• Non ci sono risultati.

Esempi di dosaggio dei farmaci più comunemente usati nella popolazione pediatrica

Nel documento Farmacoterapia in età pediatrica. (pagine 41-56)

CAPITOLO 4 IL DOSAGGIO DEI FARMACI IN ETA’ PEDIATRICA

4.2 Esempi di dosaggio dei farmaci più comunemente usati nella popolazione pediatrica

Le Penicilline sono tra gli antibiotici più comunemente prescritti per i bambini di tutto il mondo.[128] Negli ultimi anni, vista la crescita esponenziale delle prescrizioni di

antibiotici inappropriate, sia per i bambini che per gli adulti, si cerca di limitarne per evitare ulteriori fenomeni di resistenza antimicrobica.

Nel Regno Unito, la prescrizione pediatrica di solito segue le raccomandazioni di dosaggio del British National Formulary for Children (BNFC). Le linee guida, secondo BNFC, del dosaggio pediatrico per la penicillina orale sono rimaste sostanzialmente invariate per molti decenni; questo dovuto ad esempio dalla prevalenza dell'obesità infantile e della resistenza antimicrobica. Il BNFC raccomanda di somministrare penicilline orali nei bambini in base a fasce di età, a fasce di peso o ai calcoli basati sul peso corporeo e di raddoppiare la dose in caso di malattia grave. Le penicilline orali più comunemente prescritte per la popolazione pediatrica in Inghilterra sono: Amoxicillina, fenossimetilpenicillina (penicillina V) e flucloxacillina. Le prescrizioni sono 65.737 per penicilline orali scritte per 45.940 bambini: di cui amoxicillina (63%), penicillina V (17%) e flucloxacillina (20%).[129]

I dati ottenuti nel 2011-2012 dal BNFC sul dosaggio a seconda della fascia d’età del paziente per ciascuna penicillina erano le seguenti: ogni singola dose si dimezza tra le fasce d'età dai bambini di età compresa tra 12-18 anni (500 mg), a 6-12 anni (250 mg), a 1-5 anni (125 mg), per i bambini di età inferiore a 1 anno (62,5 mg).

FIG. 4 - DOSI AMOXICILLINA NELLE VARIE FASCE D’ETA’[130]

La figura 4 mostra la ripartizione dettagliata delle dosi unitarie di amoxicillina prescritta per ciascuna fascia d'età nel 2010 e include la percentuale di corrette dosi prescritte per ciascun gruppo di anni secondo la guida BNFC.

Nel dettaglio:

• nella fascia di età inferiore a 1 anno, a nessun bambino è stata prescritta la dose unitaria raccomandata (62,5 mg), ma la maggior parte ha ricevuto il doppio della dose (125 mg);

• nella fascia di età 1-5 anni, al 96% è stata prescritta la dose unitaria raccomandata (125 mg);

• il 40% dei bambini tra i 6 e i 12 anni e il 70% di quelli tra i 12 e i 18 anni hanno ricevuto dosi unitarie inferiori alle raccomandazioni date da BNFC.

Modelli simili di prescrizione per fascia d'età sono stati trovati anche per la penicillina V e la flucloxacillina:

• per bambini di età inferiore ad un anno, non è stata prescritta la dose unitaria raccomandata (62,5 mg) per penicillina V o flucloxacillina;

• la maggior parte dei bambini nella fascia di età 1-5 anni hanno ricevuto la dose unitaria raccomandata (125 mg) di penicillina V e flucloxacillina;

• tra i bambini di 6-12 anni, i bambini di età inferiore a 9 anni sono stati curati con penicillina V e flucloxacillina con la dose unitaria raccomandata per la fascia di età 1-5 anni (125 mg), mentre ai bambini di età compresa tra 9 e 12 anni è stato prescritto il dose unitaria raccomandata (250 mg);

• nella fascia di età 12-18 anni, a nessun bambino è stata prescritta penicillina V e meno della metà dei bambini a cui hanno prescritto flucloxacillina, ha ricevuto la dose unitaria raccomandata (500 mg).[130]

Nel caso delle prescrizioni di amoxicillina per l'otite media acuta e le relative infezioni dell'orecchio interno (l'indicazione di prescrizione più comune per l'amoxicillina) sono state analizzate separatamente. Per l'otite media e le relative infezioni dell'orecchio interno, i bambini (di età inferiore ad un anno) erano gli unici a ricevere la dose raccomandata di amoxicillina (40-90 mg/kg/die). Per i bambini di età compresa tra 4 e 15 anni, le prescrizioni equivalevano a 10-20 mg/kg/die, circa il 33% della dose raccomandata.[131]

Penicillina V

CAPITOLO 5 - CONCLUSIONE

Nonostante ci siano stati enormi progressi negli ultimi decenni nel campo della farmacoterapia pediatrica, ancora oggi ci sono molte domande senza risposta.

Sicuramente oggi è chiaro che i bambini non possono essere considerati come adulti in miniatura e la semplice estrapolazione dai dati degli adulti non può essere eseguita. Per questo bisogna concentrarsi sulle differenze farmacocinetiche e farmacodinamiche che si hanno tra la popolazione pediatrica e adulta.

Il profilo farmacocinetico di molti farmaci è stato ben definito ma la loro farmaco- dinamica risulta essere ancora incompleta. C’è la necessità di incoraggiare di più le industrie farmaceutiche a sviluppare nuovi farmaci specifici per pazienti pediatrici, poiché la sintesi di nuovi farmaci può contribuire alla cura del paziente.

Tuttavia, anche la prevenzione delle malattie è un campo di grande interesse per una crescita della conoscenza in questo settore. Milioni di bambini muoiono a causa di malattie prevedibili, in particolare nei paesi in via di sviluppo.

Negli ultimi anni, la farmacogenomica sta avendo un ruolo fondamentale nei confronti della cura del pazienti, consentendo di avere una medicina personalizzata. Oltre 100 prodotti farmaceutici ora contengono informazioni farmacogenomiche nell’etichetta, e molti di questi sono usati comunemente nella popolazione pediatrica.

Sappiamo come la risposta alla terapia farmacologica è variabile a seconda del paziente e di come gli eventi avversi sono spesso imprevedibili. Ci sono casi in cui il paziente può avere reazioni avverse a dosi basse di uno specifico farmaco rispetto ad altri che invece necessitano di dosi più alte per avere lo stesso effetto terapeutico. La risposta ai farmaci può essere influenzata direttamente da variazioni anche di un singolo gene, e l’utilizzo dei test genetici consentirebbe di predire la probabilità di efficacia, sicurezza o potenziale tossicità, migliorando così le decisioni terapeutiche.

Il farmacista in questo campo ha un ruolo chiave nell’interpretazione clinica dei test farmacogenomici, consentendo l’aggiustamento di dose o la selezione specifica del farmaco in base ai risultati dei test. Si richiede un maggiore coinvolgimento e una maggiore istruzione nel campo della farmacogenomica sia da parte degli studenti

che dei farmacisti per garantire un uso sicuro ed efficace dei farmaci nei pazienti non solo pediatrici, ma che di tutte le età. [132]

Anche se ci sono diverse limitazioni è incoraggiante assistere alla continua crescita della conoscenza sulla farmacoterapia nella popolazione pediatrica, che migliora la qualità della vita di questi piccoli pazienti.

BIBLIOGRAFIA

[1] Food and Drug Administration. Guidance for Industry: General Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological Products. Rockville, MD: FDA Center for Drug Evaluation and Research.1998.

[2] Yaffe S, Estabrook RWE, Bouxsein P, et al. Rational therapeutics for infants and children. workshop summary [online]. Washington, DC: NAP. 2000.

[3] Benjamin DKJ, Smith PB, Jadhav P, et al. Pediatric antihypertensive trial failures: analysis of end points and dose range. Hypertension. 2008;51(4):834-840.

[4] Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667-686.

[5] Ginsberg G, Hattis D, Sonawane B, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci. 2002;66(2):185-200.

[6] Sumpter A, Anderson BJ. Pediatric pharmacology in the first year of life. Curr Opin Anaesthesiol. 2009;22(4):469-475.

[7] Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology–drug disposition, action, and therapyin infants and children. N Engl J Med. 2003;349(12): 1157-1167.

[8] Centers for Disease Control and Prevention. Deaths: Preliminary Data for 2010. National Vital Statistics Reports. Washington, DC: US Department of Health and Human Services, National Council for Health Statistics. 2012:60(4).

[9] Agunod M, Yamaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969;14(6):400-414. [10] Hyman PE, Clarke DD, Everett SL, et al. Gastric acid secretory function in preterm infants. J Pediatr. 1985;106(3):467-471.

[11] Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657-658.

[12] Albani M, Wernicke I. Oral phenytoin in infancy: dose requirement, absorption, and elimination. Pediatr Pharmacol (New York). 1983;3(3-4):229-236.

[13] Morselli PL. Clinical pharmacokinetics in neonates. Clin Pharmacokinet. 1976;1(2): 81-98.

[14] Bartelink I.H, Rademaker C.M, Schobben A.F, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin. Pharmacokinet. 2006;45:1077-1097.

[15] Strolin Benedetti M, Whomsley R, Baltes E.L. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin. Drug Metab. Toxicol. 2005;1:447-471.

[16] Brown R.D, Campoli-Richards D.M. Antimicrobial therapy in neonates, infants and children. Clin. Pharmacokinet. 1989;17 (Suppl. 1):105-115.

[17] Strolin Benedetti M, Baltes E.L. Drug metabolism and disposition in children. Fundam. Clin. Pharmacol. 2003;17:281-299.

[18] Koren G. Therapeutic drug monitoring principles in the neonate. National Academy of CLinical Biochemistry. Clin. Chem. 1997;43:222-227.

[19] Morselli P.L, Franco-Morselli R, Bossi L. Clinical pharmacokinetics in newborns and infants.Age-related differences and therapeutic implications. Clin. Pharmacokinet. 1980;5:485-527.

[20] Butler D.R, Kuhn R.J, Chandler M.H. Pharmacokinetics of anti-infective agents in paediatric patients. Clin. Pharmacokinet. 1994;26:374-395.

[21] Boehm G, Braun W, Moro G, et al. Bile acid concentrations in serum and duodenal aspirates of healthy preterm infants: Effects of gestational and postnatal age. Biol. Neonate. 1997;71:207-214.

[22] Heubi J.E, Balistreri W.F, Suchy F.J. Bile salt metabolism in the first year of life. J. Lab. Clin.Med. 1982;100:127-136.

[23] Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001;31:469-497.

[24] Anderson G.D, Lynn A.M. Optimizing pediatric dosing: A developmental pharmacologic approach. Pharmacotherapy. 2009;29:680-690.

[25] Saavedra I, Quinones L, Saavedra M, et al. Farmacocinetica de

medicamentos de uso pediatrico, vision actual. Rev. Chil. Pediatr. 2008;79:249-258.

[26] Miki Y, Suzuki T, Tazawa C, et al. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol. 2005;231(1-2):75-85.

[27] Boreus IO. Plasma concentrations of phenobarbital in mother and child after combined prenatal and postnatal administration for prophylaxis of hyperbilirubinemia. J Pediatr. 1978;93:695.

[28] Morselli PL. Serum levels and pharmacokinetics of anticonvulsants in the management of seizure disorders. In: Merkin B, ed. Clinical Pharmacology. Chicago: Mosby Year Book.1978:89.

[29] Tyrala FF, Hillman LS, Hillman RE, et al. Clinical pharmacology of hexa-chlorophene in newborn infants. J Pediatr. 1977;91:481–486.

[30] McFadden S, Haddow JE. Coma produced by topical application of isopropanol. Pediatrics.1969;43:622–623.

[31] Evans NJ, Rutter N, Hadgraft J, et al. Percutaneous administration of theophylline in preterm infant. J Pediatr. 1985;107:307–311.

[32] Friis-Hansen B. Body water compartments in children:Changes during growth and related changes in body composition. Pediatrics. 1961;28:169–181.

[33] Roberts RJ. Pharmacologic principles in therapeutics in infants. In: Drug Therapy in Infants: Pharmacologic Principles and Clinical Experience. Philadelphia, PA:WB Saunders. 1984:3–12.

[34] Ahlfors CE. Unbound bilirubin associated with kernicterus: a historical approach. J Pediatr. 2000;137(4):540-544.

[35] Gulian JM, Gonard V, Dalmasso C, et al. Bilirubin displacement by ceftriaxone in neonates: evaluation by determination of ‘free’ bilirubin and erythrocytebound bilirubin. J Antimicrob Chemother. 1987;19(6):823-829

[36] Martin E, Fanconi S, Kalin P, et al. Ceftriaxone-bilirubin-albumin interactions in the neonate: an in vivo study. Eur J Pediatr. 1993;152(6):530-534.

[37] Routledge P.A. Pharmacokinetics in children. J. Antimicrob. Chemother. 1994;34 (Suppl. A) 19-24.

[38] Meistelman C, Benhamou D, Barre J, Levron J.C, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology. 1990;72:470-473.

[39] Benedetti M.S, Whomsley R, Canning M. Drug metabolism in the paediatric population and in the elderly. Drug Discov. Today. 2007;12:599-610.

[40] de Wildt S.N, Johnson T.N, Choonara I. The effect of ageon drug metabolism. Paediatr. Perinatal Drug Ther. 2003;101-106.

[41] Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169-175.

[42] Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965-974.

[43] Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver– evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem.1997;247(2):625-63.

[44] Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem.1998;251(3):893-898.

[45] Stevens JC, Marsh SA, Zaya MJ, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos.2008;36(8):1587-1593.

[46] Treluyer JM, Gueret G, Cheron G, et al. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics. 1997;7(6):441-452.

[47] Treluyer JM, Jacqz-Aigrain E, Alvarez F, et al. Expression of CYP2D6 in developing human liver. Eur J Biochem. 1991;202(2):583-588.

[48] Vieira I, Sonnier M, Cresteil T. Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur J Biochem.1996;238(2):476-483.

[49] Cazeneuve C, Pons G, Rey E, et al. Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and

adults. Br. J. Clin. Pharmacol. 1994;37:405-412.

[50] Aranda J.V, Collinge J.M, Zinman R, et al. Maturation of caffeine elimination in infancy. Arch. Dis. Child. 1979;54:946-949.

[51] Lambert G.H, Schoeller D.A, Kotake A.N, et al. The effect of age, gender, and sexual maturation on the caffeine breath test. Dev. Pharmacol. Ther. 1986;9:375-388.

[52] Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: Theophylline and midazolam as model drugs. Br. J.Clin. Pharmacol. 2005;59:691-704.

[53] Koukouritaki S.B, Manro J.R, Marsh S.A, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J. Pharmacol. Exp.Ther. 2004;308:965-974.

[54] Loughnan P.M, Greenwald A, Purton W.W, et al. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch. Dis. Child. 1977;52:302-309. [55] Suzuki Y, Mimaki T, Cox S, et al. Phenytoin age-doseconcentration relationship in children. Ther. Drug Monit. 1994;16:145-150.

[56] Tran A, Rey E, Pons G, et al. Pharmacokinetic-pharmacodynamic study of oral lansoprazole in children. Clin. Pharmacol. Ther. 2002;71:359-367.

[57] Marier J.F, Dubuc M.C, Drouin E, et al. Pharmacokinetics of omeprazole in healthy adults and in children with gastroesophageal reflux disease. Ther. Drug Monit. 2004;26:3-8.

[58] Wilens T.E, Cohen L, Biederman J, et al. Fluoxetine pharmacokinetics in pediatric patients. J. Clin. Psychopharmacol. 2002;22:568-575.

[59] Aman M.G, Vinks A.A, Remmerie B, et al. Plasma pharmacokinetic characteristics of risperidone and their relationship to saliva concentrations in children with psychiatric or neurodevelopmental disorders. Clin. Ther. 2007;29:1476-1486.

[60] Oesterheld J.R. A review of developmental aspects of cytochrome P450. J. Child Adolesc. Psychopharmacol. 1998;8:161-174.

[61] de Wildt S.N, Kearns G.L, Hop W.C, et al. Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br. J. Clin. Pharmacol 2002;53:390-392.

[62] Fernandez E, Perez R, Hernandez A, et al. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults.

Pharmaceutics. 2011;3:53-72;

[63] Kornhuber J, Konradi C, Mack-Burkhardt F, et al. Ontogenesis of monoamine oxidase-A and -B in the human brain frontal cortex. Brain Res. 1989; 499:81-86.

[64] Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/ function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106(3):357-387.

[65] Phillips IR, Shephard EA. Flavin-containing monooxygenases: mutations, disease and drug response. Trends Pharmacol Sci. 2008;29(6):294-301.

[66] Lowry J.A, Jarrett R.V, Wasserman G,et al. Theophylline toxicokinetics in premature newborns. Arch. Pediatr. Adolesc. Med. 2001;155:934-939.

[67] Pacifici G, Bencini C, Rane A. Acetyltransferase in humans: Development and tissue distribution. Pharmacology. 1986;283-291.

[68] Pariente-Khayat A, Rey E, Gendrel D, et al. Isoniazid acetylation metabolic ratio during maturation in children. Clin. Pharmacol. Ther. 1997;62:377-383.

[69] Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487-491.

[70] Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250-267.

[71] Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol. 1989;28(5):599-604.

[72] Chen M, LeDuc B, Kerr S, et al. Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos. 2010;38(3):368-375.

[73] Boucher F.D, Modlin J.F, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J. Pediatr. 1993;122:137-144

[74] Capparelli E.V, Mirochnick M, Dankner W.M, et al. Pharmacokinetics and tolerance of zidovudine in preterm infants. J. Pediatr. 2003;142:47-52.

[75] Alcorn J, McNamara P.J. Ontogeny of hepatic and renal systemic clearance pathways in infants: Part II. Clin. Pharmacokinet. 2002;41:1077-1094.

[76] Patsalos P.N. Clinical pharmacokinetics of levetiracetam. Clin. Pharmacokinet. 2004;43:707-724.

[77] Somogyi A, Becker M, Gugler R. Cimetidine pharmacokinetics and dosage requirements in children. Eur. J. Pediatr. 1985;144:72-76.

[78] Hunt A, Joel S, Dick G, et al. Population pharmacokinetics of oral morphine and its glucuronides in children receiving morphine as immediate-release liquid or sustained- release tablets for cancer pain. J. Pediatr. 1999;135:47-55.

[79] Chae K.M, Tharp M.D. Use and safety of antihistamines in children. Dermatol. Ther. 2000; 374-383.

[80] Rhodin M.M, Anderson B.J, Peters A.M, et al. Human renal function maturation: A quantitative description using weight and postmenstrual age. Pediatr. Nephrol. 2009;24:67-76.

[81] Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2000;2(1):E3.

[82] Rubin MI, Bruck E, Rapoport M, et al. Maturation of renal function in childhood: clearance studies. J Clin Invest. 1949;28(5):1144-1162.

[83] Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34(3):571-590.

[84] Zarowitz B.J, Robert S, Peterson E.L. Prediction of glomerular filtration rate using aminoglycoside clearance in critically ill medical patients. Ann. Pharmacother 1992;26:1205-1210.

[85] Peterson R.G, Simmons M.A, Rumack B.H, et al. Pharmacology of furosemide in the premature newborn infant. J. Pediatr. 1980;97:139-143.

[86] Kelly M.R, Cutler R.E, Forrey A.W, et al. Pharmacokinetics of orally administered furosemide. Clin. Pharmacol. Ther. 1974;15:178-186.

[87] Halkin H, Radomsky M, Millman P, et al.,Steady state serum concentrations and renal clearance of digoxin in neonates, infants and children. Eur J Clin Pharmacol. 1978;13(2): 113-117.

[88] Linday L.A, Engle M.A, Reidenberg M.M. Maturation and renal digoxin clearance. Clin. Pharmacol. Ther. 1981;30:735-758.

[89] Koren G, Hesslein P.S, MacLeod S.M. Digoxin toxicity associated with amiodarone therapy in children. J. Pediatr. 1984;104:467-470.

[90] Hua M.J, Kun H.Y, Jie C.S, et al. Urinary microalbumin and retinol-binding protein assay for verifying children's nephron development and maturation. Clin. Chim. Acta. 1997;264:127-132.

[91] Takahashi H, Ishikawa S, Nomoto S, et al. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin Pharmacol Ther. 2000;68(5):541-555.

[92] Marshall JD, Kearns GL. Developmental pharmacodynamics of cyclosporine. Clin Pharmacol Ther. 1999;66(1):66-75.

[93] Ginsberg G, Hattis D, Miller R, et al. Pediatric pharmacokinetic data: Implications for environmental risk assessment for children. Pediatrics. 2004;113:973-983.

[94] Kearns G.L. Impact of developmental pharmacology on pediatric study design: Overcoming the challenges. J. Allergy Clin. Immunol. 2000;106:128-138.

[95] Goldman R. Intranasal drug delivery for chidren with acute illness. Curr. Drug Ther. 2006;1:127-130.

[96] Añez C, Rull M, Rodriguez A, et al. Opioides por vía intranasal en el tratamiento del dolor agudo. Rev. Esp. Anestesiol. Reanim. 2006;53:643-652.

[97] Borland M.L, Bergesio R, Pascoe E.M, et al. Intranasal fentanyl is an equivalent analgesic to oral morphine in paediatric burns patients for dressing changes: A randomised double blind crossover study. Burns. 2005;31:831-837.

[98] Fuseau E, Petricoul O, Moore K.H, et al. Clinical pharmacokinetics of intranasal sumatriptan. Clin. Pharmacokinet. 2002;41:801-811.

[99] Sheth K.K, Cook C.K, Philpot E.E, et al. Concurrent use of intranasal and orally inhaled fluticasone propionate does not affect hypothalamic-pituitary-adrenal-axis function. Allergy Asthma Proc. 2004;25:115-120.

[100] Anderson BJ, van Lingen RA, Hansen TG, et al. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 2002;96(6):1336-45.

[101] Kearns GL, Robinson PK, Wilson JT, et al. Pharmacokinetics and drug disposition cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther. 2003;4:312-25.

[102] American Academy of Pediatrics. Committee on Drugs. Alternative routes of drug administration–advantages and disadvantages (subject review). Pediatrics. 1997;100:143-152.

[103] Kokki H, Karvinen M, Suhonen P. Pharmacokinetics of intravenous and rectal ketoprofen in young children. Clin. Pharmacokinet. 2003;42:373-379.

[104] van Lingen R.A, Deinum J.T, Quak J.M, Kuizenga A.J, van Dam J.G, Anand K.J, Tibboel D, Okken A. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 1999;80:59-63.

[105] Zwaveling J, Bubbers S, van Meurs A.H, et al. Pharmacokinetics of rectal tramadol in postoperative paediatric patients. Br. J. Anaesth. 2004;93:224-227.

[106] Goult T, Roberts RJ. Therapeutic problems arising from the use of intravenous route of drug administration. J Pediatr. 1979;95:465-471.

[107] Aranda JV, Cohen S, Neims AH. Drug utilization in a newborn intensive care unit. Pediatr J .1976;89:315-317.

[108] Committee on Drugs, American Academy of Pediatrics. The transfer of drugs and other chemicals into human milk.Pediatrics. 2001;108:776–789.

[109] Briggs GG, Freeman RK, Yaffe SJ. Drugs in Pregnancy and Lactation. A Reference Guide to Fetal and Neonatal Risk, 6th ed.Williams & Wilkins. 2002.

[110] Madadi P et al. Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding. A case control study. Clin Pharmacol Ther. 2009;85:31. [111] Katzung B.G, Masters S.B, Trevor A.J. Basic & Clinical Pharmacology. The McGraw-Hill Companies, Inc. 12th ed. 2012;1188-1189.

[112] Erglin A, Frattarelli DAC. Compliance with pediatric medication regimens. In: Yaffe SJ, ed. Pediatric Pharmacology: Therapeutic Principles in Practice, 3rd ed.Philadelphia, PA: Lippincott Williams & Wilkins. 2005:60–68.

[113] Raju TN, Kecskes S, Thornton JP, et al. Medication errors in neonatal and paediatric intensive-care units. Lancet. 1989;2:374–376.

[114] Kaushal R, Bates DW, Landrigan C, et al. Medication errors and adverse drug events in pediatric inpatients. JAMA. 2001;285:2114–2120.

[115] USP Center for the Advancement of Patient Safety. USP Issues Recommendations for Preventing Medication Errors in Children. Rockville, MD: United States Pharmacopeia. 2003.

[116] Arimura J, Poole RL, Jeng M, et al. Neonatal heparin overdose: a multidisciplinary team approach to medication error prevention. J Pediatr Pharmacol Ther. 2008;13:96–98. [117] Rodman JH. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J Adolesc Health. 1994;15(8):654-62.

[118] Crawford JD, Terry ME, Rourke GM. Simplification of drug dosage calculation by application of the surface area principle. Pediatrics. 1950; 5(5):783-90.

[119] Daniels SR, Jacobson MS, McCrindle BW, et al. American Heart Association childhood obesity research summit report. Circulation. 2009;119:489–517.

[120] Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US children and adolescents,2007–2008. JAMA. 2010;303:242–249.

[121] Centers for Disease Control and Prevention. About BMI for Children and Teens. Atlanta, GA: Centers for Disease Control and Prevention. 2011,

http://www.cdc.gov/heathlyweight/assessing/bmi/about_childrens_bmi.html.

[122] Behan JW, Yun JP, Proektor MP, et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 2009;69:7867.

[123] Hijiya N, Panetta JC, Zhou Y, et al. Body mass index does not influence pharmacokinetics or outcome of treatment of children with acute lymphoblastic leukemia. Blood. 2006;108:3997–4002.

[124] Griggs JJ, Mangy PB, Anderson H, et al. Appropriate chemotherapy dosing for obese

Nel documento Farmacoterapia in età pediatrica. (pagine 41-56)

Documenti correlati