• Non ci sono risultati.

distanza percentuale del CLAIM

10 PARTE SPERIMENTALE 10.1 Scopo della tes

Grafico 2. distanza percentuale del CLAIM

10.4 Conclusioni

La qualità nutrizionale della carne prodotta da soggetti alimentati con le razioni integrate con Lino è risultata nettamente migliore rispetto a quella degli animali che hanno ricevuto la razione di controllo. Il miglioramento si è avuto soprattutto nei confronti del rapporto omega-6/omega-3, per effetto del significativo aumento dell’acido linolenico. Questo pare raggiungere un “plateau” abbastanza velocemente; un incremento dei giorni di somministrazione o di percentuale di integrazione con lino non paiono determinarne ulteriori importanti incrementi.

I vari tagli analizzati hanno mostrato una diversa suscettibilità all’arricchimento in acido linolenico. I tagli per i quali si registrano i migliori risultati in termini di arricchimento, sono i tagli grassi come il lardo e la pancetta. I risultati di questa sperimentazione ci consentono di ipotizzare che l’acido linolenico venga utilizzato principalmente per la produzione di energia e che, quando non subisce questo destino, venga traslocato principalmente nei trigliceridi piuttosto che essere metabolizzato nei derivati a lunga catena polinsaturi.

La modifica della composizione in acidi grassi non ha determinato effetti negativi sui parametri tecnologici del grasso, anche se, alcuni tagli, hanno mostrato valori molti vicini ai valori soglia.

L’indubbio miglioramento della qualità nutrizionale della carne non è stato tuttavia tale da raggiungere i livelli richiesti dal claim “fonte di omega-3”. Ciò ci porta a fare delle considerazioni generali sul tipo di approccio adottato. In questa sperimentazione sono stati adottate razioni supplementate con una percentuale piuttosto elevata di lino estruso. Non si può dimenticare che l’approccio utilizzato sia piuttosto oneroso dal punto di vista economico per l’allevatore. Il raggiungimento del claim sarebbe stato di fondamentale importanza per distinguere il prodotto sul mercato e per poter aspirare ad un prezzo in grado di coprire i maggiori costi di produzione e di rimunerare il produttore. Pare quindi che, nell’ottica del raggiungimento del claim, questa strategia non sia vincente, almeno per le razze selezionate e per i tagli magri. Altra possibilità è quella di sfruttare commercialmente le ottime caratteristiche nutrizionali ottenute, in maniera alternativa al claim “fonte di omega 3”. La carne ottenuta è infatti sicuramente differente dalle altre carni suine presenti sul mercato; rispetto a queste ha

una quantità di omega 3, almeno 2-3 volte superiore ed un rapporto omega-6/omega-3 in linea con quanto suggerito dalle linee guida per una corretta e sana alimentazione. Tali caratteristiche possono essere opportunamente valorizzate dal punto di vista commerciale, attraverso un’opera di comunicazione più articolata rispetto al semplice claim.

11 BIBLIOGRAFIA

• Abril R, Garrett J, Zeller SG, Sander WJ, Mast RW. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: Target animal safety/toxicity study in growing swine. Regul Toxicol Pharmacol 2003; 37:73-82.

• Ahn D. H., Lutz S. and Sim J. S. (1996). Effects of dietary a-linolenic acid on the fatty acid composition, storage stability and sensory characteristics of pork loin. Meat Science, 43, 291-299.

• Akesson B., Gronowitz S., Hersolf B., Ohlson R. Lipids 1978; 13: 338-343.

• Alfonso L., Mourot J., Insausti, K., Mendizabal J.A., Arana A. Comparative description of growth, fat deposition, carcass and meat quality characteristics of Basque and Large White pigs. Anim. Res. 2005, 54, 33–42.

• Allee, G. L. O’Hea, E. K., Leveille,G. A. and Baker, D. H. 1971b. Influence of dietary protein and fat on lipogenesis and enzymatic activity in pig adipose tissue. J. Nutr. 101: 869-878.

• Allee, G. L., Ramsos, D. R., Leveille, G. A. and Baker, D. H. 1972b. Metabolic adaptation induced by meal-eating in the pig. J. Nutr. 102: 1115-1122.

• Allee, G. L., Romsos, D. R., Leveille, G. A. and Baker, D.H. 1972a. Lipogenesis and enzymatic activity in pig adipose tissue as influenced by source of dietary fat. J. Anim. Sci. 35: 41-47.

• Allee, G.L., Baker, D. H. and Leveille, G. A., 1971a. Influence of level of dietary fat on adipose tissue lipogenesis and enzymatic activity in the pig. J. Anim. Sci. 33: 1248- 1254.

• Barton-Gade PA. Pork quality in genetic improvement programmes - the Danish experience. Proceeding of the National Swine Improvement Federation Annual Meeting; Des Moines, IA, USA. 1990.

• Bender D.A. Introduction to nutrition and metabolism. 3rd Edition. Taylor & Francis, 2004.

• Bhatty R. S. and Cherdkiatgumchai P. 1990. Compositional analysis of laboratory- prepared and commercial samples of linseed meal and of hull isolated from flax. J. Am. Oil Chem. Soc. 67, 79-84.

• Bourre, J. M. Where to find omega-3 fatty acids and how feeding animals with diet enriched in omega-3 fatty acids to increase nutritional value of derived products for human: what is actually useful? J. Nutr., Health Ageing 2005, 9 (4), 232–242.

Brewer MS, Zhu LG, McKeith FK. Marbling effects on quality characteristics of pork loin chops: consumer purchase intent, visual and sensory characteristics. Meat Sci. 2001 Oct; 59(2):153-63.

• Burdge G. C., Wootton S.A.; Conversion of α-linoleic acid, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420.

• Calder, P. (2004). n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored.

• Cameron N.D., Enser M., Nute G.R., Whittington F.M., Penman J.C., Fisken A.C., Perry A.M., Wood J.D., Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat, Meat Sci. 55 (2000) 187–195.

• Camoes J., Mourot J., Kouba M., Cherot P., Mounier A.; Effets de régimes à teneurs variables en acide linoléique sur les caractéristiques des tissus adipeux: estimation de la disparition du C18:2, Journées Rech. Porcines France 27 (1995) 291–296. • Campbell, M. K. (1995). Biochemistry (2nd ed.). Mount Holyoko College. Saunders

College Publishing. Harcourt Brace College Publishers.

• Canovas, Estany J., Tor M., Pena R.N., Doran O.; Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content. J. Anim. Sci. 87 (2009) 3905-3914.

• Channon HA, D’Souza DN, Dunshea FR. Guaranteeing consistently high quality Australian pork: are we any closer? Anim Prod Sci. 2017;57:2386–97. doi: 10.1071/AN17266.

• Cherian G., and Sim J. S. (1995). Dietary a-linolenic acid alters the fatty acid composition of lipid classes in swine tissues. Journal of Agricultural and Food Chemistry, 43, 2911-2916.

• Connor W.E. Importance of n-3 fatty acids in health and desease. Am. J. Clin. Nutr., 71 (2000), pp. 171S-175S.

• Crawford M.A. Fatty acid ratios in free-living and domestic animals. Lancet, I (1968), pp. 1329-1333.

• Cromwell G., Hays V., Trujillo-Figueroa V., Kemp J., Effects of dietary pietrain and energy levels for growing finishing swine on performance, muscle composition and eating quality of pork, J. Anim. Sci. 47 (1978) 505–513.

• Cunnane S. C., Stitt P. A., Ganguli S., and Armstrong, J. K. (1990). Raised omega-3 fatty acid levels in pigs fed flax. Canadian Journal of Animal Science, 70, 251-254. • Daun J.K., Barthet V.J., Chornick T.L. and Duguid S. (2003) Structure, composition,

and variety development of flaxseed. In: Thompson L.U. and Cunanne S.C. (eds.). Flaxseed in Human Nutrition. 2nd ed. Champaign, Illinois. AOCS Press. pp. 1-40. • Enser M., Richardson R., Wood J.D., Gill B.P., Sheard P.R. Feeding linseed to increase

the n-3 PUFA of pork: fatty acid composition of muscle, adipose tissue, liver, and sausages. Meat Sci., 55 (2000), pp. 201-212.

FAO, 2008. FAOSTAT. Base de données agricoles.

• Fernandez X., Monin G., Talmant A., Mourot J., Lebret B., Influence of intramuscular fat content on the quality of pig meat. 1. Composition of the lipidic fraction and sensory characteristics of muscle Longissimus Lumborum, Meat Sci. 53 (1999) 59– 65.

Fortin A, Robertson WM, Tong AK. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005 Feb; 69(2):297-305.

• Girard J.P., Bout J., Salort D., Lipides et qualités des tissus adipeux et musculaires de porc, facteurs de variations, Journées Rech. Porcines France 20 (1988) 255–278. • Guillevic M., Kouba M., Mourot J. Effect of a linseed diet or a sunflower diet on

performances, fatty acid composition, lipogenic enzyme activities and stearoyl-CoA- desaturase activity in the pig. Livestock Science 124 (2009) 288–294.

• Hamosh M. Lingual and gastric lipases. Nutrition 1990;6(6):421-8.

• Hargis P.S., Van Elswyk M.E. Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. World's Poult. Sci. J., 49 (1993), pp. 251-264.

• Henry Y.; Développement morphologique et métabolique du tissu adipeux chez le porc: influence de la sélection, de l'alimentation et du mode d’élevage. Ann. Biol. Anim. Biochim. Biophys. 17 (1977) 923-952.

• Hocquette J.F., Gondret F., Baéza E., Médale F., Jurie C., Pethick D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319.

• Hogberg A., Pickova J., Andersson K., Lundstrom K.; Fatty acid composition and tocopherol content of muscle in pigs fed organic and conventional feed with different n6/n3 ratios, respectively. Food Chemistry 80 (2003) 177–186.

• Hogberg A., Pickova J., Dutta P. C., Babol J. and Bylund A.C. (2001). Effect of rearing system on muscle lipids of gilts and castrated male pigs. Meat Science, 58, 223–229. • Holub B. J.; Omega-3 fatty acids in cardiovascular care. CMJA 2002, 166 (5), 608–

615.

• Hood R.L., Allen C.E.; Lipogenic enzyme activity in adipose tissue during the growth of swine with different propensities to fatten, J. Nutr. 103 (1973) 353–362.

• Howe P.R.C., Downing J.A., Grenyer B.F.S., Grigonis-Deane E.M., Bryden W.L.; Tuna fishmeal as a source of DHA from n-3 PUFA enrichment of pork, chicken, and eggs. Lipids 2002, 37, 1067–1076.

• Hussein N., Ah-Sing E., Wilkinson P., Leach C., Griffin B.A., Millward D.J.; Long chain conversion of [13C]linoleic acid and α-linolenic acid in response to marked changes

in their dietary intake in men. J. Lipid Res. 2005, 46, 269–279.

• Iqbal J. and Hussain M.M. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009; 296: E1183-94. doi:10.1152/ajpendo.90899.2008

• Irie M., and Sakimoto M. (1992). Fat characteristics of pigs fed fish oil containing eicosapentaenoic and docosahexaenoic acids. Journal of Animal Science, 70, 470- 477.

• Ishida M., Konno Y., Suzuki K., Ogawa Y. and Abe H. (1996). The effects of fish oil- enriched with n-3 polyunsaturated fatty acids on lipids and tasty compounds of pork loin. Nippon Shokuhin Kagaku Kogaku Kaishi, 43, 1219-1226.

• IUPAC-IUB Commission on Biochemical Nomenclature. (1978). The nomenclature of Lipids. Journal of Lipid Research, 19(1), 114–129.

• Jeffrey B.G., Weisinger H.S., Neuringer M., and Mitchell D.C. The role of docosahexaenoic acid in retinal function. Lipids. 2001, 36:859–71.

• Jensen MM, Christensen MS, Hoy C-E. Ann Nutr Metab 1994; 38: 104-116.

• Johns A. T. (1940). The influence of sex on the on the composition of the fat on the pig. New Zealand Journal of Science and Technology, 22, 248–258.

• Klavdija Poklukar, Marjeta Candek-Potokar, Nina Batorek Lukac, Urška Tomažin and Martin Škrlep. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424; doi:10.3390/ani10030424 www.mdpi.com/journal/animals.

• Knap P.W., Rauw W.M.; Selection for high production in pigs. In Resource Allocation Theory Applied to Farm Animal Production; Rauw, W.M., Ed.; CAB International: Wallingford, UK, 2009; pp. 210–229.

• Koch D. E., Parr A. F. and Merkel R. A. (1968). Fatty acid composition of the inner and outer layers of porcine backfat as affected by energy level, sex and sire. Journal of Food Science, 33, 176–180.

• Koch D. E., Pearson A. M., Magee W. T., Hoefer J. A. and Schweigert B. S. (1968). Effect of diet on the fatty acid composition of pork fat. Journal of Animal Science, 27, 360–365.

• Kouba M., Benatmane F., Blochet J.E., Mourot J.; Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci. 80 (2008) 829-834.

• Kouba M., Enser M., Whittington F.M., Nute G.R., Wood J.D.; Effect of a highlinolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 81 (2003) 1967-1979.

• Kouba M. Effect of dietary omega-3 fatty acids on meat quality of pigs and poultry. M.C. Teale (Ed.), Omega 3 fatty acid research, Nova publishers, New York (2006), pp. 225-239.

• Kris-Etherton P.M., Harris W.S., Appel L.J. American Heart Association, Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106 (2002), p. 2747—2757.

• Kris-Etherton P.M., Harris W.S., Appel L.J. For the AHA nutrition Committee. Omega- 3 fatty acids and cardiovascular disease. New recommendations from the American Heart Association. Art. Thromb. Vasc. Biol., 23 (2003), pp. 151-152.

• Kristinsson H.G., Baldursdottir B., Jonsdottir R., Valdimarsdottir T., Thorkelsson G.; Influence of feed fat source on fatty acid composition, unsaturation and lipid oxidation of backfat and sensory quality of pork. J. Musc. Foods 2001, 12, 285–300. • Le Dividich J., Esnault T., Lynch B., Hoo-Paris R., Castex C., Peiniau J.; Effect of

colostral fat on fat deposition and plasma metabolites in the newborn pig, J. Anim. Sci. 69 (1991) 2480–2488.

• Lebret B., Lefaucheur L., Mourot J. Caractéristiques et qualité des tissus musculaires chez le porc. Facteurs de variation non génétiques, INRA Prod. Anim. 12 (1999) 11– 28.

• Lebret B., Mourot J., Caractéristiques et qualité des tissus adipeux chez le porc. Facteurs de variation non génétiques, INRA Prod. Anim. 11 (1998) 131–143.

• Lee Y.B., Kaufman R.G. Cellularity and lipogenic enzyme activities of porcine intramuscular adipose tissue, J. Anim. Sci. 38 (1974) 538–544.

• Legrand P., Bourre J.M., Descomps B., Durand G., and Renaud S. (2001). Lipides, in Apports nutritionnels conseillés pour la population francaise, 3rd edn. (TEC and DOC edition), pp. 63–82, Martin A., Lavoisier, Paris.

• Leseigneur Meynier A., Gandemer G., Lipid composition of pork muscle in relation to themetabolic type of the fibres, Meat Sci. 29 (1991) 229–241.

• Leskanich C. O., Matthews K. R., Warkup C. C., Noble R. C., and Hazzledine M. (1997). The effect of dietary oil containing (n-3) fatty acids on the fatty acid, physiochemical, and organoleptic characteristics of pig meat and fat. Journal of Animal Science, 75, 673-683.

• Li M., Li X., Zhu L., Teng X., Xiao H., Shuai S., Chen L., Li Q., Guo Y.; Di_erential expression analysis and regulatory network reconstruction for genes associated with muscle growth and adipose deposition in obese and lean pigs. Prog. Nat. Sci. 2008, 18, 387–399.

• Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J.; How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746.

• Lopez-Bote C.J., Sanz M., Isabel B., Perez de Ayala P., Flores A.; Effect of dietary lard on performance, fatty acid composition and susceptibility to lipid peroxidation in growingfinishing female and entire male pigs, Can. J. Anim. Sci. 77 (1997) 301–306. • Marriott NG, Garrett JE, Sims MD, Abril J. Performance characteristics and fatty acid

composition of pigs fed a diet with docosahexaenoic acid. J Muscle Foods 2002; 13:265-77.

• Martin A. H., Fredeen H. T., Weiss G. M. and Carson R. B. 1972. Distribution and composition of porcine carcass fat. J. Anim. Sci. 35: 534-541.

• Martin A.H., Herbein J.H.; A comparison of the enzyme levels and the in vitro utilization of various substrates for lipogenesis in pair-fed lean and obese pigs, Proc. Soc. Expl. Biol. Med. 151, 1976, 231–235.

• Meadus WJ, Duff P, Uttaro B, et al. Production of docosahexaenoic acid (DHA) enriched bacon. J Agric Food Chem 2010; 58:465-72.

• Mersmann H. J., Allen C. D., Chai E. Y., Brown L. J. and Fogg T. J. 1981. Factors influencing the lipogenic rate in swine adipose tissue. J. Anim. Sci. 52: 1298-1305. • Mersmann H. J., Pond W. G. and Yen T. J. 1984. Use of carbohydrate and fat as

energy source by obese and lean swine. J. Anim. Sci. 58: 894-902.

• Mersmann H.J. and Smith S.B.; Chapter 11: Development of white adipose tissue metabolism. In Biology of Metabolism in Growing Animals; Burrin, D., Mersmann, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 275–303.

• Moran C.A., Morlacchini M., Keegan J.D. and Fusconi G.; Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium

limacinum: effects on performance, carcass characteristics and tissue fatty acid

profile. Asian-Australas J Anim Sci. 2018 May; 31(5): 712–720.

• Moran CA, Fusconi G, Morlacchini M, Jacques KA. 123 Performance and docosahexaenoic acid (DHA) content in longissimus dorsi and backfat tissues of grow-finish pigs fed diets differing in heterotrophically grown algae content. J Anim Sci 2017a; 95 (Issue Suppl 2):58.

• Moran CA, Fusconi G, Morlacchini M, Jacques KA. 124 Docosahexaenoic acid content in longissimus dorsi and backfat tissues of grow-finish pigs fed diets containing 0, 0.25 or 0.5% heterotrophically grown algae: study 2. J Anim Sci 2017b; 95 (Issue Suppl 2):58-9.

• Morgan C. A., Noble R. C., Cocchi M., and McCartney R. (1992). Manipulation of the fatty acid composition of pig meat lipids by dietary means. Journal of the Science of Food and Agriculture, 58, 357-368.

• Mori T.A., Bao D.Q., Burke V., Puddey I.B., Beilin L.J.; Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 1999, 34, 253–260.

• Mourot J., Aumaitre A., Mounier A., Wallet P. Interaction entre vitamine E et acide linoléique alimentaires sur la composition de la carcasse, la qualité et la conservation des lipides de la viande de porc, Sci. Aliments 12 (1992) 743–755. • Mourot J., Kouba M., Salvatori G., Facteurs de variation de la lipogenèse dans les

adipocytes et les tissus adipeux chez le porc, INRA Prod. Anim. 12 (1999) 311–318. • Mourot J., Hermier D. Lipids in monogastric animal meat. Rep. Nutr. Dev., 41 (2001),

pp. 109-118.

• Nakajima I., Oe M., Ojima K., Muroya S., Shibata M., Chikuni K.; Cellularity of developing subcutaneous adipose tissue in Landrace and Meishan pigs: Adipocyte size di_erences between two breeds. Anim. Sci. J. 2011, 82, 144–149.

• Nguyen L.Q., Everts H., Beynen A.C.; Influence of dietary linseed, fish and coconut oil on growth performance of growing pigs kept on smallholdings in central Vietnam. J. Anim. Physiol. Anim. Nutr. 88 (2004) 204-210.

• Nilzén V., Babol J., Lundeheim N., Enfalt A. and Lundstrom, K. (2001). Free range rearing of pigs with access to pasture grazing— effect on fatty acid composition and lipid oxidation product. Meat Science, 58, 267–275.

• Nishida C., Uauy R., Kumanyika S., and Shetty P. 2007. The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition. 7:245–250. doi:10.1079/PHN2003592.

• Nurnberg K. and Ender K. (1989). Fettsaurezusammensetzung des Ru ckenspecks von Kastraten, weiblichen Mastschweinen und Jungebern. Archive fur Tierzucht, 32, 455–464.

• Nurnberg K., Kuchenmeister U., Ender K., Nurnberg G., Hackl W.; Influence of dietary n-3 fatty acids on the membrane properties of skeletal muscle in pigs, Fett- Lipid. 100 (1998) 353–358.

• O’Hea E. K. and Leveille G. A. 1969a. Significance of adipose tissue and liver as sites of fatty acid syntesis in the pig and the efficency of utilization of varius substrates for lipogenesis. J. Nutr. 99: 338-344.

• O’Hea E. K. and Leveille G. A. 1969b. Influence of feeding frequency on lipogenesis and enzymatic activity of adipose tissue on the performance of pigs. J. Anim. Sci. 28: 336-341.

• Oomah B.D., Kenaschuk E.O. and Mazza G. (1997). Tocopherols in flaxseed. J. Agric. Food Chem., 45, 2076-2080.

• Raes K., De Smet S., Demeyer D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim. Feed Sci. Technol., 113 (2004), pp. 199-221.

• Rey A.I., Kerry J.P., Lynch P.B., López-Bote C.J., Buckley D.J., Morrissey P.A., Effect of dietary oils and α-tocopheryl acetate supplementation on lipid (TBARS) and cholesterol oxidation in cooked pork, J. Anim. Sci. 79 (2001) 1201–1208.

• Rhee K.S., Ziprin Y.A., Ordonez G., and Bohac C.E. (1988). Fatty acid profiles of the total lipids and lipid oxidation in pork muscles as affected by canola oil in the animal diet and muscle location. Meat Science, 23, 201-210.

• Riley P., Enser M., Hallet K., Hewett B., Wood J. and Atkinson J. (1998a). Long-term feeding of low levels of linseed before slaughter to manipulate tissue fatty acid composition and improve pork nutritional value. Proceedings of the 15th IPVS Congress, Birmingham, England, 5-9 July. p. 16.

• Riley P., Enser M., Hallet K., Hewett B., Wood J. and Atkinson J. (1998b). Short-term feeding of a high level of linseed before slaughter to rapidly alter tissue fatty acid composition and improve pork nutritional value. Proceedings of the 15th IPVS Congress, Birmingham, England, 5-9 July. p. 28.

• Romans J.R., Johnson R.C., Wulf D.M., Libal G.W. and Costello W.J. (1995a). Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics of o-3 fatty acid content of pork. I. Dietary level of flaxseed. Journal of Animal Science, 73, 1982-1986.

• Romans J.R., Wulf D.M., Johnson R.C., Libal G.W. and Costello W.J. (1995b). Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics of o-3 fatty acid content of pork. II. Duration of 15% dietary flaxseed. Journal of Animal Science, 73, 1987-1999.

• Saponaro C., Gaggini M., Carli F., Gastaldelli A.; The subtle balance between lipolysis and lipogenesis: A critical point in metabolic homeostasis. Nutrients 2015, 7, 9453– 9474.

• Sardi L, Martelli G, Lambertini L, Parisini P, Mordenti A. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest Sci 2006; 103:95-103.

• Sharma V. D., Young L. G., Brown R. G., Buchanan-Smith J. and Smith G. C. 1973. Effects of frequency of feeding on energy metabolism and body composition of young pigs. Can. J. Anim. Sci. 53: 157-164.

• Sheard P.R., Enser M., Wood J.D., Nute G.R., Gill B.P., Richardson R.I.; Shelf life and quality of pork and pork products with raised n-3 PUFA. Meat Sci. 55 (2000) 213- 221.

• Simopoulos A.P., Childs B. (Eds.). Genetic Variation and Nutrition. World Rev Nutr Diet, vol. 63, Karger, Basel (1990).

• Simopoulos A.P., Herbert V., Jacobson B. The healing diet: how to reduce your risks and live a longer and healthier life if you have a family history of cancer, heart disease, hypertension, diabetes, alcoholism, obesity, food allergies, Macmillan Publishers, New York (1995).

• Simopoulos A.P., Nestel P.J. (Eds.). Genetic variation and dietary response. World Rev Nutr Diet, vol. 80, Karger, Basel (1997).

• Simopoulos A.P., Pavlou K.N. (Eds.). Nutrition and fitness 1: diet, genes, physical activity and health. World Rev Nutr Diet, Proceedings of the Fourth International

Conference on Nutrition and Fitness, Ancient Olympia, Greece, May 25–29, 2000, vol. 89.

• Simopoulos A.P. N-3 fatty acids and human health: defining strategies for public policy. Lipids (supplement), 36 (2001), pp. S83-S89.

• Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharm. 2002, 56, 365–379.

• Sinclair A.J., O’Dea K.; Fats in human diets through history: is the Western diet out of step, in: Wood J.D., Fisher A.V. (Eds.), Reducing fat in meat animals, Elsevier Applied Science, London, UK, 1990, pp. 1–47.

• Small D.M., 1991. The effects of glyceride structure on absorption and metabolism. Annu. Rev. Nutr. 11: 413-434.

• Smith W.L. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends in Biochemical Sciences, 33 (1) (2007), pp. 27-37.

• Specht-Overholt S., Romans J.R., Marchello M.J., Izard R.S., Crews M.G., Simon D.M., Costello W.J. and Evenson P.D. (1997). Fatty acid composition of commercially manufactured omega-3 enriched pork products, haddock and mackerel. Journal of Animal Science, 75, 2335-2343.

• Steele N. C. and Frobish L. T. 1976. Selected lipogenic enzyme activities of swine adipose tissue as influenced by genetic phenotype, age, feeding frequency and dietary energy source. Growth 40: 369-378.

• Stefaan de Smet, Katleen Raes, Daniel Demeyer. Meat fatty acid composition as affected by fatness and genetic factors: a review. Anim. Res. 53 (2004) 81–98 DOI: 10.1051/animres:2004003.

• Tribout T., Caritez J.C., Gogué J., Gruand J., Bouffaud M., Billon Y., Péry C., Griffon H., Brenot S., Le Tiran M.H., Bussières F., Le Roy P., Bidanel J.P.; Estimation, par utilisation de semence congelée, du progrès génétique réalisé en France entre 1977

Documenti correlati