P.O. Mari, D.C. vanGent, B.P. Chen, D.J. Chen, <<Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks>>, J Cell Biol 177 (2007), 219-229.

[21] T. Mimori, J.A. Hardin, J.A. Steitz,<<Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders>> J Biol Chem. 261 (1986), 2274– 2278.

[22] J.A. Downs, S.P. Jackson, <<A means to a DNA end: the many roles of Ku>>, Nat Rev Mol Cell Biol. 5 (2004), 367-378.

[23] J.R. Walker, R.A. Corpina, J. Goldberg, <<Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair>>, Nature. 412 (2001); 607–614.

[24] S. Britton, J. Coates, S.P. Jackson, <<A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair>>, J Cell Biol. 202 (2013), 579–595.

[25] Z. Shao, A.J. Davis, K.R Fattah, S. So, J. Sun, K.J. Lee, L. Harrison, J. Yang , D.J Chen, <<Persistently bound Ku at DNA ends attenuates DNA end resection and homologous recombination>>, DNA Repair (Amst) 11 (2012), 310–316.

[26] S. Costantini, L. Woodbine, L. Andreoli, P.A Jeggo, A. Vindigni, <<Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK.>>, DNA Repair (Amst) 6 (2007), 712–722.

[27] S.A. Nick McElhinny, C.M. Snowden, J. McCarville, D.A Ramsden, <<Ku recruits the XRCC4-ligase IV complex to DNA ends.>>, Mol Cell Biol. 20 (2000), 2996–3003.

[28] H. Nagasawa, J.R. Brogan, Y. Peng, J.B. Little, J.S Bedford, <<Some unsolved problems and unresolved issues in radiation cytogenetics: a review and new data on roles of homologous recombination and non- homologous end joining>>, Mutat Res. 701 (2010), 12–22.

[29] A.G Patel, J.N. Sarkaria, S.H. Kaufmann SH, <<Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination- deficient cells>>, Proc Natl Acad Sci U S A. 108 (2011), 3406–3411.

[30] P. Pace, G. Mosedale, M.R. Hodskinson, I.V. Rosado, M. Sivasubramaniam, K.J. Patel , <<Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway>>, Science. 329 (2010), 219–223.

[31] T. Gottlieb, S. Jackson, <<The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen>>, Cell. 72 (1993), 131–142.

[32] R.T. Abraham,<<PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways>>, DNA Repair (Amst) 3 (2004), 883–887.

[33] C.J. Bakkenist, M.B. Kastan, <<Initiating cellular stress responses>>, Cell. 118 (2004), 9–17.

[34] J. Perry, N. Kleckner, <<The ATRs, ATMs, and TORs are giant HEAT repeat proteins.>>, Cell. 112 (2003), 151-155.

[35] K. Hartley, D. Gell, G. Smith, H. Zhang, N. Divecha, M. Connelly, A. Admon, S. Lees- Miller, C. Anderson, S. Jackson, <<DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product>>, Cell. 82 (1995), 849–856.

[36] D.R. Williams, K.J. Lee, J. Shi, D.J. Chen, P.L. Stewart, <<Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals alpha helices and insight into DNA binding>>, Structure. 16 (2008), 468–477.

[37] B.L. Sibanda, D.Y. Chirgadze, T.L. Blundell, <<Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats>>, Nature. 463 (2010), 118–121.

[38] S. Yoo, W.S. Dynan, <<Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein>>, Nucleic Acids Res. 27 (1999), 4679–4686.

[39] P. Calsou, P. Frit, O. Humbert, C. Muller, D.J. Chen, B. Salles, <<The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA>>, J Biol Chem. 274 (1999), 7848–7856.

[40] O. Hammarsten, G. Chu, <<DNA-dependent protein kinase: DNA binding and activation in the absence of Ku>>, Proc Natl Acad Sci U S A. 95 (1998), 525–530.

[41] R.B. West, M. Yaneva, M.R. Lieber, <<Productive and nonproductive complexes of Ku and DNA- dependent protein kinase at DNA termini>>, Mol Cell Biol. 18 (1998), 5908– 5920.

[42] A. Rivera-Calzada, L. Spagnolo, L.H. Pearl, O. Llorca O, <<Structural model of full- length human Ku70- Ku80 heterodimer and its recognition of DNA and DNA-PKcs>>, EMBO Rep. 8 (2007), 56–62.

[43] L. Spagnolo, A. Rivera-Calzada, L.H. Pearl, O. Llorca, <<Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair>>, Mol Cell. 22 (2006), 511–519.

[44] A. Rivera-Calzada, J.D. Maman, L. Spagnolo, L.H. Pearl, O. Llorca, <<Three- dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)>>, Structure 13 (2005), 243–255.

[45] W. Giffin, H. Torrance, D.J. Rodda, G.G. Prefontaine, L. Pope, R.J. Hache, <<Sequence-specific DNA binding by Ku autoantigen and its effects on transcription>>, Nature 380 (1996), 265–268.

[47] B.D. Beck, D.S. Hah, S.H. Lee, << XPB and XPD between transcription and DNA repair>>, Adv. Exp. Med. Biol. 637 (2008), 39–46.

[48] R. Peng, B.T. Dye, I. Perez, D.C. Barnard, A.B Thompson, J.G. Patton, <<PSF and p54nrb bind a conserved stem in U5 snRNA>>, RNA 8 (2002), 1334–1347.

[49] Z. Zhang, G.G. Carmichael, <<The fate of dsRNA in the nucleus: a p54(nrb)- containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs.>>, Cell. 106 (2001), 465–475.

[50] S. Kaneko, O. Rozenblatt-Rosen, M. Meyerson, J.L. Manley, <<The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3’processing and transcription termination>>, Genes Dev. 21 (2007), 1779–1789.

[51] A.L. Amelio, L.J. Miraglia, J.J. Conkright, B.A. Mercer, S. Batalov, V. Cavett, A.P. Orth, J. Busby, J.B. Hogenesch, M.D. Conkright, <<A coactivator trap identifies NONO (p54nrb) as a component of the cAMP-signaling pathway>>, Proc. Natl. Acad. Sci. USA 104 (2007), 20314–20319.

[52] M. Mathur, P.W. Tucker, H.H. Samuels, <<PSF is a novel corepressor that mediates its effect through Sin3A and the DNA binding domain of nuclear hormone receptors>>, Mol. Cell Biol. 21 (2001), 2298–2311.

[53] Ishitani,K., Yoshida,T., Kitagawa,H., Ohta,H., Nozawa,S. and Kato,S. (2003) p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor. Biochem. Biophys. Res. Commun., 306, 660–665.

[54] S. Li, W.W. Kuhne, A. Kulharya, F.Z. Hudson, K. Ha, Z. Cao, W.S. Dynan, <<Involvement of p54(nrb), a PSF partner protein, in DNA double-strand break repair and radioresistance>>, Nucleic Acids Res. 37 (2009), 6746–6753.

[55] J.P. Gagne, M. Isabelle, K.S. Lo, S. Bourassa, M.J. Hendzel, V.L. Dawson, T.M Dawson, G.G. Poirier,G.G, <<Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes>>, Nucleic Acids Res. 36 (2008), 6959–6976.

[56] J.P. Gagne, J.F. Haince, E. Pic, G.G. Poirier,G.G, <<Affinity-based assays for the identification and quantitative evaluation of noncovalent poly(ADP-ribose)-binding proteins>>, Methods Mol. Biol. 780 (2011), 93–115.

[57] M. Salton, Y. Lerenthal, S.Y. Wang, D.J. Chen, Y. Shiloh, <<Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response>>, Cell Cycle 9 (2010), 1568–1576.

[58] N.M. Shanbhag, I-U. Rafalska-Metcalf, C. Balane-Bolivar, S.M. Janicki, R.A. Greenberg, <<ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks>>, Cell. 141 (2010) , 970–981.

[59] S. Schiffner, N. Zimara, R. Schmid, A.K. Bosserhoff, <<p54nrb is a new regulator of progression of malignant melanoma>>, Carcinogenesis 32 (2011), 1176–1182.

[60] L. Alfano, C. Costa, A. Caporaso, A. Altieri, P. Indovina, M. Macaluso, A. Giordano, F. Pentimalli, <<NONO regulates the intra-S-phase checkpoint in response to UV radiation>>, Oncogene (2015), 1-10.

[61] D. Branzei, M. Foiani, <<The checkpoint response to replication stress>>, DNA Repair (Amst) 8 (2009), 1038–1046.

[62] T.P. Heffernan, D.A. Simpson, A.R. Frank, A.N Heinloth, R.S. Paules, M. Cordeiro- Stone, W.K. Kaufmann WK, <<An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage>>, Molecular and cellular biology 22 (2002), 8552–8561.

[63] W.K. Kaufmann, S.J. Wilson, <<G1 arrest and cell-cycle-dependent clastogenesis in UV-irradiated human fibroblasts>>, Mutation research. 314 (1994), 67–76.

[64] B. Konze-Thomas, R.M. Hazard, V.M Maher, J.J. Mccormick, <<Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation>>, Mutation research. 94 (1982), 421–434.

[65] A. Ciccia, S.J. Elledge, <<The DNA damage response: making it safe to play with knives>>, Molecular cell. 40 (2010), 179–204.

[66] L. Zou, S.J. Elledge, <<Sensing DNA damage through ATRIP recognition of RPA- ssDNA complexes>>, Science. 300 (2003), 1542–1548.

[67] A. Kumagai, J. Lee, H.Y. Yoo, W.G. Dunphy, <<TopBP1 activates the ATR-ATRIP complex>>, Cell. 124 (2006), 943–955.

[68] D.A. Mordes, G.G. Glick, R. Zhao, D. Cortez, <<TopBP1 activates ATR through ATRIP and a PIKK regulatory domain>>, Genes Dev 22 (2008), 1478–1489.

[69] H. Zhao, H. Piwnica-Worms, <<ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1>>, Mol Cell Biol 21 (2001), 4129–4139.

[70] K.A. Cimprich, D. Cortez, <<ATR: an essential regulator of genome integrity>>, Nat Rev Mol Cell Biol 9 (2008), 616–627.

[71] G. J. Knott, C.S. Bond, A.H. Fox, <<The DBHS proteins SFPQ,NONO and PSPC1:a multipurpose molecular scaffold>>, Nucleic Acids Res. 1 (2016).

[72] B. Dong, D.S. Horowitz , R. Kobayashi, A.R. Krainer, <<Purification and cDNA cloning of HeLa cell p54nrb, a nuclear protein with two RNA recognition motifs and extensive homology to human splicing factor PSF and Drosophila NONA/BJ6>>, Nucleic Acids Res. 21 (1993), 4085–4092.

[73] Y. Shav-Tal, D. Zipori, <<PSF and p54(nrb)/NonO - multi-functional nuclear proteins>>, FEBS Lett. 53 (2002), 109–114.

[74] A.H. Fox, A.I. Lamond, <<Paraspeckles>>, Cold Spring Harbor Perspect. Biol. 2 (2010).

[75] G.J. Knott, M. Lee, D.M. Passon, A.H. Fox, C.S. Bond, <<Caenorhabditis elegans NONO-1: Insights into DBHS protein structure, architecture and function>>, Protein Sci. 24 (2015), 2033–2043.

[76] D.M. Passon, M. Lee, O. Rackham, W.A. Stanley, A. S, A. Filipovska, A.H. Fox, C.S. Bond, <<Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation>>, Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 4846–4850.

[77] M. Lee, A. Sadowska , I. Bekere, D. Ho, B.S. Gully, Y. Lu, K.S. Iyer, J. Trewhella, A.H. Fox, C.S, <<The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation>>, Nucleic Acids Res. 43 (2015), 3826–3840.

[78] L. Skrisovska, C.F. Bourgeois, R. Stefl, S.N. Grellscheid , L. Kister , P. Wenter , D.J. Elliott, J. Stevenin, F.H.T. Allain, <<The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction>>, EMBO Rep. 8 (2007), 372–379.

[79] J.G. Patton, E.B. Porro, J. Galceran, P. Tempst, B. Nadal-Ginard, <<Cloning and characterization of PSF, a novel pre-mRNA splicing factor>>, Genes Dev. 7 (1993), 393– 406.

[80] C. Bruelle, M. Bedard, S. Blier, M. Gauthier, A.M. Traish, M. Vincent, <<The mitotic phosphorylation of p54(nrb) modulates its RNA binding activity>>, Biochem. Cell Biol. 89 (2011), 423–433.

[81] D.M. Passon, M. Lee, O. Rackham, W.A. Stanley, A. Sadowska, A. Filipovska, A.H. Fox, C.S. Bond, <<Structure of the heterodimer of humans NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation>>, PNAS vol. 109 no 13 (2012), 4846-4850.

[82] C. Maris, C. Dominguez, F.H. Allain FH, <<The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression>>, FEBS J. 272 (2005), 2118–2131.

[83] E. Krissinel, K. Henrick, <<Inference of macromolecular assemblies from crystalline state>>, J Mol Biol. 372 (2007), 774–797.

[84] A.N. Lupas, M. Gruber, <<The structure of alpha-helical coiled coils>>, Adv Protein Chem. 70 (2005), 37–78.

[86] D. Mircsof, M. Langouët, M. Rio, S. Moutton, K. Siquier-Pernet, C. Bole-Feysot, <<Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects>>, Nature Neuroscience. 18 (2015), 1731–1736.

[87] H. Ishiguro, H. Uemura, K. Fujinami, N. Ikeda, S. Ohta, Y. Kubota, <<55 kDa nuclear matrix protein (nmt55) mRNA is expressed in human prostate cancer tissue and is associated with the androgen receptor>>, Int J Cancer 105 (2003), 26–32.

[88] L.D. Nelson, C. Bender, H. Mannsperger, D. Buergy, P. Kambakamba, G. Mudduluru, <<Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer>>, Mol Cancer 11 (2012); 38.

[89] J. Clark, Y.J. Lu, S.K. Sidhar, C. Parker, S. Gill, D. Smedley, <<Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma.>>, Oncogene 15 (1997), 2233–2239.

[90] Y.M. Skalsky, P.M. Ajuh, C. Parker, A.I. Lamond, G. Goodwin, C.S. Cooper, <<PRCC the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre- mRNA splicing factors>> Oncogene 20 (2001), 178–187.

[91] M.S Banck, R. Kanwar, A.A. Kulkarni, G.K. Boora, F. Metge, B.R. Kipp BR, <<The genomic landscape of small intestine neuroendocrine tumors>>, J Clin Invest 123 (2013), 2502–2508.

[92] E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, T. Ferrin, <<UCSF Chimera: a visualization system for exploratory research and analysis>>, J Comput Chem Vol. 15, n 13 (2004), 1605-1612.

[93] M.Baroni, G. Cruciani, S. Scabiola, F. Perruccio, J.S. Mason ,<<ACommonReference Framework for Analyzing/Comparing Proteins and Ligands. Fingerprints for Ligands And Proteins (FLAP): Theory and Application>>, J. Chem. Inf. Model. 47 (2007), 279-294.

[94] G. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R. Belew, D. Goodsell, A. Olson, <<Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility>>, J Computational Chemistry n 16 (2009), 2785-2791.

[95] W. Allen, T. Balius, S. Mukherjee, S.R. Brozell, D.T. Moustakas, P.T. Lang, D.A. Case, I.D. Kuntz, R.C. Rizzo, <<Dock6: Impact of New Features and Current Docking Performance>>, J Comput Chem n 36 (2015), 1132-1156.

[96] M. McGann, <<FRED and HYBRID docking performance on standardized datasets>>, J Comp-Aid. Mol. Design (2012).

[97] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, D.E. Shaw, M. Shelley, J.K. Perry, P. Francis, P.S. Shenkin, <<Glide: A new Approach for Rapid, Accurate Docking and Scoring>>, J Med Chem n 47 (2004), 1739-1749.

[98] P. W. a. R. C. G. G. Jones, <<Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation>>, J Mol. Biol. n 245 (1995), 43-53.

[99] O. Korb, T. Stutzle, T. E. Exner, <<PLANTS: Application of Ant Colony Optimization to Structured-Based Drug Design>>, Lecture Notes in Computer Science (2006), 247-258.

[100] J. A. Simon Tietze, <<Glamdock: Development and validation of a new docking tool on several thousand protein-ligand complexes>>, Journal of Chemical Information and Modeling>>, J Chem Inf Model, Vol. 4, n 47 (2007), 1657-1672.

RINGRAZIAMENTI

…. e dopo anni di duro lavoro eccomi qui a scrivere i ringraziamenti in fondo alla tesi. Che dire, è stato un percorso lungo, faticoso, caratterizzato da momenti di estrema felicità alternati a momenti di sconforto.

Ho incontrato diverse difficoltà, ma alla fine la costanza e la perseveranza mi hanno ripagata.

Con il passare degli anni, le persone che mi sono state vicine e che hanno vissuto con me tutte le emozioni, sono state tante. Alcune ci sono dall’ inizio di tutto, altre le ho incontrate a metà strada ed altre ancora verso la fine. E ad ognuna di loro devo dire grazie.

Il primo ringraziamento va sicuramente a voi, babbo e mamma, che mi avete supportata e sopportata in ogni momento, avete gioito con me e mi avete presa per i capelli tutte le volte che volevo rinunciare. Avete creduto in me quando nemmeno io lo facevo.

Poi ci sei te, Luca, che fin dall’ inizio hai capito l’importanza che davo ai miei studi e mi hai appoggiata in ogni momento, consolandomi quando le cose non andavano come speravo, e amplificando tutte le cose positive.

Grazie anche a Dotty e Tiziano che mi hanno accolto in laboratorio e fatta sentire a mio agio.

E No, non mi sono dimenticata… grazie anche a VOI, amiche e amici, a voi che avete condiviso sia nelle aule di lezione che al di fuori tutto quanto… e che siete diventati amici al di fuori dell’ UNIPI. Grazie a Irene e Giove, per le risate e le pause pranzo

Documenti correlati