• Non ci sono risultati.

L’invecchiamento della popolazione è diventato un fenomeno universale. Il report dell’ “UN Aging Program and the US Centers for Disease Control and Prevention” ha stimato che il numero delle persone anziane (+ 65 anni) sia passato da 420 milioni presenti nel 2000 a circa 1 miliardo nel 2013[159]. Dato che l’insorgenza dell’AD è strettamente correlata con l’aumentare dell’età, è chiaro che le demenze, in tutti gli stati del mondo, rappresentino una grande sfida per la salute pubblica e per i sistemi di assistenza degli anziani. Pertanto una diagnosi affidabile e precoce ha un ruolo chiave nel trattamento dei pazienti e nella gestione ottimale della spesa sanitaria. In questo scenario l’imaging funzionale PET/TC riveste un ruolo fondamentale. Tutta- via, oltre all’assodata utilità in questo ambito della PET/TC sia con 18FDG[160] che con [11C]PIB[161], recentemente hanno visto la luce nuovi radiofarmaci in grado di legare la Aβ che si accumula nell’encefalo: florbetaben, florbetapir, flutemetamol legati al Fluoro-18. Il primo di questi farmaci ad essere approvato dalla Food and Drug Administration è stato il18F-florbetarpir. Questo radiofarmaco lega gli aggre- gati di amiloide nell’encefalo ed è utile per stimare la densità delle placche di Aβ. Nei primi trials clinici le scansioni PET con18F-florbetapir sono state indipendente- mente interpretate da più lettori che avevano completato il training di formazione. Da ciò è stato sviluppato un metodo binario di interpretazione delle immagini co- me “positive” o “negative”. Le immagini “positive” sono state riclassificate sulla base della densità “moderata o frequente” delle placche come stabilito dai criteri per l’AD della National Institute of Aging. In 59 pazienti sottoposti a PET ed esame autoptico la sensibilità della metodica è risultata del 92% e la specificità del 95% in base alla mediana di valutazione tra i 5 lettori (ClinicalTrials.gov numero NCT01447719). In un altro studio 5 lettori hanno visionato le immagini di 151 soggetti con riscontro di un Kappa score pari a 0,83 (NCT01550549). Nella nostra esperienza prelimina- re abbiamo riscontrato una buona concordanza sia tra lettori formati a tale scopo (K Fleiss=0,583, con l’utilizzo dei parametri forniti da Eli Lilly per l’interpretazione dell’imaging), sia una buona concordanza tra i risultati dell’esame PET/TC (positi- vo/negativo per accumulo di Aβ) ed i dati clinici (K Cohen con MMSE = 0,615, K Cohen con ADAS cog = 0,737 e K Cohen con la diagnosi definitiva dello specialista neurologo =0,737). Nella nostra casistica, in linea con i dati della letteratura[162], non si è osservato nessun caso di imaging PET negativo e associata diagnosi fina- le di AD. Inoltre anche la capacità della metodica nell’individuare i casi di possibile passaggio da MCI ad AD come riportato in letteratura[163] risulta concordare con i nostri dati (5 su 6 pazienti MCI hanno infatti dopo un anno avuto diagnosi finale di AD). I due casi di discordanza tra imaging PET e la diagnosi definitiva possono essere spiegati rispettivamente, in un caso, dalla fisiologica presenza di Aβ per l’età avanzata del paziente, o anche dalla possibilità che il paziente MCI abbia un virag- gio verso AD conclamata più lento rispetto al consueto; nell’altro caso, c’è da sot- tolineare che, la possibilità di avere una PET/TC positiva in caso di FDT, è un dato già riportato in letteratura; in questa condizione, una valutazione del SUVrpotreb-

be essere utile per discriminare l’AD dalla FTD[164]. I nostri risultati dimostrano, pertanto, che18F-florbetapir può realmente rilevare i depositi di Aβ nell’encefalo e essere utile nella diagnosi precoce e differenziale tra condizioni neurodegenera-

tive di AD e non-AD[165]. In aggiunta, il18F-florbetapir permette la realizzazione di immagini simili a quelle ottenute con [11C]PIB, senza la limitazione della ridotta emivita di questo radiofarmaco che ne rende difficile l’utilizzo su larga scala. In con- clusione la PET/TC con i traccianti per Aβ posso essere considerati buoni biomarker per la valutazione della presenza di Aβ nell’encefalo ed in base al carico di amiloi- de, anche un fattore predittivo di rischio di demenza[166]. Quindi, anche in base a recenti pubblicazioni si può dire che l’impiego dell’imaging PET per Aβ dovrebbe essere riservata a:

• Soggetti affetti da MCI persistente o progressivo definito secondo i criteri NIA- AA[167], quando la diagnosi su base morfologica e funzionale rimane incerta. • Soggetti MCI (a) quando il quadro clinico è atipico o incerto senza una dia- gnosi definita, (b) quando l’eziologia può essere determinata anche da con- comitanti problematiche vascolari (c) o quando sono concomitanti fuorvianti condizioni cliniche, ad esempio effetti dei farmaci o patologie sistemiche non adeguatamente controllate.

• Soggetti con diagnosi possibile di AD, definita in base ai criteri NIA-AA[168], quando la diagnosi finale è incerta anche dopo le procedure diagnostiche mor- fologiche e funzionali.

• Soggetti con decadimento cognitivo o demenza progressiva ed età inferiore a 65 anni quando la diagnosi finale è incerta anche dopo le procedure diagno- stiche morfologiche e funzionali.

• Soggetti affetti da sindrome focale (ad esempio, afasia progressiva, agnosia e aprassia, sindrome cortico-basale) quando la diagnosi finale è incerta an- che dopo le procedure diagnostiche morfologiche e funzionali con lo scopo di escludere l’AD

La PET con traccianti per Aβ non deve essere tuttavia considerata un metodo unico di identificazione dell’AD. Dati in letteratura supportano infatti l’importanza della valutazione della quantificazione della Aβ42, della proteina tau e della sua forma fosforilata nel liquido cefalorachidiano insieme con i dati morfologici e funzionali fino ad ora a disposizione, al fine di giungere ad un corretta diagnosi nei pazienti affetti da deficit cognitivi[169].

Bibliografia

[1] Ferri CP, Prince M. Brayne C, et al. Global prevalence of dementia: a consensus study. Lancet. 2005;366:2112-2117.

[2] Qiu C, Kivipelto M, von Strauss E, Epidemiology of Alzheimer’s disease: oc- currence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111-28.

[3] United Nations Organization. World population ageing: 1950- 2050. New York: U. N. P. o. Ageing, United Nations; 2001. www.un.org/esa/population/publications/worldageing19502050/. Accessed March 22, 2009.

[4] The Centers for Disease Control and Prevention. Public health and aging: trends in aging – United States and worldwide. JAMA. 2003;289:1371-1373. [5] Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subty-

pes in Europe: A collaborative study of population-based cohorts. Neurology. 2000;54:S4-S9.

[6] Wimo A, Winblad B, Agüero-Torres H, von Strauss E. The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord. 2003;17:63-67. [7] Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in Chi- na: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol. 2005;62:447-453.

[8] Scazufca M, Menezes PR, Vallada HP, et al. High prevalence of dementia among older adults from poor socioeconomic backgrounds in São Paulo, Brazil. Int Psychogeriatr. 2008;20:394-405.

[9] Von Strauss E, Viitanen M, De Ronchi D, et al. Aging and the occurrence of dementia: findings from a population-based cohort with a large sample of nonagenarians. Arch Neurol. 1999;56:587-592.

[10] Miech RA, Breitner JC, Zandi PP et al. Incidence of AD may decline in the early 90s for men, later for women: the Cache County study. Neurology. 2002;58:209-218.

[11] Corrada MM, Brookmeyer R, Berlau D et al. Prevalence of dementia after age 90: results from the 90+ study. Neurology. 2008;71:337-343.

[12] Fratiglioni L, Launer LJ, Andersen K, et al. Incidence of dementia and ma- jor subtypes in Europe: a collaborative study of population-based cohorts. Neurology. 2000;54:S10-S15.

[13] Alzheimer’s Association 2010. Web. 01 Oct. 2010. <http://alz.org>.

[14] Khachaturian, Zaven S., and Teresa S. Radebaugh. Alzheimer’s Disea- se: Cause(s), Diagnosis, Treatment, and Care. Boca Raton: CRC, 1996. Print. The Discovery of Alzheimer’s Disease » Alzheimer’s Drug Discove- ry Foundation." Alzheimer’s Drug Discovery Foundation. Web. 15 Oct. 2010. <http://www.alzdiscovery.org/index.php/alzheimers-disease/learn- more/the-discovery-of- alzheimers-disease/>.

[15] Healthy Aging-Normal Aging." WebMD - Better Information. Better Heal- th. Web. 12 Oct. 2010. <http://www.webmd.com/healthy-aging/tc/healthy- aging-normal-aging?page=2>.

[16] Dementia Definition - Alzheimer’s Disease Information on Me- dicineNet.com." MedicineNet. 21June 2002. Web. 10 Oct. 2010. <http://www.medterms.com/script/main/art.asp?articlekey=2940>.

[17] 2010 Alzheimer’s Disease Facts and Figures. Rep. Vol. 6. Chicago: Alzheimer’s Association, 2010. Print. Alzheimer’s and Dementia.

[18] Mayo Clinic Medical Information and Tools for Healthy Living. 2010 Mayo Foundation for Medical Education and Research. Web. 21 Nov. 2010. <http://www.mayoclinic.com/>.

[19] Fratiglioni L, von Strauss E, Qiu CX. Epidemiology of the dementias of old age. In Dening T, Jacoby R, Oppenheimer C, Thomas A, eds. The Oxford Textbook of Old Age Psychiatry. 4th ed. New York, NY: Oxford University Press; 2008: 391-406.

[20] Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387-403.

[21] Green RC, Cupples LA, Go R, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA. 2002;287:329- 336.

[22] Huang W, Qiu C, von Strauss E, et al . APOE genotype, family history of de- mentia, and Alzheimer disease risk: a 6-year follow- up study. Arch Neurol. 2004;61:1930-1934.

[23] Qiu C, Kivipelto M, Agüero-Torres H, et al. Risk and protective effects of the APOE gene towards Alzheimer’s disease in the Kungsholmen project: variation by age and sex. J Neurol Neurosurg Psychiatry. 2004;75:828-833.

[24] Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367-378.

[25] Peters R, Poulter R, Warner J et al. Smoking, dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr. 2008;8:36.

[26] Anttila T, Helkala EL, Viitanen M, et al. Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ. 2004;329:539.

[27] Ruitenberg A, van Swieten JC, Witteman JC, et al. Alcohol consumption and risk of dementia: the Rotterdam Study. Lancet. 2002;359:281-286.

[28] Mukamal KJ, Longstreth WT Jr, Mittleman MA et al. Alcohol consumption and subclinical findings on magnetic resonance imaging of the brain in older adults: the cardiovascular health study. Stroke. 2001;32:1939-1946.

[29] Gustafson D. Adiposity indices and dementia. Lancet Neurol. 2006;5:713-720. [30] Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia:

the Honolulu-Asia aging study. Neurobiol Aging. 2000;21:49-55

[31] Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322:1447-1451.

[32] Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487-499.

[33] Yasar S, Corrada M, Brookmeyer R, Kawas C. Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol Aging. 2005;26:157-163.

[34] Khachaturian AS, Zandi PP, Lyketsos CG, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63:686-692.

[35] Peila R, White LR, Masaki K et al. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke. 2006;37:1165-1170.

[36] Haag MD, Hofman A, Koudstaal PJ et al. Duration of antihypertensive drug use and risk of dementia. A prospective cohort study. Neurology. 2009;72:1727- 1734.

[37] Hoffman LB, Schmeidler J, Lesser GT, et al. Less Alzheimer disease neuropa- thology in medicated hypertensive than nonhypertensive persons. Neurology. 2009;72:1720-1726.

[38] Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein Eε4 allele, eleva-

ted midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137:149-155.

[39] Whitmer RA, Sidney S, Selby J et al. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64:277- 281. Tan ZS, Seshadri S, Beiser A, et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med. 2003;163:1053-1057.

[40] Solomon A, Kåreholt I, Ngandu T, et al. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology. 2007;68:751-756.

[41] Stewart R, White LR, Xue QL, Launer LJ. Twenty-six-year change in total cho- lesterol levels and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2007;64:103-107.

[42] Björkhem I, Heverin M, Leoni V et al. Oxysterols and Alzheimer’s disease. Acta Neurol Scand Suppl. 2006;185:43-49

[43] Jick H, Zornberg GL, Jick SS et al. Statins and the risk of dementia. Lancet. 2000;356:1627-1631.

[44] Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indi- cation bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol. 2002;59:223-227.

[45] Haag MD, Hofman A, Koudstaal PJ et al. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity: the Rotterdam Study. J Neurol Neurosurg Psychiatry. 2009;80:13-17.

[46] Li G, Larson EB, Sonnen JA, et al. Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology. 2007;69:878-885. [47] Arvanitakis Z, Schneider JA, Wilson RS, et al. Statins, incident Alzheimer disea-

se, change in cognitive function, and neuropathology. Neurology. 2008;70(19 Pt 2):1795-1802.

[48] Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer di- sease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol. 2004;61:82-88.

[49] Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol. 2006;63:1709-1717.

[50] Scarmeas N, Stern Y, Tang MX et al. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59:912-921.

[51] Luchsinger JA, Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004;3:579-587.

[52] Malouf M, Grimley EJ, Areosa SA. Folic acid with or without vitamin B12 for cognition and dementia. Cochrane Database Syst Rev. 2003:CD004514. [53] Laitinen MH, Ngandu T, Rovio S, et al. Fat intake at midlife and risk of demen-

tia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22:99-107.

[54] Huang TL, Zandi PP, Tucker KL, et al. Benefits of fatty fish on dementia risk are stronger for those without APOEε4. Neurology. 2005;65:1409-1414.

[55] Schaefer EJ, Bongard V, Beiser AS, et al. Plasma phosphatidylcholine doco- sahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63:1545-1550.

[56] Arvanitakis Z, Wilson RS, Bienias JL et al. Diabetes mellitus and ri- sk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661-666.

[57] Akomolafe A, Beiser A, Meigs JB, et al. Diabetes mellitus and risk of deve- loping Alzheimer disease: results from the Framingham Study. Arch Neurol. 2006;63:1551-1555.

[58] Irie F, Fitzpatrick AL, Lopez OL, et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOEε4: the Cardiovascular Health Study

Cognition Study. Arch Neurol. 2008;65:89-93.

[59] Biessels GJ, Staekenborg S, Brunner E et al. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64-74.

[60] Roberts RO, Geda YE, Knopman DS, et al. Association of duration and se- verity of diabetes mellitus with mild cognitive impairment. Arch Neurol. 2008;65:1066-1073.

[61] Xu W, Qiu C, Gatz M, Pedersen NL et al. Midand late-life diabetes in relation to the risk of dementia: a populationbased twin study. Diabetes. 2009;58:71-77. [62] Xu WL, Qiu CX, Winblad B, Fratiglioni L. The effect of borderline dia-

betes mellitus on the risk of dementia and Alzheimer disease. Diabetes. 2007;56:211-216.

[63] Korf ES, White LR, Scheltens P, Launer LJ. Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care. 2006;29:2268- 2274.

[64] Rönnemaa E, Zethelius B, Sundelöf J, et al. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology. 2008;71:1065-1071. [65] Xu WL, von Strauss E, Qiu CX et al. Uncontrolled diabetes increases the ri-

sk of Alzheimer’s disease: a population-based cohort study. Diabetologia. 2009;52:1031-1039.

[66] Vanhanen M, Koivisto K, Moilanen L, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology. 2006;67:843- 847.

[67] Muller M, Tang MX, Schupf N et al. Metabolic syndrome and dementia risk in a multiethnic elderly cohort. Dement Geriatr Cogn Disord. 2007;24:185-192. [68] Vermeer SE, Prins ND, den Heijer T et al. Silent brain infarcts and the risk of

dementia and cognitive decline. N Engl J Med. 2003;348:1215-1222.

[69] Honig LS, Tang MX, Albert S, et al. Stroke and the risk of Alzheimer disease. Arch Neurol. 2003;60:1707-1712.

[70] Newman AB, Fitzpatrick AL, Lopez O, et al. Dementia and Alzheimer’s disea- se incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J Am Geriatr Soc. 2005;53:1101-1107.

[71] Beeri MS, Rapp M, Silverman JM, et al. Coronary artery disease is associa- ted with Alzheimer disease neuropathology in APOE4 carriers. Neurology. 2006;66:1399-1404.

[72] Qiu C, Winblad B, Marengoni A et al. L. Heart failure and risk of dementia and Alzheimer disease: a populationbased cohort study. Arch Intern Med. 2006;166:1003-1008.

[73] Laurin D, Masaki KH, White LR, Launer LJ. Ankle-to-brachial index and dementia: the Honolulu-Asia Aging Study. Circulation. 2007;116:2269-2274. [74] van Oijen M, de Jong FJ, Witteman JC et al. Atherosclerosis and risk for

dementia. Ann Neurol. 2007;61:403-410.

[75] Snowdon DA, Greiner LH, Mortimer JA et al. Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. JAMA. 1997;277:813-817. [76] Esiri MM, Nagy Z, Smith MZ et al. Cerebrovascular disease and threshold for

dementia in the early stages of Alzheimer’s disease. Lancet. 1999;354:919-920. [77] Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integra- ted lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3:343-353.

[78] Qiu C, Bäckman L, Winblad B et al. The influence of education on clinical- ly diagnosed dementia: incidence and mortality data from the Kungsholmen Project. Arch Neurol. 2001;58:2034- 2039.

[79] Ngandu T, von Strauss E, Helkala EL, et al.. Education and dementia: what lies behind the association? Neurology. 2007;69:1442-1450.

[80] Wang HX, Karp A, Winblad B, Fratiglioni L. Late-life engagement in so- cial and leisure activities is associated with a decreased risk of demen- tia: a longitudinal study from the Kungsholmen project. Am J Epidemiol. 2002;155:1081-1087.

[81] Saczynski JS, Pfeifer LA, Masaki K, et al. The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol. 2006;163:433-440.

[82] Larson EB, Wang L, Bowen JD, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144:73-81.

[83] Crowe M, Andel R, Pedersen NL et al. Does participation in leisure activities lead to reduced risk of Alzheimer’s disease? A prospective study of Swedish twins. J Gerontol B Psychol Sci Soc Sci. 2003;58:P249-P255.

[84] Schmidt R, Schmidt H, Curb JD et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52:168- 174.

[85] Qiu C, Karp A, von Strauss E et al. Lifetime principal occupation and risk of Alzheimer’s disease in the Kungsholmen project. Am J Ind Med. 2003;43:204- 211.

[86] Rondeau V, Jacqmin-Gadda H, Commenges D et al. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2009;169:489-496.

[87] Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 2003;14:413-419. [88] Qiu C, Fratiglioni L, Karp A et al. Occupational exposure to electromagnetic

fields and risk of Alzheimer’s disease. Epidemiology. 2004;15:687-94.

[89] Davis JN 2nd, Chisholm JC. Alois Alzheimer and the amyloid debate. Nature. 1999 Aug 26;400(6747):810.

[90] Gabuzda D, Busciglio J, Chen LB et al. Inhibition of energy metabolism al- ters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem, 1994 269:13623–8.

[91] Tamagno E, Bardini P, Obbili A, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis, 2002. 10:279–88.

[92] Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mu- tation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991. 349:704–6.

[93] Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 1995. 269:973–7.

[94] Sherrington R, Rogaeva EI, Liang Y, et al. Cloning of a gene bearing mis- sense mutations in early-onset familial Alzheimer’s disease. Nature, 1995. 375:754–60.

[95] Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med, 1996. 2:864–70.

[96] Zheng H, Jiang M, Trumbauer ME, et al. Beta-amyloid precursor protein-defi cient mice show reactive gliosis and decreased locomoter activity. Cell, 1995. 81:525–31.

[97] Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci, 1991. 12:383–8.

[98] Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992. 256:184–5.

[99] Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med, 1996. 2:864–70.

[100] Wolfe WT, Xia W, Ostaszewski BL, et al. Two trans membrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 1999. 398:513–7.

[101] Kimberly WT, Xia W, Rahmatic J et al. The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J Biol Chem, 2000. 275:3173–8.

[102] Lesne S, Kotilinek L. 2005. Amyloid plaques and amyloid-beta oligomers: An ongoing debate. J Neurosci, 25:9319–20.

[103] Walsh DM, Klyubin I, Shankar GM, et al. The role of cell-derived oligomers

Documenti correlati